
On A Recursive Algorithm for SYN Flood Attacks

Pranay Meshram1, Ravindra Jogekar2, Pratibha Bhaisare3
123Department of Computer Science and Engineering

12Priyadarshini J L College of Engineering, 3Abha-Gaikwad Patil College of Engineering
123RTM Nagpur University, Nagpur

Abstract
A Denial of Service (DoS) attack is a generic term for a

type of attack, which can take many forms. Machines

that provide TCP services are often susceptible to

various types of Denial of Service attacks from external

hosts on the network. It can be characterized as an

explicit attempt by attackers to prevent legitimate users

of a service from using that service. Our main aim is to

implement a defence mechanism for SYN flood attack

on a network using OMNeT++. Finally, we compare

OMNeT++ with NS-2 and propose OMNeT++ as

better simulation software

Keywords: DoS, SYN Flood attacks, OMNeT++.

1. Introduction
 A normal outcome of the vulnerability of TCP

protocol, i.e. handshaking mechanism, SYN flood

attacks are one of the most common DoS attacks which

may halt the services provided by a server. It is always

better to state the views on a rough paper than to

implement it beforehand. OMNeT++ provides us with

the all the tools required for modelling of wired and

wireless communication networks, protocols, queuing

networks, multiprocessors and other distributed

hardware systems, validating of hardware architectures,

and in general, it can be used for the modelling and

simulation of any system where the discrete event

approach is suitable, and which can be conveniently

mapped into entities communicating by exchanging

messages.

1.1 Denial of Service attacks:

 A Denial of Service (DoS) attack is a generic

term for a type of attack, which can take many forms.

The motivation for DoS attacks is not to break into a

system but to make the target system deny the

legitimate user giving service. There are three basic

types of attack, destruction or alteration of

configuration information, physical destruction or

alteration of network components, and consumption of

scarce, limited, or non-renewable resources [1].

Figure 1: Denial of service attack

i. Resource consumption

 A well-known attack method is the “SYN

flood” [4], which exploit vulnerability in the TCP

protocol. A target machine is flooded with TCP SYN

packets. The source TCP ports and source addresses of

the request packets are randomized in order to make it

look like each packet correspond to a new request for a

TCP connection, but the connection will never be

completed. The purpose is to force the target host to

maintain state information for every request and

eventually run out of available TCP connections. This

type of attack has been known for some time and many

operating systems have increased their buffer space for

“half-open” TCP connections to become more resilient

to this type of attack. Another attack type called

“stream” [5] uses TCP ACK packets. As in SYN flood,

port and source address is randomized. It has shown to

be quite effective, especially if it hits an open port. The

effectiveness is highly dependent on how the operating

system handles TCP ACK packets with no

corresponding connection. Email bombing and

spamming [6] can also be used to consume system

resources.

ii. Bandwidth consumption

 A common goal of all bandwidth attacks is to

consume all available bandwidth in a network. This can

be achieved by sending more packets to the network

than it can handle, called packet flooding. Preferably

single, not connection oriented, spoofed IP packets are

used. This makes UDP and ICMP packets best suited

for flooding. Another possibility is to connect the

1111

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120731

chargen function on one machine to the echo function

on another machine on the same network [7]. Ping can

be used for flooding by starting up multiple copies of

the program on a well connected server and using a

command option to pad each ICMP echo request packet

with lots of extra data [8].

iii. Distributed DoS attacks

 A more recent and well-known attack called

“smurf” [9] use reflectors to multiply the effect of the

attack. Instead of sending the flood of ICMP echo

requests directly to the victim it is sent to the broadcast

address of another network. The address of the victim

machine is included as the source address in the packet

and causes every machine on the network to respond to

this machine pts.

2. Normal three way handshake in TC
As we know, a connection needs to be

established between the source S and destination D to

facilitate the communication between them. This

process is referred as the three-way handshake. The

process starts with the source sending a SYN packet

(TCP header with SYN bit set) to D who responds by

sending back packet with both SYN and ACK bits set.

If the source finally responds with ACK bit set,

connection is established else D sends RST signal after

timeout period. Three-way handshake is also used for

initializing the sequence numbers, which are needed to

provide reliable delivery of packets.

Figure 2: Three-way handshake

 Three memory structures namely socket

structure (socket), internet protocol control block

structure (inpcb) and the TCP control block structure

(tcpcb) are allocated by both S and D for every

connection. These structures contain all the

information required for the connection like state

information, buffers, address information, flags, timer

information, port numbers, sequence number

information etc.[11] Thus, for every connection, certain

memory resource is consumed and ports are utilized.

This is the main purpose of the attacker.

3. SYN Flood attack:

The SYN flood attack is, simply, to send a large

number of SYN packets and never acknowledge any of

the replies. This leads the recipient to accumulate more

records of SYN packets than his software can handle.

Flooding attacks intend to overflow and consume

resources available to the victim (memory, Bandwidth)

by sending a continuous flood of traffic. SYN flooding

is the most common and well known DoS attack. In

SYN flooding, the attacking system sends SYN request

with spoofed source IP address to the victim host.

These SYN requests appear to be legitimate. The

spoofed address refers to a client system that does not

exist. Hence final ACK message will never sent to the

victim server system. This results into more number of

half-open connections at the victim side. A backlog

queue is used to store these half-open connections.

These half-open connections bind the resources of the

server. Hence no new connections (legitimate) can be

made, resulting in Denial of Service [4].

Figure 3: SYN Flood attack

Defence mechanisms for SYN Flood attacks:

Using firewalls:

 Firewalls can protect against SYN flooding

attacks using two methods:

Firewall as a Relay:

 Firewall acts on behalf of the host like a

proxy. When SYN message arrives, the firewall sends

the message SYN, ACK to the source. D is not aware

of any packets at this time. If the final ACK does not

arrive, as would be in case of an attack, the firewall

resets the connection and the host doesn’t receive any

packets.

1112

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120731

Figure 4: Firewall as a Relay(legitimate connection

request)

On the other hand, if the connection is legitimate and

the firewall receives the third message of ACK, it

forms a new connection with the host on behalf of the

actual client. From here on, the firewall has to change

the sequence numbers in the packets from client to

server and send them to server [12]. This results in an

additional delay of messages for legitimate

connections. This is an effective technique only if the

firewall is resistant to SYN flooding attack.

Figure 5: Firewall as a Relay (Illegitimate

connection request)

Firewall as a Semi-transparent Gateway:

 The firewall monitors the traffic sent from

source to destination. When it sees ACK+SYN being

sent from D to S, it responds by creating an ACK

message and sending to D, thus reallocating the

resources and moving the connection out of the queue.

If it is an attack, the firewall then sends a RST message

to D and connection is dropped.

Figure 6: Firewall as a Semi-transparent Gateway

 (Legitimate connection request)

If the connection request is from a proper source, he

sends back ACK, which is passed by firewall. D merely

sees it as the duplicated packet and discards it. This

prevents the delay that was introduced in earlier

method. The only drawback is that there are many open

connections at D in case of an attack. [13]

Figure 7: Firewall as a Semi-transparent Gateway

 (Illegitimate connection request)

4.An overview of OMNeT++
 OMNeT++ is a C++-based discrete event

simulator for modelling communication networks,

multiprocessors and other distributed or parallel

systems.

4.1 Model structure:

 An OMNeT++ model consists of modules that

communicate with message passing. The active

modules are termed simple modules; they are written in

C++, using the simulation class library. Simple

modules can be grouped into compound modules and

so forth; the number of hierarchy levels is not limited.

When a module type is used as a building block, there

is no distinction whether it is a simple or a compound

module. This allows the user to transparently split a

module into several simple modules within a

1113

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120731

compound module, or do the opposite, re-implement

the functionality of a compound module in one simple

module, without affecting existing users of the module

type.

Figure 8: Modules in OMNeT++

 Modules communicate with messages which –

in addition to usual attributes such as timestamp – may

contain arbitrary data. Simple modules typically send

messages via gates, but it is also possible to send them

directly to their destination modules. Gates are the

input and output interfaces of modules: messages are

sent out through output gates and arrive through input

gates. An input and an output gate can be linked with a

connection. Connections are created within a single

level of module hierarchy: within a compound module,

corresponding gates of two submodules, or a gate of

one submodule and a gate of the compound module can

be connected. Connections spanning across hierarchy

levels are not permitted, as it would hinder model

reuse. Properties such as propagation delay, data rate

and bit error rate, can be assigned to connections. One

can also define connection types with specific

properties (termed channels) and reuse them in several

places.

 Modules can have parameters. Parameters are

mainly used to pass configuration data to simple

modules, and to help define model topology.

Parameters may take string, numeric or boolean values.

4.2 The Design of the NED Language

 The user defines the structure of the model

(the modules and their interconnection) in OMNeT++'s

topology description language, NED. Typical

ingredients of a NED description are simple module

declarations, compound module definitions and

network definitions. Simple module declarations

describe the interface of the module: gates and

parameters. Compound module definitions consist of

the declaration of the module's external interface (gates

and parameters), and the definition of submodules and

their interconnection. Network definitions are

compound modules that qualify as self-contained

simulation models. In addition to a number of smaller

improvements, the following major features have been

introduced:

Inheritance: Modules and channels can now be

subclassed.Derived modules and channels may add

new parameters, gates, and (in the case of compound

modules) new submodules and connections.

Interfaces: Module and channel interfaces can be used

as a Placeholder where normally a module or channel

type would be used and the concrete module or channel

type is determined at network setup time by a

parameter.

Packages: To address name clashes between different

models and to simplify specifying which NED files are

needed by a specific simulation model, a Java-like

package structure was introduced into the NED

language.

Inner types: Channel types and module types used

locally by a compound module can now be defined

within the compound module, in order to reduce

namespace pollution.

Metadata annotations: It is possible to annotate

module or channel types, parameters, gates and

submodules by adding properties. Metadata are not

used by the simulation kernel directly, but they can

carry extra information for various tools, the runtime

environment, or even for other modules in the model.

For example, a module's graphical representation (icon,

etc) or the prompt string and unit (mill watt, etc) of a

parameter are specified using properties.

5. Methodology for SYN flood attack on

OMNeT++
 Our first module of the project for simulating

a SYN flood attack on OMNeT++ includes the

following stages:

 Initiating a SYN flood attack

 Detecting the attack

Our second module of the project deals with the

defense mechanism implemented for prevention. Here,

we discuss the first module in order to describe

structure of NED language.

First module:

 For any project to begin, we have to create

certain modules which will act as classes for

OMNeT++. These modules are actually the description

about our nodes which we are going to use in our

Network simulation. Our project consists of 3 types of

modules. These are attacker module, the server and a

legitimate host, to name. These modules have certain

1114

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120731

parameters and gates associated with them to send and

receive messages. The whole Network description is

given in the NED file.

 Now, SYN flooding is a type of DoS attack,

wherein the attacker sends continuous SYN messages

to the server and gets the acknowledgement every time

as SYN+ACK. But this attacker is not bothered about

sending the ACK packet to the server back. It just

continuously goes on sending SYN packets. After a

certain number of SYN packets being sent to the server

(we have set the queue limit to 6), the server queue gets

full and flooding occurs with the server left with half-

open connections. The attacker still attacks the server

with SYN packets continuously.

 Now, the legitimate host tries to establish a

connection with the server, by sending a SYN packet

and finds that the server cannot be accessed. This is

because the server queue has got full to accommodate

any further connection request. So, it rejects any further

request. Before the flooding took place, if the remote

host had sent this same connection request, the server

would have acknowledged it. But, after flooding, it is

not possible till the queue again gets emptied.

 After a certain timeout period, the queue will

get refreshed and it will welcome any new connection

request again till the queue again gets full. Whenever

the connection is established, that particular entry is

removed from the queue.

For every module of the OMNeT++ simulation,

following two functions have to be defined:

 initialize() includes building the model and

 inserting initial events to FES(Future Event

 Set).

 handleMessage() is a method that is called

 by the simulation kernel when the module

 receives a message.

The following algorithm along with some functions

presents an overview of the structure of OMNeT++

programming language called NED. The following

algorithm is developed for SYN flood attack initiation

and detection:

Algorithm For SYN flood attack initiation and

detection:

Void attacker:initialize()

{ Define event type sendself1 of type cMessage;

 Send self msg at simtime()=0.0;

}

void attacker:handlemessage(cMessage *msg1)

{

 if(msg1 kind=sendself1)

 {

 Create new cMessage m1 of type

SYN1;

 Send(m1,server);

 scheduleAt(simTime()+delay,sendself1);

 }

 else

 Delete msg;

}

Void server:initialize()

{

 Define event type timeout;

 scheduleAt(simTime()|+refresh, timeout);

}

Void server:handleMessage(cMessage *msg)

{

 If(count>queue length)

 {

 Display”SYN Flood attack”;

 Set sign;

 }

 If(msg kind=SYN1 && (!sign))

 {

 Create new cMessage m1 of type

SYN+ACK;

 Send(m1, attacker);

 Delete msg;

 }

 If(msg kind=timeout)

 {

 Refresh queue;

 }

 If(msg kind=ACK2)

 {

 Free queue by 1 slot;

 Delete msg;

 }

}

Void legitimate:initialize()

{

 Define event type sendself2 of type cMessage;

 Send self msg at some time=t;

}

void legitimate:handlemessage(cMessage *msg2)

{

 if(msg2 kind=sendself2)

 {

 Create new cMessage m of type

SYN2;

 Send(m,server);

1115

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120731

 }

 If(msg2 kind=SYN+ACK)

 {

 Create new cMessage m2 of type

ACK2;

 Send(m2,server);

 }

 else

 Delete msg;

}

(Note: Sign and count are initially set to 0)

Here, cMessage is a message class in OMNeT++.

Some other functions used are:

 simTime(): simulation time

 scheduleAt(): used to schedule the events

 send(): to send messages to other modules

5. Conclusion
 In this paper an algorithm has been

implemented to simulate a SYN flood attack. The

programming approach is quite simple to implement.

Reducing the time out period or increasing the number

of half open connections could not provide with the

solution for preventing a system from getting SYN

Flooded. Thus, the new concept of firewall came into

existence. The OMNeT++ approach significantly

differs from that of NS-2, J-Sim or any other simulation

tools. While the NS-2 (and NS-3) project goal is to

build a network simulator, OMNeT++ aims at

providing a rich simulation platform, and leaves

creating simulation models to independent research

groups.

6. References

[1] Helena Sandström "A Survey of the Denial of

Service Problem"

[2] Computer Emergency Response Team. “Results of

the Distributed-Systems Intruder Workshop”

http://www.cert.org/reports/dsit_workshop-

final.html

 [3] CNN.com, “The denial-of-service aftermath”

 [4] Computer Emergency Response Team. CERT

 Advisory CA-96.21;“TCP SYN Flooding and

 IP Spoofing Attacks”;1996.

 [5] BUGTRAQ threads on the stream.c DoS attack and

its Fallout

http://staff.washington.edu/dittrich/misc/ddos/strea

m.txt

[6] Computer Emergency Response Team, Tech Tips,

“Email Bombing and Spamming”

“http://www.cert.org/tech_tips/email_bombing_spa

 mming.html”

[7] Computer Emergency Response Team. CERT

Advisory CA-1996-01, “UDP Port Denial-of-

Service Attack”,

[8] Computer Emergency Response Team. CERT

Advisory CA-1996-26, “Denial-of-Service Attack

via ping”,http://www.cert.org/advisories/CA-1996-

26.html

[9] Computer Emergency Response Team. CERT

Advisory CA-1998-01, “Smurf IP Denial-of-

Service Attacks“,

 [10]Jonathan Lemon "Resisting SYN flood DoS

attacks with a SYN cache", Free BSD project

[11]http://www.phrack.org/issues.html?issue=48&id=1

3

[12]Proceedings of the 10th USENIX Security

Symposium, Washington, D.C., USA, 2001

[13]The Internet Protocol Journal - Volume 9, Number

4-“Defenses Against TCP SYN Flooding Attacks”

[14]Andras Varga "An overview of the OMNeT++

simulation environment", 2008, France

1116

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120731

