

Novel Vigilance of Instant Messages in Social Networks using Text Mining Techniques and Ontology

Thivya. G.

PG Scholar, Dept. of CSE,
Vemana Institute of Technology,
Bengaluru, Karnataka, India.

Shilpa. G. V.

Asst. Professor, Dept. of CSE,
Vemana Institute of Technology,
Bengaluru, Karnataka, India.

Abstract Nowadays all illegal activities are happened using the communications in instant messages. Present framework for instant messenger have control over suspicious words but not in depth. The proposed system is a framework, which predicts and highlights such suspicious messages along with suspected threat activity with offender's personal details. All the instant messages are faced by the system for any supposed cipher threat activity. This framework is developed using association rule mining and ontology based information extraction technique with set of predefined knowledge based rules for decision-making process. In addition the system verifies code words and short form suspicious words. The system also stores the instant messages in encrypted form to facilitate security to the messages. Then the system figures out suspicious messages by decrypting the encrypted instant messages from the database. This framework is tested with the data sets, which are learned from past learning experiences of suspicious dataset such as GTD (Global Terrorist Database). Experimental results obtained will aid to take timely decision for exterminating cybercrimes. Thus this proposed framework detects suspicious messages from instant messaging systems in early stage and helps to identify and predict the type of cyber threat activity and traces the offender details.

Keywords - Instant Messengers(IM); Social Networking Sites(SNS); Ontology based Information Extraction; Association Rule Mining (ARM).

I. INTRODUCTION

Social networks are essentially networks formed by individuals, groups and organizations. Social network analysis is about analyzing the behaviors of individuals, groups and organizations and determines its behavior patterns. Social network analysis is becoming an important tool for counter terrorism applications.

Social Networking Sites (SNS) are web-based services that facilitates individual to construct a profile, which is either public or semi-public. SNS contains list of users with whom we can share a connection, view their activities in network and also converse [1]. SNS users communicate by messages, blogs, chatting with video and music files. SNS plays very important role in human life. It is becoming a main communication media among individuals and organizations. The other advantages include keeping contact with friends and family members. For entrepreneurs, it acts as a resource to set up a global presence. Employers nowadays use SNS as useful and effective recruitment tool. Some SNS provides low cost of advertising for business owners. However with all these advantages, SNS also have many disadvantages such as

information is public, security problem, cyber bullying and misuse and abuse of SNS platform.

The medium of Instant Messaging on the internet is a well-established means by which users can quickly and effectively communicate with one another. Long utilized by the public as a quick form of free communication, data mining tasks have not been attempted over Instant Messaging. Additionally, on a corporate or government level, people are just beginning to take notice of the potential that IM provides in terms of the type of information that can be collected from these networks. Many large Instant Messaging networks of their own generally open to the public after registration, including Time Warner, Yahoo and Microsoft.

One of the biggest challenges in automated message surveillance is the recognition of messages containing suspicious content. A classic approach to this problem is constructing a set of keywords. In the event that a communication contains one or more of these words, the message is flagged as suspicious for further review. However there are two drawbacks to this particular approach. First, it is reasonable to assume that such relatively static keywords will not always be present in messages that would otherwise warrant suspicion. Second, there is little guarantee that a sufficiently intelligent individual will not recognize such surveillance is in place and instead use substitute words in place of known keywords.

Internet evolutions led to the growth of innumerable cybercrimes. Cybercrime is a fast-growing area of crime. More offenders are exploiting the speed, convenience and anonymity of the Internet to commit a diverse range of offender activities that know no borders, either physical or virtual. Offenders adapted to send suspicious messages via mobile phones, instant messengers and social networking sites that are difficult to trace their offender activities dynamically. The E-crime department must be devised with the development of technology to find offenders. Many of the instant messaging systems restricted their limit for sending messages, video and audio conferencing. They are not well equipped to detect online suspicious messages, which lead to illegal activities.

This paper is organized as follows. Section II shows related works. Section III deals with proposed framework. Section IV shows text mining algorithms used in this paper. Section V gives the details about the experimental analysis. At last section VI puts forward the conclusion and future works.

II. RELATED WORKS

Nowadays, it is difficult to survive without Instant Messaging Service (IMS) as users are addicted to. Trillions of messages are sent each day through emails and IMS. Popular IMS such as AOL, MSN, ICQ, Yahoo, Google Talk, Skype, Facebook, Twitter and LinkedIn have changed the way of communication with friends, acquaintances and business colleagues. Understanding the dynamics behind the relationships between offenders can help an investigator identify suspects and understand offender activities [2]. Once limited to desktops, popular instant messaging systems are finding their way onto handheld devices and cellphones, allowing users to chat virtually from anywhere.

There are few works done in the area of SNS and content analysis. Julei Fu and Jian Chai [3] have proposed six-element analysis method for terrorist activities based on social network. However, this method analyzed on data obtained from previous year incidents, which is in the form of 420 web pages to get information of the terrorist events incited by East Turkistan.

Michael Robertson, Yin Pan and Bo Yuan [4] explained about the social approach to detect malicious web content for Facebook with security heuristics is limited to identify malicious URL links. Recently the Facebook static messages are scanned to identify criminal's behavior [5]. Detection of suspicious emails from static messages using decision tree induction proposed which is purely dependent on highest information entropy that identifies the messages are deceptive or non-deceptive [6].

John Resig and Ankur Teredesai [7] detect suspicious messages from the data gathered by anomaly detection, topic detection [8][9] and social network analysis, which will not disclose all suspicious messages. Hence new offenders will not be traced by this system.

Mohd Mahmood Ali and Lakshmi Rajamani [10] proposed framework with an idea of instant message secure system that identifies suspicious messages that leads to illegal activities by offenders. But it does not focus on securing messages by using encryption techniques and also does not concentrate on short form messages. This paper gives various ideas about stemming algorithm and apriori algorithm.

Sharath Kumar and Sanjay Singh [11] concentrates on cluster of users in SNS who perform illegal activity based on their messages with the help of past history of the user. But in present system, offenders are smarter than investigators. They are not using same way of writings.

Farkhund Iqbal, Benjamin C.M.Fung, Mourad Debbabi [12] concentrate on entity such as name of a person and tries to find which group in social networks the person belongs to. It also focused on the messages sent by the same person in the group. But it never concentrates on suspicious words given by other offenders who are presently chatting with only one person. So it will focus on old group of offenders who are already in database. It is not providing full details to crime investigators.

Mohd Mahmood Ali, Khaja Moizuddin Mohd and Lakshmi Rajamani [13] proposed framework for secure instant messaging system using ontology. This paper does not focus on code words and short form chat messages. Here, ontology

construction means dividing the instant messages semantically with the help of Word Net [14] database into various topics such as murder, robbery and so on. But ontology is not updated regularly with new code words that are found using data mining techniques.

All the papers mentioned above are concentrated on security in instant messaging in the form of simple chat logs. But nowadays offenders are too smart to use code words and short forms of messages. And none of the paper focuses on proper ontology updates. Proposed work focuses on this area of messages and proper ontology based information extraction system.

III. PROPOSED FRAMEWORK

Nowadays all illegal activities make use of the communications in instant messages. Present framework for instant messenger have control over suspicious words but not in depth.

Thus existing system has several limitations as follows.

- Cybercrimes have raised day by day, but the social networks are not having mechanisms to restrict them.
- Offenders can easily convey their messages through the insecure social networks and internet.
- Blackmails are also sent from one person to another person that could not be traced out.
- Short form messages and code word messages in social networks are still worsen the case of disclosing the illegal activity.

Proposed system has the below mentioned salient features as objectives.

- System tries to provide security for the stored chat messages by using encryption technique. Then it will find suspicious words by decrypting stored messages.
- Detects the suspicious words from the message even the message is in short form or code form.
- This determination of illegal activities is analyzed with the help of ontology. Even new code words that are not available in predefined database are also extracted with the help of data mining techniques and added into ontology database.
- If the system finds some cyber threat it will report with the offender's personal details to E-crime department.
- System's performance can also be evaluated with the help of execution of user generated content called test bed.

Thus this proposed system predicts and highlights suspicious messages. It also displays suspected threat activity with offender's personal details. All the messages will be faced by the system for any supposed cipher threat activity. This new framework uses association rule mining algorithm and ontology based information extraction technique which initiates the steps to capture and store the instant messages that are communicated between the users and identifies suspicious messages with predefined knowledge such as the keywords murder, kill and theft and so on. In addition the system also verifies code words and short form suspicious words. The system also uses encryption/decryption methods to enhance

security to the messages and figures out any suspicious messages present over there.

This proposed framework has the following components:

- Data collection system
- Suspicious word detection system

Both data collection and suspicious word detection systems have normal functionalities that are given by all instant messengers such as login module, change password etc.,

In addition, suspicious word detection system has the following sub components:

A) Ontology management

Since ontologies are widely used to represent knowledge or meaning they are often seen as providing the backbone for the semantic web. In this framework, ontology database is created with suspicious word list such as murder, kidnap, terrorist, corruption and robbery. These processes can be implemented by OBIE [16] (Ontology Based Information Extraction). OBIE has recently emerged as a subfield of information extraction. Here ontologies - which provide formal and explicit specifications of conceptualizations - play a crucial role in the IE process. Because of the use of ontologies, this field is related to knowledge representation and has the potential to assist the development of the semantic web.

General OBIE architecture can be constructed as shown in below Fig 1. This architecture depicts ontology editor, ontology creator and IE module as major parts of ontology. Preprocessing of the text is important before IE. Semantic lexicon also acts major role in ontology creator. Thus the user can effectively extracts relevant information with the help of OBIE system.

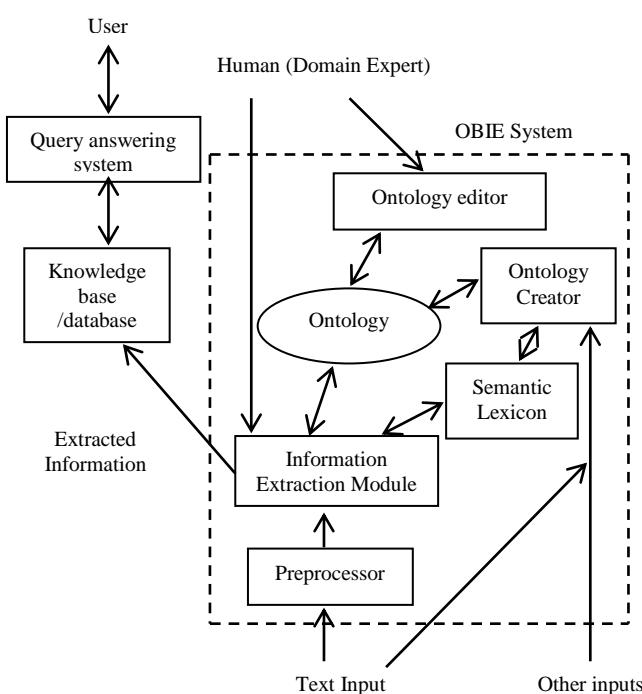


Fig. 1. General OBIE architecture

B) Encryption / Decryption Module

Proposed system will encrypt the messages and store it in the database. Suspicious word detection can be done on the decrypted message along with short form and code words. Algorithm used for encryption/decryption will be discussed in next section.

C) Suspicious word detection

Here, filtering of unnecessary words from messages is done; during this process, the suspicious words such as murder, kidnap, terrorist, corruption and robbery are identified using algorithms discussed in section IV.

D) Short form management

A separate database will be maintained with short forms of suspicious words such as politician names, country names and short form of suspicious word such as kl (kill), att (attack), bom (bomb) and money (\$). Again by using same detection algorithm these suspicious words are detected.

E) Code word management

Comparing several messages communicated within a same group can identify code words. If same word was used by different people in conversation within a group along with known suspicious words in database then these words are considered as code words and also added to suspicious list to detect suspicious words in future.

F) Ontology Update

New suspicious words that are not already in database are founded with the help of code words detection method and will be added back in ontology. Thus ontology used here is fully updated then and there. This ontology update helps in finding suspicious words in efficient manner and it saves time in detecting suspicious words in future.

G) Offender's information module

After finding suspicious words from the conversation system can easily figure out the offenders names along with their personal details and IP address of their systems. This information is displayed with the help of database which was originated while creating the chat id.

Fig 2. shows the overall system structure of the proposed framework. As shown in the figure, data collection system follows ordinary web chat application's features for group chat along with encryption techniques to facilitate security. Suspicious word detection system focuses on detecting suspicious words with the help of OBIE and data mining techniques. Short word, code word and suspicious word databases are maintained. Finally offender's details are displayed with the help of user's personal database.

IV. ALGORITHMS USED

Proposed framework uses Frequent Pattern (FP) growth algorithm to detect suspicious words in the instant message. It also uses Advance Encryption Standard (AES) encryption/decryption algorithm to enhance security of the entire framework.

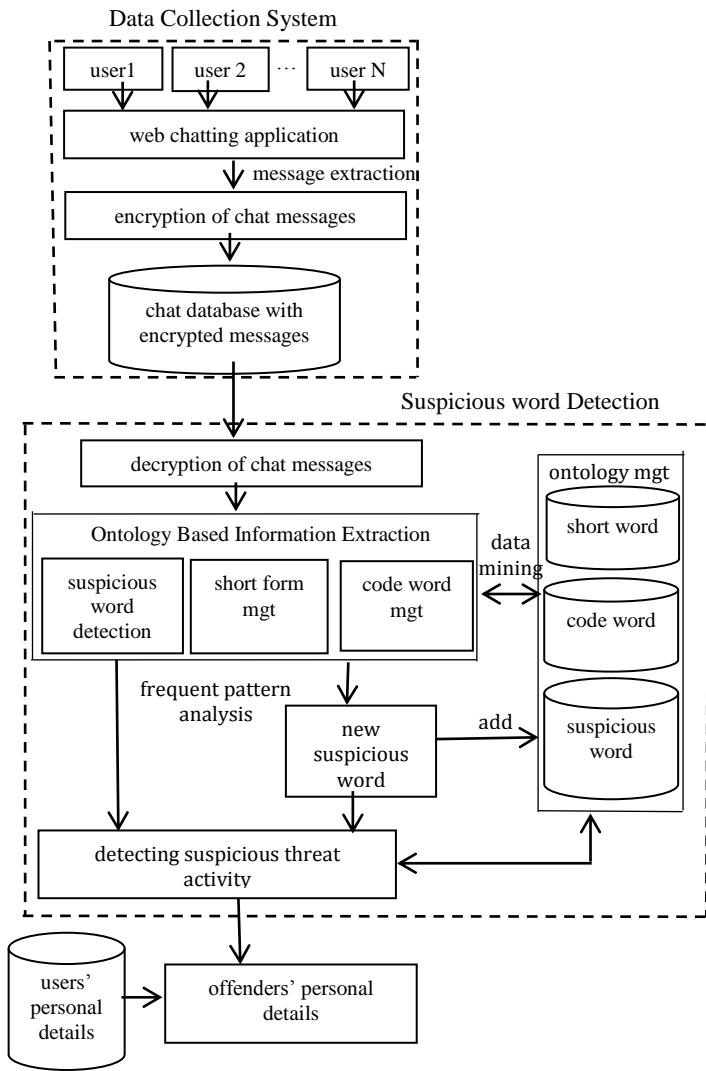


Fig. 2. Overall system architecture

A) FP growth algorithm

The FP-Growth Algorithm is an alternative algorithm used to find frequent item sets. The algorithm uses a FP-tree to encode the data set and then extract the frequent item sets from this tree.

This section is divided into two main parts, the first deals with the representation of the FP-tree and the second details about how frequent item set generation occurs using this tree and its algorithm.

A FP-tree is a compact data structure that represents the data set in tree form. Each message is read and then mapped onto a path in the FP-tree. This is done until all the messages have been read. Different messages that have common subsets allow the tree to remain compact because their paths overlap.

The construction of a FP-tree is subdivided into three major steps. These steps are essential to construct FP-tree for the chat messages. They are listed as below:

1. Scan the data set to determine the support count of each item, discard the infrequent words and sort the frequent words in decreasing order.
2. Scan the data set one message at a time to create the FP-tree. For each message:
 - i) If it is a unique message form a new path and set the counter for each node to 1.
 - ii) If it shares a common prefix word set then increment the common word set node counters and create new nodes if needed.
3. Continue this until each transaction has been mapped onto the tree.

The FP-Growth algorithm is used to generate frequent item sets with the help of FP-Tree data construct. The FP-growth algorithm is interesting because it shows how a compact representation of a message data set helps to generate frequent itemsets efficiently. It does this by using a divide and conquers approach to find the frequent itemsets ending in a particular suffix. The four-step process is described briefly below.

1. Create prefix paths for a particular suffix node. Gathering all the paths containing a particular suffix node does this. Any path that ends with this suffix is examined.
2. Using the prefix path tree determine whether the suffix is frequent. Adding the support counts associated with the node and if the number is greater than or equal to the minsup the node is frequent does this. If the node isn't frequent the analysis ends for this suffix.
3. Convert the prefix paths into a conditional FP-tree.
 - i) Update the support counts along the prefix paths to reflect the actual number of transactions containing the itemset.
 - ii) Truncate the prefix paths by removing the nodes of the chosen suffix
 - iii) Remove items that may no longer be frequent (if the support count of a particular node is less than minsup it is no longer frequent and should be pruned).
 - iv) Repeat i → iv for all prefix paths for the chosen suffix.
4. Repeat Steps 1-3 for all suffix nodes to determine the frequent item set for the dataset.

B) AES Algorithm

The cipher is described in the following pseudo code, for which the individual transformations and the key schedule are described in the following sections (the array w contains the key schedule, an array of round keys).

Encrypt Algorithm:

```

Cipher(byte in[4 * Nb], byte out[4 * Nb], word w[Nb * (Nr + 1)])
begin
  byte state[4,Nb]
  state=in
  XorRoundKey(state, w)
  for round = 1 step 1 to Nr-1
    SubBytes(state)
  
```

```

ShiftRows(state)
MixColumns(state)
XorRoundKey(state, w + round * Nb)
end for
SubBytes(state)
ShiftRows(state)
XorRoundKey(state, w + Nr * Nb)
out = state
end

```

The inversion of the cipher code is straightforward and provides the following pseudo code for the inverse cipher.

```

Decrypt Algorithm:
InvCipher(byte in[4 * Nb], byte out[4 * Nb], word w[Nb * (Nr + 1)])
begin
byte state[4,Nb]
state = in
XorRoundKey(state, w + Nr * Nb)
for round = Nr - 1 step -1 to 1
InvShiftRows(state)
InvSubBytes(state)
XorRoundKey(state, w + round * Nb)
InvMixColumns(state)
Endfor
InvShiftRows(state)
InvSubBytes(state)
XorRoundKey(state, w)
out = state
end

```

Thus the above algorithms used to encrypt and decrypt messages and find the suspicious words in it.

V. EXPERIMENTAL ANALYSIS

In this paper with the help of the performance metrics such as recall, precision and F-measurement, efficiency of the proposed system is calculated. Precision is defined as the probability that if a random message is classified under suspicious word list, this decision is correct. Recall is defined as the conditional that, if a random message ought to be classified under suspicious word list, this decision is taken. F measurement combines the result of recall and precision.

$$\text{Precision (P)} = \frac{\text{Correctly extracted}}{\text{total extracted correctly}}$$

$$\text{Recall (R)} = \frac{\text{Correctly extracted}}{\text{total Number of possible words}}$$

F - measurement

$$F = (2*P*R) / (P+R)$$

Finally the system efficacy is determined with the help of predefined data set from Global Terrorist Database [17] (GTD). This GTD is thoroughly studied and test bed is created.

Execution of proposed system and existing system are done with this test bed and recall and precision values are calculated. Results of precision, recall and F-measurement are displayed in the following Table 1.

TERMS	EXISTING SYSTEM	PROPOSED FRAMEWORK
Precision	0.68	0.89
Recall	0.65	0.85
F-Measurement	0.66	0.87

Table 1. Outputs obtained from test bed dataset

This results show that framework of proposed system with ontology (code and short forms) extract the suspicious messages from the chat conversations efficiently than the existing system without short and code words. And it is also employed to raise system's performance in future. Table interpretation shows the efficiency of the proposed system is excellent in finding suspicious words.

VI. CONCLUSION AND FUTURE WORKS

Framework of proposed system aids the E-crime department to identify suspicious words from cyber messages and trace the suspected culprits. Currently existing Instant Messengers and Social Networking Sites lack these features of capturing significant suspicious patterns of threat activity from dynamic messages and find relationships among people, places and things during online chat, as offenders have adapted to it. The testbed is proven to be useful, for monitoring terror and suspicious crimes in cyberspace, which provides national and international security.

Future works focus on steganography techniques and multilingual languages, which are not detected and hence neglected as ignore words.

If the proposed Framework integrated with existing IM and SNS at server-side for surveillance, will change the world of cyberspace to rest in peace without cybercrime.

REFERENCES

- [1] D.Boyd and N.B.Ellison, "Social Network Sites: Definition, History and Scholorship", Journal of Computer Mediated Communication, vol.13 no.1-2, Nov 2007.
- [2] J.S.McLlwain, "Organised crime: A social network approach", Crime Law and Social Change, vol. 32, pp.301-323, 1999.
- [3] F.J.Fu, J.Chai and S.Wangl, "Multi-factor analysis of terrorist activities based on social network", Business Intelligence and Financial Engineering (BIFE), 2012 5th International Conference on 18-21 Aug 2012, pp. 476-480, 2012.
- [4] Michael Robertson, Yin Pan, and Bo Yuan, "A Social Approach to Security: Using Social Networks to help detect malicious web content," published by IEEE in 2010.
- [5] Available: <http://www.digitaltrends.com/social-media/facebook-scans-chats-and-comments-looking-for-criminal-behavior/> (2012). [Online].
- [6] Appavu, and et al, "Data mining based intelligent analysis of threatening e-mail," published by Elsevier in knowledge-based systems in 2009.
- [7] John Resig and Ankur Teredesai, "A Framework for Mining Instant Messaging Services" in proceedings of the 2004 SIAM Lake Buena Vista - ejohn.org Date: 2011-04-19
- [8] Khan. F. M., Fisher. T. A., Shuler. L, Wu. T and Pottenger. W.M . "Mining chat rooms conversations for social and semantic interactions" from citeseerx.ist.psu.edu/ doi=10.1.1.19.9358.

- [9] Kolenda. T, Hansen. L and Larsen. J "Signal detection using ica: application to chat room topic spotting" from citeseerx.ist.psu.edu/ doi=10.1.1.11.8457.
- [10] Mohd Mahmood Ali and Lakshmi Rajamani, "APD: ARM Deceptive Phishing Detector System Phishing Detection in Instant Messengers using Data mining Approach" in Springer-Verlag Berlin Heidelberg 2012 : ObCom 2011, part I, CCIS 269, pp.490-502, 2012.
- [11] Sharath Kumar and Sanjay Singh, "Detection of user cluster with suspicious activity in online socialnetworking sites" in IEEE publication, pp. 220-225, 2013.
- [12] Farkhund Iqbal, Benjamin C.M.Fung, Mourad Debbabi, "Mining Criminal Networks from Chat Log" in IEEE/WIC/ACM International Conference, pp.332-337, 2012.
- [13] Mohd Mahmood Ali, Khaja Moizuddin Mohd and Lakshmi Rajamani, "Framework for surveillance of Instant Messages in Instant Messengers and Social networking sites using Data Mining and Ontology" in proceedings of the 2014 IEEE Students' Technology Symposium, pp.297-302, 2014.
- [14] G.A. Miller and C. Fellbaum "WordNet: A Lexical database for the English Language". Available at: <http://wordnet.princeton.edu> [online], 2006.
- [15] E. Thambiraja, G. Ramesh, and Uma Rani, "A Survey on Various Most Common Encryption Techniques," published by IJARCSSE Journal volume 2 issue 7, pp. 226-233, 2012.
- [16] Daya C. Wimalasuriya, and Dejing Dou, "Ontology-Based Information Extraction: An Introduction and a Survey of Current Approaches," Journal of Information Science, Volume 36, No. 3, pp. 306-323, 2010.
- [17] <http://www.start.umd.edu/gtd/downloads/codebook.pdf> [Online], 2013.