1JERTV21S120731

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 12, December - 2013

On A Recursive Algorithm for SYN Flood Attacks

Pranay Meshram!, Ravindra Jogekar?, Pratibha Bhaisare®
12Department of Computer Science and Engineering
2priyadarshini J L College of Engineering, *Abha-Gaikwad Patil College of Engineering
125RTM Nagpur University, Nagpur

Abstract

A Denial of Service (DoS) attack is a generic term for a
type of attack, which can take many forms. Machines
that provide TCP services are often susceptible to
various types of Denial of Service attacks from external
hosts on the network. It can be characterized as an
explicit attempt by attackers to prevent legitimate users
of a service from using that service. Our main aim is to
implement a defence mechanism for SYN flood attack
on a network using OMNeT++. Finally, we compare
OMNeT++ with NS-2 and propose OMNeT++ as
better simulation software

Keywords: DoS, SYN Flood attacks, OMNeT++.

1. Introduction

A normal outcome of the vulnerability of TCP
protocol, i.e. handshaking mechanism, SYN" flood
attacks are one of the most common DoS attacks which
may halt the services provided by a server. It is always
better to state the views on a rough paper than to
implement it beforehand. OMNeT++ provides us with
the all the tools required for modelling of wired and
wireless communication networks, protocols, queuing
networks, multiprocessors and other distributed
hardware systems, validating of hardware architectures,
and in general, it can be used for the modelling and
simulation of any system where the discrete event
approach is suitable, and which can be conveniently
mapped into entities communicating by exchanging
messages.

1.1 Denial of Service attacks:

A Denial of Service (DoS) attack is a generic
term for a type of attack, which can take many forms.
The motivation for DoS attacks is not to break into a
system but to make the target system deny the
legitimate user giving service. There are three basic
types of attack, destruction or alteration of
configuration information, physical destruction or
alteration of network components, and consumption of

scarce, limited, or non-renewable resources [1].

A toquost packot with
Turyee suuiee sudress

A request packet sen! from
o legilimate client

Altack machine Victim

Figure 1: Denial of service attack

i.. Resource consumption

A well-known attack method is the “SYN
flood” [4], which exploit vulnerability in the TCP
protocol. A target machine is flooded with TCP SYN
packets. The source TCP ports and source addresses of
the request packets are randomized in order to make it
look like each packet correspond to a new request for a
TCP connection, but the connection will never be
completed. The purpose is to force the target host to
maintain state information for every request and
eventually run out of available TCP connections. This
type of attack has been known for some time and many
operating systems have increased their buffer space for
“half-open” TCP connections to become more resilient
to this type of attack. Another attack type called
“stream” [5] uses TCP ACK packets. As in SYN flood,
port and source address is randomized. It has shown to
be quite effective, especially if it hits an open port. The
effectiveness is highly dependent on how the operating
system handles TCP ACK packets with no
corresponding connection. Email bombing and
spamming [6] can also be used to consume system
resources.

ii. Bandwidth consumption

A common goal of all bandwidth attacks is to
consume all available bandwidth in a network. This can
be achieved by sending more packets to the network
than it can handle, called packet flooding. Preferably
single, not connection oriented, spoofed IP packets are
used. This makes UDP and ICMP packets best suited
for flooding. Another possibility is to connect the

www.ijert.org

1111

1JERTV21S120731

chargen function on one machine to the echo function
on another machine on the same network [7]. Ping can
be used for flooding by starting up multiple copies of
the program on a well connected server and using a
command option to pad each ICMP echo request packet
with lots of extra data [8].

iii. Distributed DoS attacks

A more recent and well-known attack called
“smurf” [9] use reflectors to multiply the effect of the
attack. Instead of sending the flood of ICMP echo
requests directly to the victim it is sent to the broadcast
address of another network. The address of the victim
machine is included as the source address in the packet
and causes every machine on the network to respond to
this machine pts.

2. Normal three way handshake in TC

As we know, a connection needs to be
established between the source S and destination D to
facilitate the communication between them. This
process is referred as the three-way handshake. The
process starts with the source sending a SYN packet
(TCP header with SYN bit set) to D who responds by
sending back packet with both SYN and ACK bits set.
If the source finally responds with ACK bit set,
connection is established else D sends RST signal after
timeout period. Three-way handshake is also used for
initializing the sequence numbers, which are needed to
provide reliable delivery of packets.

Host A Heost B

\\\‘\\““sy

e

i\\ix\““\‘

vy Pt

/
‘\\

ATk

\lﬁi\‘“\“*‘a.

Figure 2: Three-way handshake

Three memory structures namely socket
structure (socket), internet protocol control block
structure (inpcb) and the TCP control block structure
(tcpcb) are allocated by both S and D for every
connection. These structures contain all the
information required for the connection like state
information, buffers, address information, flags, timer
information, port numbers, sequence number
information etc.[11] Thus, for every connection, certain
memory resource is consumed and ports are utilized.
This is the main purpose of the attacker.

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 12, December - 2013

3. SYN Flood attack:

The SYN flood attack is, simply, to send a large
number of SYN packets and never acknowledge any of
the replies. This leads the recipient to accumulate more
records of SYN packets than his software can handle.
Flooding attacks intend to overflow and consume
resources available to the victim (memory, Bandwidth)
by sending a continuous flood of traffic. SYN flooding
is the most common and well known DoS attack. In
SYN flooding, the attacking system sends SYN request
with spoofed source IP address to the victim host.
These SYN requests appear to be legitimate. The
spoofed address refers to a client system that does not
exist. Hence final ACK message will never sent to the
victim server system. This results into more number of
half-open connections at the victim side. A backlog
queue is used to store these half-open connections.
These half-open connections bind the resources of the
server. Hence no new connections (legitimate) can be
made, resulting in Denial of Service [4].

iiiiiég%;%%igi; EE‘Q1/>
A —=|==

ﬂ:E/;.}
‘=ii:l ﬂthﬁﬁﬁfijﬁﬁ‘h«; i::iEEj
=

Figure 3: SYN Flood attack

Defence mechanisms for SYN Flood attacks:
Using firewalls:

Firewalls can protect against SYN flooding
attacks using two methods:

Firewall as a Relay:

Firewall acts on behalf of the host like a
proxy. When SYN message arrives, the firewall sends
the message SYN, ACK to the source. D is not aware
of any packets at this time. If the final ACK does not
arrive, as would be in case of an attack, the firewall
resets the connection and the host doesn’t receive any
packets.

www.ijert.org

1112

1JERTV21S120731

SYN
SYN+ACK
— N
ACK —SYN |
| SYN+ACK
N
Data ACK

Data

Data

Sequence numiper conversion

Firewall D

Figure 4: Firewall as a Relay(legitimate connection
request)

On the other hand, if the connection is legitimate and
the firewall receives the third message of ACK, it
forms a new connection with the host on behalf of the
actual client. From here on, the firewall has to change
the sequence numbers in the packets from client to
server and send them to server [12]. This results in an
additional delay of messages for legitimate
connections. This is an effective technique only if the
firewall is resistant to SYN flooding attack.

SYN
SYN+ACK
[proTArs

SYN

I
L} SYN+ACK

A FIREWALL D

Figure 5: Firewall as a Relay (lllegitimate
connection request)

Firewall as a Semi-transparent Gateway:

The firewall monitors the traffic sent from
source to destination. When it sees ACK+SYN being
sent from D to S, it responds by creating an ACK
message and sending to D, thus reallocating the
resources and moving the connection out of the queue.
If it is an attack, the firewall then sends a RST message
to D and connection is dropped.

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 12, December - 2013

www.ijert.org

S Firewall D

_SYN'ACK

Figure 6: Firewall as a Semi-transparent Gateway
(Legitimate connection request)

If the connection request is from a proper source, he
sends back ACK, which is passed by firewall. D merely
sees it as the duplicated packet and discards it. This
prevents the delay that was introduced in earlier
method. The only drawback is that there are many open
connections at D in case of an attack. [13]

SYN
_\

SYN+ACK | 7
... ACK

TiuleoutI R

RST

S) D
Firewall

Figure 7: Firewall as a Semi-transparent Gateway
(Illegitimate connection request)

4.An overview of OMNeT++

OMNeT++ is a C++-based discrete event
simulator for modelling communication networks,
multiprocessors and other distributed or parallel
systems.

4.1 Model structure:

An OMNeT++ model consists of modules that
communicate with message passing. The active
modules are termed simple modules; they are written in
C++, using the simulation class library. Simple
modules can be grouped into compound modules and
so forth; the number of hierarchy levels is not limited.
When a module type is used as a building block, there
is no distinction whether it is a simple or a compound
module. This allows the user to transparently split a
module into several simple modules within a

1113

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 12, December - 2013

1JERTV21S120731

compound module, or do the opposite, re-implement
the functionality of a compound module in one simple
module, without affecting existing users of the module

type.

‘ Network Simple
modules

Compound module

=

Figure 8: Modules in OMNeT++

Modules communicate with messages which —
in addition to usual attributes such as timestamp — may
contain arbitrary data. Simple modules typically send
messages Via gates, but it is also possible to send them
directly to their destination modules. Gates are the
input and output interfaces of modules: messages are
sent out through output gates and arrive through input
gates. An input and an output gate can be linked with a
connection. Connections are created within a single
level of module hierarchy: within a compound module,
corresponding gates of two submodules, or a gate of
one submodule and a gate of the compound module can
be connected. Connections spanning across hierarchy
levels are not permitted, as it would hinder model
reuse. Properties such as propagation delay, data rate
and bit error rate, can be assigned to connections. One
can also define connection types with specific
properties (termed channels) and reuse them in several
places.

Modules can have parameters. Parameters are
mainly used to pass configuration data to simple
modules, and to help define model topology.
Parameters may take string, numeric or boolean values.
4.2 The Design of the NED Language

The user defines the structure of the model
(the modules and their interconnection) in OMNeT++'s
topology description language, NED. Typical
ingredients of a NED description are simple module
declarations, compound module definitions and
network definitions. Simple module declarations
describe the interface of the module: gates and
parameters. Compound module definitions consist of
the declaration of the module's external interface (gates
and parameters), and the definition of submodules and
their interconnection. Network definitions are
compound modules that qualify as self-contained
simulation models. In addition to a number of smaller

improvements, the following major features have been
introduced:

Inheritance: Modules and channels can now be
subclassed.Derived modules and channels may add
new parameters, gates, and (in the case of compound
modules) new submodules and connections.

Interfaces: Module and channel interfaces can be used
as a Placeholder where normally a module or channel
type would be used and the concrete module or channel
type is determined at network setup time by a
parameter.

Packages: To address name clashes between different
models and to simplify specifying which NED files are
needed by a specific simulation model, a Java-like
package structure was introduced into the NED
language.

Inner types: Channel types and module types used
locally by a compound module can now be defined
within the compound module, in order to reduce
namespace pollution.

Metadata annotations: It is possible to annotate
module or channel types, parameters, gates and
submodules by adding properties. Metadata are not
used by the simulation kernel directly, but they can
carry extra information for various tools, the runtime
environment, or even for other modules in the model.
For example, a module's graphical representation (icon,
etc) or the prompt string and unit (mill watt, etc) of a
parameter are specified using properties.

5. Methodology for SYN flood attack on
OMNeT++
Our first module of the project for simulating
a SYN flood attack on OMNeT++ includes the
following stages:

o Initiating a SYN flood attack

e Detecting the attack
Our second module of the project deals with the
defense mechanism implemented for prevention. Here,
we discuss the first module in order to describe
structure of NED language.

First module:

For any project to begin, we have to create
certain modules which will act as classes for
OMNeT++. These modules are actually the description
about our nodes which we are going to use in our
Network simulation. Our project consists of 3 types of
modules. These are attacker module, the server and a
legitimate host, to name. These modules have certain

www.ijert.org

1114

parameters and gates associated with them to send and
receive messages. The whole Network description is
given in the NED file.

Now, SYN flooding is a type of DoS attack,
wherein the attacker sends continuous SYN messages
to the server and gets the acknowledgement every time
as SYN+ACK. But this attacker is not bothered about
sending the ACK packet to the server back. It just
continuously goes on sending SYN packets. After a
certain number of SYN packets being sent to the server
(we have set the queue limit to 6), the server queue gets
full and flooding occurs with the server left with half-
open connections. The attacker still attacks the server
with SYN packets continuously.

Now, the legitimate host tries to establish a
connection with the server, by sending a SYN packet
and finds that the server cannot be accessed. This is
because the server queue has got full to accommodate
any further connection request. So, it rejects any further
request. Before the flooding took place, if the remote
host had sent this same connection request, the server
would have acknowledged it. But, after flooding, it is
not possible till the queue again gets emptied.

After a certain timeout period, the queue will
get refreshed and it will welcome any new connection
request again till the queue again gets full. Whenever
the connection is established, that particular entry is
removed from the queue.

For every module of the OMNeT++ simulation,
following two functions have to be defined:

) initialize() includes building the model and
inserting initial events to FES(Future Event
Set).

. handleMessage() is a method that is called
by the simulation kernel when the module
receives a message.

The following algorithm along with some functions
presents an overview of the structure of OMNeT++
programming language called NED. The following
algorithm is developed for SYN flood attack initiation
and detection:

Algorithm For SYN flood attack initiation and
detection:

Void attacker:initialize()

{ Define event type sendselfl of type cMessage;
Send self msg at simtime()=0.0;

}

void attacker:handlemessage(cMessage *msgl)

{

1JERTV21S120731

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 12, December - 2013

if(msgl kind=sendself1)

{
Create new cMessage ml of type
SYNZ1;
Send(m1,server);
scheduleAt(simTime()+delay,sendselfl);
}
else
Delete msg;
}
Void server:initialize()
{
Define event type timeout;
scheduleAt(simTime()|+refresh, timeout);
}
Void server:handleMessage(cMessage *msg)
{
If(count>queue length)
{
Display”SYN Flood attack™;
Set sign;
}
If(msg kind=SYN1 && (!sign))
{
Create new cMessage ml of type
SYN+ACK;
Send(m1, attacker);
Delete msg;
}
If(msg kind=timeout)
{
Refresh queue;
}
If(msg kind=ACK2)
{
Free queue by 1 slot;
Delete msg;
}
}
Void legitimate:initialize()
{
Define event type sendself2 of type cMessage;
Send self msg at some time=t;
}
void legitimate:handlemessage(cMessage *msg2)
{
if(msg2 kind=sendself2)
{
Create new cMessage m of type
SYNZ2;

Send(m,server);

www.ijert.org 1115

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 12, December - 2013

} mming.html”
[7] Computer Emergency Response Team. CERT
If(msg2 kind=SYN+ACK) Advisory CA-1996-01, “UDP Port Denial-of-
{ Service Attack”,
Create new cMessage m2 of type [8] Computer Emergency Response Team. CERT
ACK?2; Advisory CA-1996-26, “Denial-of-Service Attack
Send(m2,server); via ping”,http://www.cert.org/advisories/CA-1996-
} 26.html
else [9] Computer Emergency Response Team. CERT
Delete msg; Advisory CA-1998-01, “Smurf IP Denial-of-
} Service Attacks®,
(Note: Sign and count are initially set to 0) [10]Jonathan Lemon "Resisting SYN flood DoS
attacks with a SYN cache", Free BSD project
Here, cMessage is a message class in OMNeT ++, [11]http:/lwww.phrack.org/issues.html?issue=48&id=1
Some other functions used are: 3
o simTime(): simulation time [12]Proceedings of the 10th USENIX Security
o scheduleAt(): used to schedule the events Symposium, Washington, D.C., USA, 2001
e send(): to send messages to other modules [13]The Internet Protocol Journal - Volume 9, Number

4-“Defenses Against TCP SYN Flooding Attacks”
[14]Andras Varga "An overview of the OMNeT++

5. Conclusion simulation environment", 2008, France

In this paper an algorithm has been
implemented to simulate a SYN flood attack. The
programming approach is quite simple to implement.
Reducing the time out period or increasing the number
of half open connections could not provide with the
solution for preventing a system from getting SYN
Flooded. Thus, the new concept of firewall came into
existence. The OMNeT++ approach significantly
differs from that of NS-2, J-Sim or any other simulation
tools. While the NS-2 (and NS-3) project goal is to
build a network simulator, OMNeT++ aims at
providing a rich simulation platform, and leaves
creating simulation models to independent research
groups.

6. References

[1] Helena Sandstrom "A Survey of the Denial of
Service Problem"

[2] Computer Emergency Response Team. “Results of
the Distributed-Systems Intruder Workshop”
http://www.cert.org/reports/dsit_workshop-
final.html

[3] CNN.com, “The denial-of-service aftermath”

[4] Computer Emergency Response Team. CERT
Advisory CA-96.21;“TCP SYN Flooding and
IP Spoofing Attacks”;1996.

[5] BUGTRAQ threads on the stream.c DoS attack and
its Fallout
http://staff.washington.edu/dittrich/misc/ddos/strea
m.txt

[6] Computer Emergency Response Team, Tech Tips,
“Email Bombing and Spamming”
“http://www.cert.org/tech_tips/email _bombing spa

IJERTV21S120731 www.ijert.org 1116

