
Abstract—In this paper we study the jump conditions
for a one-dimensional acoustic model of a duct which has
an abrupt area expansion and a non-zero mean flow. We
investigate on the compatibility of the three (mass, energy
and momentum) jump conditions across an area expansion
and then propose to use either the mass-momentum or
the energy-momentum jump conditions for a proper one-
dimensional acoustic modeling. The combination of mass
and energy jump condition is shown to be inappropriate.
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I. INTRODUCTION

One-dimensional modeling of a simple duct seems
to be the most elementary problem in an acoustics
course. Basically for an acoustic model one simply uses
a standard wave solution of the Hermholtz equation and
then applies two boundary conditions at the inlet and the
outlet of the duct, e.g., see [1], [2].

This simple one-dimensional modeling problem how-
ever becomes a bit confusing when there is a sudden area
expansion in the duct and the duct is subject to non-zero
mean flow. The confusion comes from the fact that there
are several options in choosing jump conditions across
the area expansion.

More specifically, a standard one-dimensional solu-
tion of the Hermholtz equation leaves us only two
undetermined wave functions but there are many jump
conditions including the next three conditions ;
• mass conservation
• energy conservation
• momentum relation
Authors of [3], [4] proposed to model an area expan-

sion as a loss of stagnation pressure instead of the energy
conservation.

As will be shown in this paper, we have to choose only
two jump conditions among many jump conditions in the
course of one-dimensional modeling. This redundancy of
jump condition is neither physically appealing nor easily

justifiable, considering that those jump conditions should
be somehow connected.

A complete resolution comes if some of the jump
conditions become dependent and only two independent
conditions are left. In fact, this is the case of the zero
mean flow and the three (mass, energy and momentum)
conditions, as will be shown.

Another way for a resolution is to justify a certain
choice of jump conditions based on physical grounds.
One may claim that energy conservation should be
discarded as a sudden area expansion does work and thus
propose to choose the mass and momentum conditions
instead.

One criticism for this selection is that there is still
controversy on a proper momentum relation across an
area expansion. For an example, authors of [5] and
[6] (p. 396) proposed different momentum relations.
Furthermore there are important engineering applications
in which the energy relation should appear. For an
example, in a thermo-acoustic modeling of gas turbines,
a flame located at the point of area expansion serves as
an energy source and therefore a thermo-acoustic model
needs the energy jump condition.

It seems that the problem of how to choose jump
conditions has no definite answers, which motivates our
investigation on the relations of three (mass, energy,
momentum) jump conditions in this paper.

II. ACOUSTIC MODEL

Fig. 1: Schematic of a Combustor
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A. Wave functions

We consider a duct composed of two chambers as
shown in Fig. 1. Each chamber [xk−1, xk], k ∈ [1, 2]
has downstream and upstream waves A+

k and A−k waves
and there exist a sudden area expansion between two
chambers at x = x1.

A solution of the Hermholt equation gives that

the perturbations of pressure, velocity and density
at each chamber can be represented as combinations
of wave functions in (1) below. Note that, for each
k ∈ [1, 2], the three functions of pressure, velocity
and density waves are given as combinations of
two independent function A±k and therefore we
need four unknown functions to describe pressure,
velocity and density waves over the full range [x0, x2].

pk(x, t) := pk +A+
k

(
t− x− xk−1

c+ uk

)
+A−k

(
t− xk − x

c− u1

)
uk(x, t) := uk +

1

ρc

[
A+
k

(
t− x− xk−1

c+ uk

)
−A−k

(
t− xk − x

c− uk

)]
ρk(x, t) := ρ+

1

c2

[
A+
k

(
t− x− xk−1

c+ uk

)
+A−k

(
t− xk − x

c− uk

)] , (k = 1, 2) (1)

Define
I1(t) := A+

1

(
t− τ+1

)
J1(t) := A−1 (t)

I2(t) := A+
2 (t)

J2(t) := A−2 (t− τ2)

τ±i :=
xi − xi−1
ci ± ui

(i = 1, 2)

(2)

Each wave function A±k (x, t) has two independent
variables :x (space) and t (time). However, as we already
know how those two variables {x, t} are combined to
appear as a single variable in the wave function A±k in
(1), we have only to know {Ik(t), Jk(t)} in (2) which
have one time variable only, for a complete construction
of A±k (x, t). In other words, by fixing one variable
x = x1, we lose nothing. The same is true with the
pressure, velocity and density functions.

Note that, with x = x1 in (1), we have

pk(x1, t)− pk = p′k(x1, t) = Ik + Jk

ρc[uk(x1, t)− uk] = ρcu′k(x1, t) = Ik − Jk
c2[ρk(x1, t)− ρ] = c2ρ′k(x1, t) = Ik + Jk

(3)

B. Boundary Conditions

Acoustic boundary conditions at x ∈ {x0, x2} are
characterized by reflection coefficients which are transfer
functions between incident and reflected waves at both
boundaries.

Two reflection coefficients are defined as

R1 :=
Ã+

1

Ã−1 e
−τ−

1 s
=

Ã+
1 e
−τ+

1 s

Ã−1 e
−(τ+

1 +τ−
1 )s

=
Ĩ1

J̃1e−δ1s

R2 :=
Ã−2

Ã+
2 e
−τ+

2 s
=

Ã−2 e
−τ−

2 s

Ã+
2 e
−(τ+

2 +τ−
2 )s

=
J̃2

Ĩ2e−δ2s

(4)

where {Ĩk(s), J̃k(s)} and Ã±k (s) denotes the Laplace
transform of {Ik, Jk} and A±k (t), respectively, and the
quantities δ1, δ2 are defined

δ1 := τ+1 + τ−1 = (x1 − x0)
[

1

c+ u1
+

1

c− u1

]
,

δ2 := τ+2 + τ−2 = (x2 − x1)
[

1

c+ u2
+

1

c− u2

]
.

(5)

The relations Ĩ1 = R1e
−δ1sJ̃1 and J̃2 = R2e

−δ2sĨ2 in
(4) can be written in a matrix form as[

1 −R1e
−δ1s 0 0

0 0 −R2e
−δ2s 1

]
X̃ =

[
0
0

]
(6)

where
X :=

[
I1 J1 I2 J2

]
. (7)

C. Jump Conditions
As we have four unknown functions {Ik, Jk} (k =

1, 2) for a description of acoustic model, from two
boundary conditions (6), we need two additional rela-
tions between functions. Therefore we need to have two
jump conditions across the area expansion at x = x1 in
Fig. 1.

We assume incompressive flows and thus the sound
speed c and mean density ρ are constants over the full
range [x0, x2].

The mass, momentum, energy rate (denoted m, f, e,
respectively) are given

m = Aρu
f = A(p+ ρu2)

e = A(ηpu+ ρu3/2), η :=
γ

γ − 1
.

(8)

where A denotes cross sectional area.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS070047
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 07, July - 2017

75



Remark 1: Throughout this paper, by saying mass,
momentum and energy without the term rate explicitly,
we mean the rates of those quantities across x = x1.

The perturbations of quantities in (8), denoted by
m′, f ′, e′, become

m′/A = ρu′ + uρ′

f ′/A = p′k + 2ρ uu′ + u2ρ′

e′/A = (ηp+ 3u2ρ/2)u′ + ηup′ + u3ρ′/2

(9)

where we used the facts γp = c2ρ and c2ρ′ = p′.
Let us introduce a new notation. From now on two

subscripts {1, 2} of functions {m, f, e,A} of x rep-
resent their magnitude at x → x1 ↑ (left limit) and
x→ x1 ↓ (right limit), respectively.

We assume that the mean flow is much slower than
the sound speed. That is, Mk := uk/c� 1.

Making use of (3), the perturbation form (9) can be
rewritten as, for k = 1, 2,

cm′k
Ak

= (Ik − Jk) +Mk(Ik + Jk)

f ′k
Ak

= (Ik + Jk) + 2Mk(Ik − Jk)

e′k
cAk

=
1

γ − 1
(Ik − Jk) + ηMk(Ik + Jk)

(10)

where for simplicity we assumed M2
k = 0. This expres-

sion can be written in a matrix form as

1

Ak

cm′kf ′k
e′k/c

 =

 1 +Mk −1 +Mk

1 + 2Mk 1− 2Mk
γMk+1
γ−1

γMk−1
γ−1

[Ik
Jk

]
(11)

From this representation, the mass conservation con-
dition m′1 −m′2 = 0 can be written as[

1 +M1 −1 +M1 −β −M1 β −M1

]
X = 0

(12)
where β := A2/A1 denotes the area ratio and we used
M1 = βM2 from the mass continuity u1A1 = u2A2.

In a similar way, the energy conservation condition
e′1 − e′2 = 0 can be written as[
1 + γM1 −1 + γM1 −β − γM1 β − γM1

]
X = 0.

(13)
Momentum balance across an area expansion can be

modeled as

f2 − f1 = (A2 −A1)p1 = A1(β − 1)p1, (14)

e.g., see [6](p. 396 Eq. (13.67c)).

By substituting the representation of a momentum
perturbation in (10) to a perturbation of the equality (14),
it follows that

A1(β − 1)p′1 + f ′1 − f ′2
=
[
β + 2M1 β − 2M1 −β(1 + 2M2)

−β(1− 2M2)
]
X = 0. (15)

By dividing both sides with β and using M2 = M1/β,
the momentum relation can be written as[

β + 2M1 β − 2M1

−β − 2M1 −β + 2M1

]
X = 0. (16)

Up to now we have found four jump conditions
corresponding to the mass, energy, and momentum re-
lations across a sudden area expansion, which can be
summarized in a 3× 4 matrix form as

(mass)
(energy)
(momentum)

 1 +M1 −1 +M1

1 + γM1 −1 + γM1

β + 2M1 β − 2M1

−β −M1 β −M1

−β − γM1 β − γM1

−β − 2M1 −β + 2M1

X =

0
0
0

 (17)

Note that in the case of zero mean flow, i.e., M1 = 0,
this matrix has a form1 −1 −β β

1 −1 −β β
β β −β −β

X =

 0
0
01

 . (18)

Thus the first (mass) and second (energy) rows become
identical, leaving us only two independent relations. An
implication of this result is that, when there is no mean
flow, we have only two independent jump conditions and
there is no ambiguity in choosing jump conditions.

III. COMPATIBILITY OF JUMP CONDITIONS

A. Mass and Energy Relations

Suppose we take the following mass and momentum
relations in (17) for granted. Then a rewriting of (17)
gives the next equality[

1 +M1 −1 +M1

1 + γM1 −1 + γM1

] [
I1
J1

]
=[

β +M1 −β +M1

β + γM1 −β + γM1

] [
I2
J2

]
. (19)

Our aim is to compare the momentum relation in (17)
with a new momentum relation which comes from the
mass and energy conditions.
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Firstly we express {I2, J2} in terms of {I1, J1} from
the matrix relation (19) assuming M2

k = 0 and obtain

f ′2 − f ′1
A1

= (β − 1)(I1 + J1)− 2(M1 −M2)(I1 − J1)

= (β − 1)p′1 − 2
(β − 1)

β
M1ρcu

′
1

= (β − 1)

(
p′1 −

2

β
ρu1u

′
1

)
.

(20)
Then, by recovering an unperturbed form from (20) to
have

f2 − f1 = A1(β − 1)

(
p1 −

1

β
ρu21

)
. (21)

A comparison of this result with the momentum
relation (14) reveals that our new momentum relation
which is a pure consequence of the mass and energy
conservation in (19), has an additional term.

In order words, the mass conservation condition being
taken for granted, the energy conservation condition is
equivalent to having a smaller momentum increase than
expected from the momentum relation (14).

This difference however is not significant. To see this,
note firstly that the additional term in (20) can be written

2

β
ρu1u

′
1 =

2M1

β
ρcu′1. (22)

Secondly, we know from (3) that ρc u′1 has the same
order of p′1. Hence if M1 � β then the momentum
difference f ′2 − f ′1 in (21) is dominated by the term p′1,
recovering the momentum relation (14).

B. Mass and Momentum Relations
In this section we assume that the mass and momen-

tum relations hold and, under that assumption, develop a
new energy relation and then compare it with the energy
conservation relation in (17).

The mass and momentum conditions (the first and
third rows of the matrix (17) can be written as[

1 +M1 −1 +M1

β + 2M1 β − 2M1

] [
I1
J1

]
=

[
β +M1 −β +M1

β + 2M1 β − 2M1

] [
I2
J2

]
. (23)

By expressing {I2, J2} in terms of {I1, J1} from this
equality, the energy difference can be written as a linear
combination of {I2, J2} as

e′2 − e′1 = −cA1
β(β − 1)(3β − 1)

2
M2

2 (I2 − J2)

= −A1
β(β − 1)(3β − 1)

2
ρ u2

2u′2

(24)

and the corresponding unperturbed form

e2 − e1 = −A1
β(β − 1)(3β − 1)

6
ρu32 (25)

can be obtained.
As the term in the right hand side of (25) is always

negative for all β ≥ 1, it follows that a sudden area
expansion causes an energy loss.

In addition, we represent the energy terms {e1, e2} of
(24) explicitly to have

ρA2u2

[
ηp2
ρ

+
1

2
u22

]
− ρA1u1

[
ηp1
ρ

+
1

2
u21

]
= −ρA2u2

(β − 1)(3β − 1)

6
u22, (26)

which is equal to

ηp2
ρ

+
1

2
u22 +

1

2
Keu

2
2 =

ηp1
ρ

+
1

2
u21 (27)

after a cancellation of the mass rate where

Ke :=
(β − 1)(3β − 1)

3
> 0. (28)

The stagnation enthalpy is defined

Hk := η
pk
ρ

+
1

2
u2k (29)

and thus the energy loss in (27) across a sudden area
expansion can be seen as a loss of stagnation enthalpy
as follows ;

H2 +
1

2
Keu

2
2 = H1. (30)

The quantity Ke can be called as a stagnation enthalpy
loss coefficient associated with an area expansion.

In conclusion the combination of mass and momentum
relations automatically results in an energy loss which
contradicts with the energy conservation in (17).

IV. RESONANT FREQUENCY

By substituting the boundary conditions (6) to the
mass, energy and momentum relations across an area
expansion, we obtain a complex valued 4× 2 matrix

(mass)
(energy)
(momentum)

 (1 +M1)R1e
−δ1s − 1 +M1

(1 + γM1)R1e
−δ1s − 1 + γM1

(β + 2M1)R1e
−δ1s + β − 2M1

−β −M1 + (β −M1)R2e
−δ2s

−β − γM1 + (β − γM1)R2e
−δ2s

−β − 2M1 − (β − 2M1)R2e
−δ2s

[J̃1
Ĩ2

]
=

0
0
0

 .
(31)

Depending on which jump conditions in (31) we
choose, a homogeneous 2×2 square matrix, call it ∆(s),
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is determined and the corresponding matrix equation al-
lows non-zero solutions J̃1, Ĩ2 only when the determinant
|∆(s)| is zero. As the determinant |∆(s)| is nothing
but the characteristic equation of a differential equation
associated with the matrix equation (31), let us call the
roots of |∆(s)| = 0 as characteristic roots.

Characteristic roots are complex numbers in general
but typically they are close to the imaginary axis. Hence
the image of a real-valued function |∆(jw)| defined on
the real axis w ∈ R, has a local minimum at w = w∗

such that s = σ + jw∗ is a characteristic root for some
real number σ. The frequency w∗ or f∗ := w∗/2π is
commonly called as a resonance frequency.

There are three possible ways in choosing two jump
conditions among the three rows of the matrix (31).
However, it turns out that the mass-energy combina-
tion (first and second rows) should be avoided. An
obvious reason is that, as we have already observed, the
first and second row becomes identical when M1 = 0
and hence a singularity occurs. A hidden but more
fundamental drawback of the mass-energy combination
is that characteristic roots are independent of mean flow.
In fact, elementary calculations with (31) can reveal that
the equation |∆(s)| = 0 of this case is given

R1R2e
−(δ1+δ2)s − β − 1

β + 1

(
R1e

−δ1s −R2e
−δ2s

)
− 1 = 0

(32)
which is independent of the mean flow M1.

With the mass-energy combination excluded, there are
only two cases ; mass-momentum and energy-momentum
combinations.

Note that the only difference between the mass (first)
and energy (second) row of the matrix (31) is that M1

of the first row is replaced with γM1 in the second. As a
result, the two choices do not make much difference as
long as the mean flow is small. Roughly speaking, with a
fixed momentum relation, the energy relation emphasizes
the effect of mean flow γ times than the mass relation.

Finally, let us consider s simple numerical example
with parameters

L1 = 1.0 (m), L2 = 1.5 (m), β = 5,

c = 443 (m/s), γ = 1.4, R1 = R2 = 1. (33)

For a set of mean flow 0 ≤ M1 ≤ 0.5, the charac-
teristic roots of both the mass-momentum and energy-
momentum combinations are numerically found and
shown in Fig. 2. In overall the two combinations have
similar characteristic roots but show some differences as
mean flow increases.
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Fig. 2: Characteristic Roots (0 ≤M1 ≤ 0.5)

V. CONCLUSION

We considered a one-dimensional acoustic model of
a duct which has an abrupt area expansion and sub-
ject to a non-zero mean flow. We investigated on the

relations between three (mass, energy and momentum)
jump conditions across an area expansion and found

that the combination of mass-energy jump condition is
not a proper choice for an acoustic modeling. It was
also shown that the combination of either the mass-
momentum or the energy-momentum jump condition
result in a similar model for reasonably small mean flow.
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