
Numerical Solution of Second order Integro-

Differential Equations(Ides) with Different Four 

Polynomials Bases Functions 

 
1
Taiwo O. A , 

2
Raji M. T 

1
Department of Mathematics, University of Ilorin 

2
Department of Mathematics and Statistics, The Poly., Ibadan 

 

Abstract:  - In this paper, a method based on the collocation methods 

with some bases functions are developed to find the numerical 

solution of Fredholm Integro-Differential Equations; four different 

polynomial bases functions used were: Legendary, Leguerre, Hermite 

and Fibonacci polynomial bases functions. The differential part 

appearing in the integro-differential equation is re-defined and used 

to generate each of the polynomial bases functions. Some numerical 

results are given to demonstrate the superior performance of the 

various collocation methods, particularly, the table of error with the 

various value of N. 
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1. INTRODUCTION 

Integro-differential equations (IDEs) plays an 

important role in many branches of linear and Non-linear 

functional analysis. In addition to their occurrence in the 

field of mechanics and mathematical physics, Integro-

differential equations have found wide applications in the 

theory of engineering, chemistry, astronomy, biology, 

economics potential theory and electro-static. 

 This paper concerns the developments of the 

various polynomial bases function (see Ortiz [15] and Ortiz 

and Samara [17]) with Legendre, Leguerre, Fibonacci and 

Hermite polynomials for the numerical solution of integro- 

 

differential equations (IDEs). The polynomials has found 

extensive application in recent years presented in a series of 

papers, for example, in [2-8] for the case of numerical 

solution of ordinary differential equations (ODEs) and in 

[4,9,10] for the case of numerical solution of partial 

differential equations (PDEs). Application of the 

Chebyshev and Legendre polynomials and their numerical 

merits in solving ODEs and PDEs numerically have been 

discussed in a series of papers (for example, [2-13]). We 

are, therefore, motivated to work in this direction of 

extending to various polynomials proposed in the literature 

to handle IDEs numerically [13-17]. 

 

Yalcinbas and Sezer [19] proposed an 

approximating solution in terms of Taylor polynomials 

which   we believe it is a particular case of the method 

presented in this paper. Also, this paper is organized as 

follows. In section 2, the formulation of the various 

polynomials bases are developed (such as: Fibonacci, 

Hermite, Legurre and Legendry); the matrix representations 

of each part of IDE and its supplementary conditions are 

obtained. In section 3, as efficient Tau error estimator is 

introduced. In section 4, preliminary steps towards 

construction of various polynomial bases functions were 

considered and taking Chebyshev polynomial as an 

example. Finally, in section 5, some numerical results are 

provided to demonstrate the efficiency of using various 

polynomials bases and compared with those of [19]. 

 

2. CONVERTING INTEGRO-DIFFERENTIAL EQUATION TO A SYSTEM OF LINEAR ALGEBRAIC 

EQUATIONS 
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Where n is the degree of )(xgn and     .,...,,1,,...0,0,,... 2

0

T

nnn xxXggg    

 Unless otherwise stated, x will always be the independent variable of the functions which appear throughout this paper 

and will be defined in a finite interval. 

 Let )(xy be the exact solution of the integro-differential equation, 
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 Where  xf and  txm ,  are given continuous functions and 
21 ,,,, jmjm ccba and jd some given constants. 

 

Matrix representation for the different parts 

 Let     ,...,: 10 xvxvV   be a polynomial basis by ,: XVV  where V is a non-singular lower triangular matrix 

and degree    ,ixvi   for ,....2,1,0i . Also for any matrix P, 
1VPVPv . 

 Now we convert the Eqs. (2.3) and (2.4) to the corresponding linear algebraic equations in three parts; (a), (b) and (c). 

(a) Matrix representation for Dy(x): 

Ortiz and Samara proposed in [17] an alternative for the Tau technique which they called the operational approach as it 

reduces differential problems to linear algebraic problems. The effect of differentiation, shifting and integration on the 

coefficients vector 
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We recall now the following theorem given by Ortiz and Samara [17]. 

Theorem 2.1 For any linear differential operator L defined by (2.1) and any series 
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(b) Matrix representation for the integral term: 

Let us assume that 
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(c) Matrix representation for the supplementary conditions: 

Replacing 





0
)()(

i ii xvaxy  in the left hand side of (2.4), it can be written as 
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where for j = 1, …,v, 
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We refer to B as the matrix representation of the supplementary conditions and jB  as its jth  column. The following relations 

for computing the elements of the matrix B can be deduced from (2.7): 
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We introduce 
),...,,( 21 vdddd  , the vector that contains right hand sides of conditions. Then the supplementary 

conditions take the form 

.dBa 
                          2.11

 

It follows from (2.5) and (2.6) that 
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Let   MM vv :  and viM  stands for its ith column and let  


n

i ii Vfxvfxf
0

)()(  with 

,...).0,0,,...,( 0 nfff  . Then the coefficient of exact solution Vay  of problem (2.3) and (2.4) satisfies the following 

infinite algebraic system: 
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setting 

,...),,,,...,( 101 vvv MMBBG   

and 

,...),,,,...,( 101 ffddg v  
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we can write instead of (2.13) 

.gGa 
                       2.14

 

Definition 2.2. The polynomial 

Vay
nn   

will be called an approximate solution of (2.3) and (2.4), if the vector 

),...,( 0 nn
aaa   

is the solution of the linear algebraic equations. 

.nnn
gGa 

                      2.15
 

Where nG  is the matrix defined by restriction of G to its first (n + 1) rows and columns. 

Remark 2.3. For 0v and ,1)(0 xG Eq. (2.3) is transformed into a  Fredholm  integral equation of second kind and for 

0 , it is transformed into a Differential Equation. 

 

3. ERROR ESTIMATION 

 In this section an error estimator for the approximate solution of (2.3) and (2.4) is obtained. Let us call 

)()()( xyxyxe nn  as the error function of the approximate solution )(xyn  to )(xy , where, )(xy  is the exact 

solution of (2.3) and (2.4). Hence )(xyn satisfies the following problem: 
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 The perturbation term )(xH n can be obtained by substituting the computed solution )(xyn into the equation 

 
b

a
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 We proceed to find an approximation )(
,

xe
Nn to the error function )(xen in the way as we did before for the solution 

of problem (2.3), (2.4). Subtracting (3.1) and (3.2) from (2.3) and (2.4) respectively, the error function )(xen satisfies the 

problem 
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with the homogeneous conditions 
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It should be noted that in order to construct the approximant )(
,

xe
Nn to )(xen , only the right hand side of system (2.15) needs 

to be recomputed; the structure of the coefficient matrix nG remains the same. 

4. CONSTRUCTION OF VARIOUS POLYNOMIAL BASES FUNCTION 

In section 2,  ),...(),(: 10 xvxvV   was considered as a polynomial basis given by XVV : , where V is a non-

singular lower triangular matrix and degree ,....2,1,0,))((  ixvi It was used to convert (2.3) and (2.4) into a system of 

linear equations. The various polynomials are very interesting polynomial basis with a matrix V of the same structure. We argue 

the application of the Tau method for the case of Chebyshev polynomials, though the case of Lengendre, Leguerre, Hermite and 

Fibonacci may also be similar. But different recursive formulae will be employed. 

 

For instance, the shifted chebyshev polynomials are defined as 
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 A summation symbol with double primes denotes a sum first and last terms halved. Also ijsa  (see part (b) section 2), 
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 Where jT and lT  are Chebyshev polynomial of degree j and l  respectively. But these polynomials are even for even 

degree and odd for odd degree, hence 
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All other elements are computed as in Section 2. The same application will definitely adopted for the other 

Polynomials when the recursive formulae were introduced to arrive at the approximate solution of the various polynomial bases 

function. 

5. NUMERICAL EXAMPLES 

 In this section, we consider some examples demonstrating the accuracy of the method and effectiveness of the 

Chebyshev polynomial basis function compared with the other various polynomial bases functions. Hence, error of examples 1 

and 2 are also compared with [19]
  

Example 1. This example was considered by Yalcinbas and Sezer [19] for the method of solution in terms of Taylor 

polynomials. 




1

1

''' ,)()sin()sin(2)()()( dttyexxexxyxxyxy tx
  11  x  

1)0( y  

1)0(' y  

The exact solution is 
xexy )( . 
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Table 1: Tables of errors when N = 4 

X CHEBYSHEV LEGENDARY LAGUERRE HERMITE FIBONACCI 

Yalcinbas et al. 

[19]
 

-1.00 
0.36787942 

3.42E-01 3.51E-01 6.65E-01 0 0.367879
 

-0.80 
0.44932896 

3.54E-01 9.96E-02 1.80E-02 8.89E-05 0.449328
 

-0.60 
0.54881164 

2.54E-01 4.27E-01 1.75E-01 6.75E-04 0.548811
 

-0.40 
0.67032004 

1.36E-01 6.68E-01 4.63E-01 2.15E-03 0.67032
 

-0.20 
0.81873075 

3.97E-02 7.76E-01 9.50E-02 4.80E-03 0.81873
 

0 
1 

0.00E+00 0.00E+00 7.00E-10 8.75E-03 1
 

0.20 
1.22140276 

3.55E-04 1.16E+00 5.48E-02 1.40E-02 1.2214
 

0.40 
1.49182469 

2.56E-02 1.39E+00 3.01E-01 2.03E-02 1.49182
 

0.60 
1.82211880 

1.16E-01 1.60E+00 5.52E-01 2.75E-02 1.82211
 

0.80 
2.22554092 

3.21E-01 1.78E+00 2.06E-01 3.48E-02 2.22554
 

1.00 
2.71828180 

6.92E-01 1.90E+00 1.75E+00 4.15E-02 2.71828
 

 

Table 2: Tables of errors when N = 5 

X CHEBYSHEV LEGENDARY LAGUERRE HERMITE FIBONACCI 

Yalcinbas et al. 

[19] 

-1 2.12E-08 1.54E-03 1.42E-03 5.18E-03 0 4.41E-07 

-0.8 4.10E-09 2.43E-03 6.29E-04 8.86E-04 5.90E-07 9.64E-07 

-0.6 3.90E-09 3.61E-03 7.42E-03 9.95E-03 3.57E-06 6.36E-07 

-0.4 6.00E-09 4.75E-03 8.33E-03 2.96E-03 4.83E-06 4.60E-08 

-0.2 3.10E-09 7.04E-04 8.55E-03 9.82E-04 2.01E-06 7.53E-07 

0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.94E-06 0.00E+00 

0.2 2.00E-09 4.77E-06 5.08E-02 4.85E-04 4.93E-05 2.76E-06 

0.4 8.00E-09 5.95E-04 6.30E-02 1.15E-03 3.46E-05 4.70E-06 

0.6 0.00E+00 4.95E-03 1.53E-02 1.70E-03 4.58E-05 8.80E-06 

0.8 8.00E-09 5.51E-03 6.64E-02 5.78E-03 7.65E-05 9.28E-07 

1 2.80E-08 4.82E-03 7.82E-02 3.41E-03 5.13E-05 1.83E-06 

 

 From the numerical results and Table of error (see Tables 1, 2). In Table 2, it is evident that better performance 

provided by the various method here proposed compared with the results of Yalcinbas and Sezer [19].Hence, it was observed 

that the Legendre and Hermite solutions have same errors over the interval. The error of the Fibonacci solution shows a 

tendency to increase rapidly, as N increases. 

Example 2. (see [19]) 

 
2

0

'' ),sin()()(


xxdttxtyxy   
2

0


 x  

0)0( y  

1)0(' y . 
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The exact solution is )sin()( xxy  . 

For numerical results see table 3 and 4 

Table 3: Tables of errors when n = 4 

X CHEBYSHEV LEGENDARY LAGUERRE HERMITE FIBONACCI 

Yalcinbas et al. 

0 8.79E-05 3.75E-05 5.13E-04 2.00E-04 5.00E-03 4.41E-04 

0.1 4.32E-04 9.98E-02 5.41E-03 9.81E-02 4.56E-03 9.64E-04 

0.2 2.90E-02 1.99E-01 3.95E-02 1.96E-01 8.56E-02 3.60E-03 

0.3 8.26E-02 2.90E-01 6.54E-02 2.92E-01 7.45E-02 5.46E-03 

0.4 3.49E-02 3.82E-01 5.63E-02 3.84E-01 4.60E-02 7.53E-03 

0.5 3.40E-02 4.69E-01 8.23E-02 4.73E-01 3.10E-02 0.00E+00 

0.6 5.68E-02 5.52E-01 8.12E-02 5.58E-01 9.71E-02 2.76E-03 

0.7 5.17E-02 6.28E-01 8.54E-02 6.36E-01 4.55E-02 4.70E-03 

0.8 7.60E-02 6.98E-01 3.48E-01 7.08E-01 4.84E-02 8.85E-03 

0.9 1.57E-02 7.60E-01 1.23E-01 7.73E-01 7.28E-02 9.28E-03 

1 6.68E-02 8.14E-01 3.75E-01 8.30E-01 5.89E-02 1.83E-03 

π/2 9.22E-02 9.38E-01 9.34E-01 9.77E-01 1.68E-02 1.12E-03 

 

Table 2: Tables of errors when n = 5 

X CHEBYSHEV LEGENDARY LAGUERRE HERMITE FIBONACCI 

Yalcinbas et al.[18] 

0 1.93E-06 0.00E+00 2.12E-04 0.00E+00 9.96E-05 5.44E-06 

0.1 5.41E-06 1.10E-05 4.10E-04 6.62E-05 2.46E-05 1.96E-06 

0.2 5.39E-05 3.30E-05 3.90E-05 6.93E-05 8.86E-05 6.36E-05 

0.3 5.60E-05 2.50E-04 6.00E-05 2.53E-04 6.75E-04 5.46E-06 

0.4 3.31E-06 1.50E-04 3.10E-05 4.22E-05 5.46E-04 4.75E-06 

0.5 7.53E-05 8.60E-05 2.00E-05 8.63E-05 4.31E-04 9.80E-05 

0.6 9.82E-07 4.80E-04 8.12E-05 1.52E-04 5.97E-04 2.28E-05 

0.7 6.88E-06 1.12E-04 8.00E-05 1.17E-04 7.45E-04 5.47E-05 

0.8 7.65E-05 9.66E-04 3.48E-04 9.63E-04 4.80E-04 5.88E-05 

0.9 7.58E-06 5.85E-04 2.12E-04 3.92E-06 7.24E-04 4.93E-06 

1 6.28E-05 4.72E-04 7.38E-05 1.28E-04 6.59E-04 9.18E-05 

π/2 1.37E-06 8.26E-04 7.93E-04 1.37E-03 2.16E-04 7.11E-06 

 

The table shows that the results of the polynomial bases are numerically stable 

6. CONCLUSIONS 

 Our results indicate that the tau method with 

various polynomial bases can be regarded as a structurally 

simple algorithm that is conventionally applicable to the 

numerical solution of IDEs. In addition, although we have 

restricted our attention to linear Fredholm IDEs, we expect 

the method to be easily extended to more general IDEs. 

 Despite the relatively low degrees used the 

numerical results show the superior performance of the Tau 

method, particularly, with the Chebyshev and Legendre 

bases. Nevertheless, the error of the Tau solution shows a 

tendency to increase rapidly, as N increases. This 

behaviour also indicated in other polynomial/methods. 

 

2998

Vol. 3 Issue 2, February - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20283



REFERENCES 

1. Crisci M. R. (1992) “Stability Results for one step Discretized 

Collocation Methods in the  Numerical Treatment of Volterra 

Integral Equations”. Math. Comput. 58 (197) pp. 119-134. 

2. Chuong N. M. and Tuan, N.V. (1995) “Spline Collocation Methods 

for Fredholm Integro- Differential Equations of Second Order”, Acta  

Math. Vietnamica 20 (1) pp. 85-98. 

3. Chuong N. M. and Tuan N. V (1997) “Spline Collocation Methods 

for Fredholm- Volterra integro-Differential Equations of High 

Order”, Vietnam J. Math. 25 (1) pp. 15-24. 

4. El-Daou M. K. and Khajah H. G (1997) “Iterated Solutions of Linear 

Operator Equations with the Tau Method”, Math. Comput. 66 (217) 

pp. 207-213. 

5. Gottlieb D. and Orszag S. A (1986) “Numerical Analysis of Spectral 

Methods”, SIAM, Philadephia, 4th print. 

6. Hosseini Aliabadi M. and Ortiz, E. L. (1987) “On the Numerical 

Behavior of different formulations of Tau Method for the treatment 

of Differential Inclusions”, Proceedings of the Second International 

Symposium on Numerical Analysis, Prague. 

7. Hosseini Aliabadi M. and Ortiz, E. L. (1998) “Numerical treatment 

of Moving and Free Boundary Value Problems with the Tau 

Method”, Computing Mathematical Application 35 (8) pp. 53-61. 

8. Hosseini Aliabadi M. and Ortiz, E. L. (1988) “Numerical Solution of 

Feedback Control Systems Equations”. Appl. Mathematics Lett. 1 

(1) pp. 3-6. 

9. Hosseini Aliabadi M. and Ortiz, E. L. (1991) “A Tau Method based 

on Non-Uniform Space Time Elements for the Numerical 

Simulation of Solitons”, Comput. Math. Appl. 22 (9) pp. 7-19. 

10. Hosseini Aliabadi M.(2000)”The Buchstab’s function and the 

Operational Tau Method”, Korean  J. Comput. Appl. Math. 7 (3) 

pp. 673-683. 

11. Hosseini Aliabadi M.(2000) “The Application of the Operational 

Tau Method on some Stiff  System of ODEs”, Int. Journal of Appl. 

Math. 2(9) pp. 1027-1036. 

12. Hosseini Aliabadi M. (2000) “Solving ODE BVPs using the 

Perturbation term of the Tau  Method over semi-infinite Intervals”, 

Far East J. Appl. Math. 4 (3)pp. 295-303. 

13. Kaniko H. and Xu Y. (1994) “Gauss-type quadratures for Weekly 

Singular Integrals and their application to Fredholm Integral 

Equations of Second kind”, Math. Comput. 62 (206) pp. 739-753. 

14. Liu, K. M. and Pan C. K (1999) “The Automatic Solution System of 

Ordinary Differential Equations by the Tau Method”, Comput. Math. 

Appl. 38 pp. 197-210. 

15. Ortiz, E. L. (1969) “The Tau Method”, SIAM Journal of Numerical 

Analysis pp 480-492. 

16. Ortiz, E. L and Samara L. (1981) “An Operational approach to the 

Tau Method for the Numerical Solution of Nonlinear Differential 

Equations”, Computing 27, pp 15-25. 

17. Ortiz, E. L. and Samara H. (1984) “Numerical Solution of Partial 

Differential Equations with Variable Coefficients with an 

Operational approach to the Tau Method”, Compt. Math. Appl. 10 

(1) 5-13. 

18. Wazwaz, A. M. (1997) A first course in Integral Equations, World 

Scientific Pub. Co. 

19. Yalcinbas S.  and Sezer M.(2000)The Approximate Solution of 

High-Order Linear Volterra- Fredholm Integro-Differential 

Equations in terms of Taylor Polynomials, Appl. Math. Comput. 112 

pp. 291-308. 

2999

Vol. 3 Issue 2, February - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20283


