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Abstract 

 
Texture is a surface characteristic property of an 
object. Texture analysis is an important field of 
investigation that has received a great deal of interest 
from computer vision community. In this paper, a 
translation and rotation invariant texture classification 
method based on support vector machine is proposed. 
Texture features are extracted using nonsubsampled 
contourlet transform and local directional binary 
patterns. Co-occurrence features are extracted for 
three level nonsubsampled contourlet subbands. The 
principal component analysis (PCA) is used to reduce 
the dimensionality of feature set. The class separability 
is enhanced using linear discriminant analysis (LDA). 
Support vector machine is used as classifier. The 
classification performance of the proposed method is 
tested on a set of sixteen Brodatz textures. 
Experimental results indicate that the proposed 
approach  yields higher classification accuracy. 

 
Keywords-NSCT, Principal component analysis, 
LDBP, Linear discriminant analysis, SVM, Texture 
classification. 
 
1. Introduction  
 

Texture is a inherent property of most of natural 
images. It contains information about the structural 
arrangement of surface and their relationship to the 
surrounding environment. Texture characteristics play a 
very important role in texture analysis. Texture 
classification is one of the fundamental problem in 
computer vision and has a wide variety of potential 
applications. Weszka et al. [1] compared the 
classification performance of Fourier power spectrum, 
second order gray level co-occurrence matrix (GLCM), 

and first order statistics of gray level differences for 
terrain samples. It is observed that Fourier methods 
performed poorly. Harlick et al. [2] suggested the use 
of GLCM texture features to analyze remotely sensed 
images. Wan et al. [3] presented comparative study of 
four texture analysis methods namely gray level run 
length method, co-occurrence matrix method, 
histogram method and autocorrelation method, wherein 
co-occurrence method is found to be superior. Wavelet 
transform [4, 5] provides a multi resolution approach 
for the problem. Smith and Chang [6] used mean and 
variance extracted from wavelet subband coefficients, 
as the texture representation. 

Classification methods can be divided into 
categories namely: (i) parametric, (ii) non-parametric, 
(iii) stochastic methods and (iv) non-metric methods 
[7]. Classification task involves classifying images 
based on the feature vectors provided by the feature 
extraction methods. If there is no prior parameterized 
knowledge about the probability structure, then 
classification is based on non-parametric techniques. 
The classification so performed is based on information 
provided by training samples alone. These techniques 
include fuzzy classification, neural network approach, 
etc. Engin Avci [8] used multilayer perceptron neural 
network classifier to classify selected texture images. 
Turkoglu and Avci [9] presented a comparison of 
wavelet support vector machine and wavelet-adaptive 
network based fuzzy inference system approaches for 
texture image classification. Both the methods are used 
for classification of the 22 texture images. Schaefer et 
al. [10] used fuzzy classification for thermograph based 
breast cancer analysis using statistical features. Mukane 
et al. carried out the scale invariant, size invariant and 
rotation invariant [11, 12, 13] classification with 
wavelet and co-occurrence matrix based features using 
fuzzy logic classifier. Laine and Fan [14] implemented 
standard wavelet packet energy signature for texture 
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classification. Pun and Lee [15] used Log-polar 
wavelet signature with Mahalanobis classifier for 
scale and rotation  invariant  texture classification.  
Cui et al. [16] performed experiment for rotation 
invariant texture classification based on radon 
transform and multi-scale analysis with 
Mahalanobis classifier. Hiremath and Shivashankar 
[17] proposed wavelet based co-occurrence features 
for texture classification with k-NN classifier. 
Arivazhagan et al. [18] used Gabor features for 
rotation invariant texture classification with 
minimum distance classifier. The wavelet 
transform offers a multiscale and time-frequency-
localized presentation. However, the 2-D separable 
wavelet basis has limited directional information, 
which can not describe the multi direction of 
various textures. This gave rise to several 
successful joint statistical models such as steerable 
pyramid, brushlets, curvelet transform and 
contourlet transform. In particular, the contourlet 
transform proves to be optimal in dealing with 
images having smooth contours. Due to upsamplers 
and downsamplers present in the Laplacian 
pyramid and directional filter bank (DFB), the 
contourlet transform is not shift invariant [19]. 
Cunha et al. [20] developed the nonsubsampled 
contourlet transform (NSCT), which is a shift-
invariant, multiscale and multidirection expansion. 
The NSCT has proven to be very efficient in image 
processing applications such as image denoising 
and image enhancement. Zhao et al. [21] have 
presented an approach of texture image 
classification based on nonsubsampled contourlet 
transform, local binary patterns and support vector 
machine for classification. In [22], the approach 
which mainly consists of two learning steps: first 
extracting the features using three level NSCT and 
second is extraction of features using local 
directional binary patterns (LDBP), followed by 
classification using k-NN classifier is proposed. In 
general, optimal parameters can vary depending on 
the intrinsic scale and complexity of the texture 
patterns. 

This paper focuses on the problem of texture 
classification. In [22] a texture image classification 
problem using k-NN classifier is investigated. The 
aim of this paper is to improve the classification 
accuracy using support vector machine as 
classifier. The translation and rotation invariant 
texture classification method is proposed to extract 
the textural features. NSCT has translation 
invariability, while LDBP has rotation invariance. 
To reduce the dimensionality of feature set and 
enhance class discrimination, principal component 
analysis (PCA) and linear discriminant analysis 
(LDA) is implemented. The classification is 
performed using support vector machine. The 

experimentation is done using Brodatz [23] images. 
The experimental results show that the proposed 
method exhibits optimal performance. 

 
2. Nonsubsampled contourlet transform  
 

In the nonsubsampled contourlet transform 
(NSCT) [20] method, the main focus is to avoid the 
frequency aliasing problem, enhance directional 
selectivity and shift-invariance. The construction of 
NSCT is a double filter bank, which combines 
nonsubsampled pyramid for multiscale and 
nonsubsampled directional filter bank structure for 
directional decomposition as shown in the Figure 1. 
Initially, the nonsubsampled pyramid split the input 
image into lowpass and highpass subband. Then a 
nonsubsampled DFB is applied to decompose the 
highpass subband into several directional subbands 
by increasing the number of directions with 
frequency. This step is repeatedly iterated on the 
lowpass subband. In NSCT, the multiresolution 
decomposition is done by shift invariant filter 
banks which satisfy Bezout identical equation. The 
lowpass subband has no frequency aliasing effect 
because of no downsampling in the pyramidal 
decomposition level. Hence, the bandwidth of 
lowpass filter is larger than �/2. The NSCT has 
better frequency characteristics than the CT. The 
perfect reconstruction condition is given in the Eq. 
(1). The nonsubsampled pyramid and 
nonsubsampled DFB are depicted in the Figure 
1.(a) and Figure 1.(b), respectively.  

 
( ) ( ) ( ) ( ) 11100 =+ zGzHzGzH

 
(1) 

Since, this condition can be easily satisfied than 
the perfect reconstruction condition for critically 
sampled filter banks, it is possible to design better 
filters. 

 
Figure 1. (a) nonsubsampled pyramid,  (b) 

nonsubsampled DFB. 
 
The Figure 2. shows the two-level 

decomposition of NSCT, which provides 
multiscale, multidirection, and shift invariant image 
decomposition. The frequency division of a 
nonsubsampled pyramid is shown in the Figure 
2.(a) and of nonsubsampled DFB is shown in the 
Figure 2.(b). The NSCT is the non separable two-
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channel filter bank composed of basis function 
oriented at various directions in multiple scales, 
with different aspect ratios. With this rich set of 
basis functions, it captures smooth contours that are 
the dominant features in textures effectively. Since 
the NSCT has desirable properties of shift 
invariance, it is used to extract features from the 
texture images. 

Figure 2. Frequency divisions of: (a) a 
nonsubsampled pyramid, (b) a nonsubsampled 

DFB. 
 
 The input texture image is decomposed into 
subbands by the nonsubsampled contourlet 
transform at four different resolution levels as 
shown in the Figure 3. The block diagram and 
resulting frequency division of NSCT is shown in 
the Figure 3.(a) and Figure 3.(b). At each resolution 
level, it is decomposed into 2n subbands, where n = 
0, 1, 2, 3, 4, .... and is the order of the directional 
filter. As the transform is nonsubsampled, each 
resolution level corresponds to the actual size of the 
input block, i.e. 64x64. Since the features generated 
are in larger number, the procedure of involving the 
entire coefficients in classification is more time 
consuming. 
 

 
Figure 3. The NSCT: (a) block diagram, (b) 

resulting frequency division. 

3. Local directional binary patterns 
  
 A method based on local directional binary 
patterns (LDBP) is a theoretically and 
computationally simple approach which is robust in 
terms of gray scale variations. It is shown to 
discriminate a large range of rotated textures 
efficiently. A gray-scale and rotation invariant 
texture operator based on LDBP is described as 
follows: Starting from the joint distribution of gray 

values of a circularly symmetric neighbour set of 
pixels in a local neighbourhood, an operator is 
derived which is, by definition, invariant against 
any monotonic transformation of the gray scale. 
Rotation invariance is achieved by recognizing that 
this gray-scale invariant operator incorporates a 
fixed set of rotation invariant patterns. The main 
contribution lies in recognizing that certain local 
binary texture patterns are fundamental properties 
of local image texture. There are a limited number 
of transitions or discontinuities in the circular 
representation of the pattern. The most frequent 
binary patterns correspond to primitive micro 
features, such as edges, corners and spots; hence, 
they can be regarded as feature detectors that are 
triggered by the best matching pattern. The 
proposed texture operator allows for detecting local 
directional binary patterns at circular 
neighbourhoods of any quantization of the angular 
space and at any spatial resolution is shown in the 
Figure 4. 
 The derivation of our gray scale and rotation 
invariant texture operator is done by defining 
texture T in a local neighbourhood of a 
monochrome texture image as the joint distribution 
of the gray levels of p (p>1) image pixels is 
represented by the Eq. (2): 

),,....,,( 10 −= pc ffftT
 (2) 

where  gray value cf corresponds to the gray value 
of the center pixel of the local neighbourhood and 

( )1,,.........0 −= pppf  correspond to the gray 

values of p equally spaced pixels on a circle of 
radius R (R>0) that form a circularly symmetric 
neighbour set. 
 The first step toward gray-scale invariance is to 
subtract, without losing information, the gray value 
of the center pixel ( cf ) from the gray values of the 
circularly symmetric neighbourhood and to assume 
that difference cp ff −  is independent of cf , 

which yields the Eq. (3): 

( ) ( )cffcffcfftcftT −−−= 7,,1,0 ��  
(3) 

 In practice, an exact independence is not 
warranted; hence, the above distribution is only an 
approximation of the joint distribution. However, it 
is tolerable to accept the possible small loss in 
information as it achieves invariance with respect 
to shifts in gray scale. The distribution ( )cft in the 
Eq. (3) describes the overall luminance of the 
image, which is unrelated to local image texture 
and consequently, does not provide useful 
information for texture analysis. Hence, much of  
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the information in the original joint gray level 
distribution is as shown in the Eq. (4): 

( )cffcffcfftT −−−≈ 7,,1,0 ��  (4) 

 This is a highly discriminative texture operator. 
It records the occurrences of various patterns in the 
neighbourhood of each pixel in a P-dimensional 
histogram. For constant regions, the differences are 
zero in all directions. On a slowly sloped edge, the 
operator records the highest difference in the 
gradient direction and zero values along the edge. 
For a spot, the differences are high in all directions. 
Signed differences cp ff −  are not affected by 

changes in mean luminance; hence, the joint 
difference distribution is invariant against gray-
scale shifts. We achieve invariance with respect to 
the scaling of the gray scale by considering just the 
signs of the differences instead of their exact values 
as in the Eq. (5): 

( ) ( ) ( )( )cffvcffvcffvtT −−−≈ 7,,1,0 ��  (5) 

where 

( )
,0

.0

1

0

≥

<
=
��

�
�
� x

x

xv  (6) 

 By assigning a cosine factor ( )θcos  for each 

sign ( )cp ffv − , we transform the Eq. (5) into a 

unique LDBP  number that characterizes the spatial 
structure of the local image texture as given in the  
Eq. (7): 

( ) ( ) ( )45cos
7

0
, ∗�

=
−= k

k cfk
fvcxcxbf

 
(7) 

 A local neighborhood is thresholded at the gray 
value of the center pixel into a binary pattern. The 
LDBP operator is by definition invariant against 
any monotonic transformation of the gray scale, 
i.e.,  as  long  as  the  order of the gray values in the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
image stays the same, the output of the LDBP 
operator remains constant. 
 
4. PCA-LDA  
 
 In practice, dimensionality reduction is 
important in handling high dimensional data since 
it mitigates the curse of dimensionality and other 
undesired properties of high dimensional spaces. 
The most widely used method is principal 
component analysis (PCA). The class seperability 
is guaranteed by the linear discriminant analysis 
(LDA). The PCA is used to find a subspace, whose 
basis vectors correspond to the maximum variance 
direction in original space. The LDA method 
searches for the vectors in underlying space that 
best discriminate among classes. The LDA creates 
a linear combination of features of data which gives 
largest mean difference between the desired 
classes. For all classes, the following two measures 
are calculated using Eqs. (8) and (9): 
 

• Within class scatter matrix: 

( )( )Tj
j

iyj
j

iywS
C

j

N

i

j

µµ −−=��
= =1 1

 (8) 

where j
iy is ith sample of class j, jµ is the mean of 

class j, C  is the number of classes, jN  is number 

of samples in class j. 
 

• Between class scatter matrix:  

( )( )TjjbS
C

i

µµµµ −−=�
=1

 (9) 

where µ  represents mean of all classes, j
iy  is ith 

sample of class j, jµ is the mean of class j, C is the 

83 83 98 

40 80 84 

126 94 130 

�

1 1 1 

0  1 

1 1 1 

�
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�
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Multiply 

cos(1350) cos(900) cos(450) 
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�

Figure  4. Transformation of neighborhood pixels to calculate central pixel weight in LDBP. (a) 
A sample neighborhood, (b) Resulting binary thresholded result, (c) LDBP mask,  

 (d) Resultant weights after multiplying corresponding elements of (b) and (c) 
�

             (a)                           (b)                                   (c)                                           (d) 
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number of classes, jN is number of samples in 

class j. The objective is to maximize the between 
class measure while minimizing the within class 
measure. 
 
5. Support vector machines   
 
 The support vector machine (SVM) [24] is 
designed to work with only two classes by 
determining the hyperplane to divide two classes. 
The samples closest to the margin that were 
selected to determine the hyperplane is known as 
support vectors. Basic principle of support vector 
machines is that, first, samples of input space can 
be converted into linear samples of a high 
dimensional space by nonlinear transform, optimal 
linear classification surface can be done by 
calculation in high dimension space [25]. The 
nonlinear transform can be realized by the 
appropriate inner product function.  
 Different kernel functions can get different 
methods of support vector machines. At present, 
there are three main kinds of kernel function as 
follows: 
 
1) kernel function using polynomial is defined by 

the Eq. (10): 
 

( ) ( )[ ]q
ii xxxxK 1., +=  (10) 

SVM is a polynomial classifier with q order. 
 
2) kernel function using the Gaussian radial basis 

function is represented as in the Eq. (11): 

( )
��

�
�
�

��

�
�
� −
−= 2

2

exp,
σ

i
i

xx
xxK  

 
(11) 

SVM is a kind of radial basis function classifier. 
 
3) kernel function using Sigmoid function is given 

by the Eq. (12): 
 

( ) ( )( )cxxvxxK ii += ,tanh,  (12) 

 
 Each kernel function has parameters whose 
value has to be changed and tuned according to the 
data set. Polynomial kernel function produces a 
polynomial separating hyperplane whereas 
Gaussian kernel function produces a Gaussian 
separating hyperplane. So, depending on the level 
of non separability of data set, the kernel function 
is chosen.  
 
 

6. Proposed method for texture image 
classification   
 
 The proposed method for texture image 
classification consists of two modules, namely, 
texture training module and classification module. 
The Figure 5. shows the block diagram of the 
proposed method. In the experimentation, sixteen 
texture images [22] from the Brodatz texture [23] 
are used for classification. Each image represents 
one texture class. Texture images are sampled to 
256x256 size. Each texture image is divided into 16 
equal sized nonoverlapping blocks of size 64x64, 
out of which 8 randomly chosen blocks are used as 
training samples and remaining blocks are used as 
test samples for each texture class. 
 
6.1. Texture training module  
 
 Feature database is created using 
nonsubsampled contourlet transform upto third 
level of decomposition. We get fifteen subbands for 
level 3 of decomposition on NSCT. The Harlick 
features namely, contrast,  energy, entropy, 
homogeneity, maximum probability, cluster shade 
and cluster prominence of each subband 
coefficients are calculated to obtain eigenvector F1. 
The LDBP weights of each block are calculated, 
which are used as eigenvector F2, containing 3844 
features ( =62*62, since image edges are excluded). 
The steps of the proposed training module are 
given in the Algorithm 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Block diagram of the proposed 
method 

 

Read the image 
�

�

NSCT 

 

LDBP  

  apply PCA  

apply LDA 

train the SVM 

classify using SVM 
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Algorithm 1: Training algorithm 
 
Step 1: Input the training image block I of 

size 64x64 
Step 2: Apply NSCT method to image I. 
Step 3: Compute Harlick features (7 

numbers) from each of the NSCT 
subbands (15 numbers) to obtain 
feature vector F1 with 105 (=7*15) 
features. 

Step 4: Compute LDBP weights for image I 
to obtain feature vector F2 with 
3844 features (=62*62, since the 
image edges are excluded) 

Step 5: Form the feature vector F=(F1, F2), 
which contains 3949 (=105+3844) 
features and store F in the feature 
database. 

Step 6: Repeat the Steps 1-5 for all the 
training blocks of all the texture 
class images and obtain the training 
set (TF) of feature vectors. 

Step 7: Apply PCA on training feature set 
(TF) of Step 6 to obtain reduced 
feature set (TFPCA). 

Step 8: Apply LDA on reduced feature set 
(TFPCA) of Step 7 to obtain the 
discriminant  feature set (TFLDA). 
Store TFLDA in the feature library, 
which is to be used for training 
SVM.  

Step 9: SVM is trained using polynomial 
kernel of order 9 using the TFLDA 
to obtain the SVM structure 
TFSVM, which is to be used for 
texture classification. 

Step 10: Stop 

In step 9, the SVM with polynomial kernel of order 
9 is used, since it is observed to yield optimal 
results as compared to Gaussian radial basis kernel 
and Sigmoid kernel function, which is indicated by 
the experimental results. 
 
6.2. Texture classification module  
 
 The support vector machine (SVM) [24] classifier  
is used to realize the automatic texture 
classification, with polynomial function as kernel 
function as given by the Eq. (10). The steps of 
testing algorithm is given in the Algorithm 2. 
 
Algorithm 2: Testing algorithm (Classification of 
test images) 
 
Step 1: Input the testing image block Itest of 

size 64x64 

Step 2: Apply NSCT method to image Itest. 
Step 3: Compute Harlick features (7 numbers) 

from each of the NSCT subbands (15 
numbers) to obtain feature vector F1test 

with 105 (=7*15) features. 
Step 4: Compute LDBP weights for image 

Itest to obtain feature vector F2test with 
3844 features (=62*62, since the image 
edges are excluded) 

Step 5: Form the feature vector Ftest =(F1test, 
F2test), which contains 3949 
(=105+3844) features and store Ftest in 
the feature database. 

Step 6: Project Ftest on TFPCA components 
and obtain the weights FtestPCA which 
are considered as test image features. 

Step 7: Project FtestPCA on TFLDA components 
and obtain the weights FtestLDA which 
are considered as reduced test image 
features. Denote FtestLDA as ( )testf . 

Step 8: (Classification) Apply SVM classifier 
(with polynomial kernel of order 9) to 
classify the test image Itest as belonging 
to class m. 

Step 9: Stop. 
 

7.   Experimental results and discussion   
 
7.1. Image database 
 

For the experimentation, sixteen different 
texture classes from Brodatz album [23] are used 
which are shown in the Figure 6. Each 256x256 
images of texture classes are divided into 16 non 
overlapping block of pixel 64x64. Thus, there are 
256 blocks in the experiment database. The 50% of 
blocks of each type image in experiment database 
are used as training samples, so there are 128 
blocks which are used as training samples. 
Remaining 50% of blocks of each type image in 
experiment database are used as test samples, so 
remaining 128 blocks are used as test samples. In 
order to estimate the performance for classification, 
the training and testing sets should be independent 
and randomly divided. The good features should 
not be wasted with poor classifier, so we use SVM 
classifier to perform texture classification. The 
inputs to the systems are the digitized images from 
one of the texture classes. When each type sub-
images of training samples are trained, at this time, 
this type sub-images are positive, other type sub-
images of training samples are negative.  
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�
D3 D4 D6 D11 

�
D16 D21 D24 D29 

�
D36 D51 D52 D68 

�
D71 D75 D82 D104 

Figure 6. Texture images from Brodatz album 

7.2. Experimental results 
 

The experimentation of the proposed method is 
carried out on Intel® Core™ i3-2330M @ 2.20 
GHz with 4GB RAM using MATLAB 7.9 
software. The texture image is decomposed into 
subbands upto three levels, at each resolution, it is 
decomposed into 2n subbands. Thus the input 
image is decomposed into fifteen subbands. As the 
transform is nonsubsampled, each subband 
corresponds to the actual size of texture image. The 
features for each level are derived using gray level 
co-occurrence matrix (GLCM) for distance vector 

( )jid ,  with offset ( )1,0d . From the GLCM, 
Harlick features namely, contrast, energy, entropy, 
homogeneity, maximum probability, cluster shade 
and cluster prominence are calculated for each 
subband of the decomposed image. 

The implementation of the NSCT is based on 
pyramidal filtering and directional filtering. 
Experiments are carried out using different 
Laplacian pyramidal (LP) filters for each of the 
different directional filters (DFB). Four categories 
of pyramid filters, namely, ‘9-7’, ‘maxflat’, ‘pyr’ 
and ‘pyrexc’ are considered, while fifteen 
categories of  directional filters, namely,   ‘haar’, 
‘dmaxflat4’, ‘dmaxflat5’, ‘dmaxflat6’, ‘dmaxflat7’, 
‘qmf2’, ‘qmf’, ‘lax’, ‘pkva’, ‘ko’, ‘sinc’,  ‘sk’,  
‘vk’,  ‘cd’, ‘dvmlp’ filters are considered. We have 
investigated all pairs of pyramidal filter and 
directional filter for level 3. The results of 
extensive experimental activity are summarised in 
the Table 1. The proposed method improves 
average classification accuracy to 100% on the 

image database. The proposed method achieves 
promising results in texture classification as 
compared to classification technique discussed in 
[22].  The Table 1. shows the average classification 
accuracy for the 16 texture categories of Brodatz 
[23] for level 3 decomposition of NSCT for all 
possible combinations of filters. 

The LDBP coefficients are used to represent the 
different textures. LDBP coefficients do not require 
additional comlex computation for feature 
extraction. An image in LDBP transformation is 
represented as sum of sinusoids of changing 
magnitudes and frequencies.  The LDBP approach 
is used to extract the rotational invariant 
coefficients of the image (which produces 
62*62=3844 features). The operator labels the 
pixels of an image by thresholding a 3x3 
neighborhood of each pixel with center value and 
considering the results as binary number. Further 
3844 labels computed over a region are used as a 
texture descriptor. The derived numbers (called 
local directional binary patterns or LDBP codes) 
codify local primitives including different types of 
curved edges, spots, flat areas etc. The feature set 
so obtained from NSCT co-occurrence features and 
LDBP has 3949 features for proposed method. To 
reduce the redundant information (i.e. the 
information contained in some highly correlated 
features) and to improve the class seperability, two 
statistical analysis techniques called PCA and LDA 
are used in the experimentation. Thus, the vast 
numbers of features are reduced in greater 
dimension and used for training the support vector 
machine. 

The support vector machine is employed to 
perform texture classification using the features 
extracted by the proposed method. The support 
vector machine is a theoretically superior learning 
methodology with increased classification accuracy 
for high dimensional datasets and has been found 
competitive with the best machine learning 
algorithm. The performance of SVM classifier 
depends on the type of kernel function and SVM 
parameters. SVMs have been tested and evaluated 
only as pixel based image classifier. The SVM 
method was designed to be applied only for two 
class problems [23-24]. For applying SVM to 
multiclass classification the basic idea is to reduce 
the multiclass to set of binary problems so that the 
SVM approach can be used. There is no fixed rule 
in the choice of kernel function. But it is seen that 
polynomial kernel function works generally well 
with non-separable data sets. By increasing the 
degree of the function, one can get zero 
misclassification for the training set at least. In the 
proposed study the polynomial kernel of order 9 is 
implemented. 
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Table 1. Average classification accuracy (%) of 

proposed method using  different directional 
filters and pyramidal filters of NSCT (level 3)  

for 16 texture categories of Brodatz [22]. 
Sl. 
No. 

Directional 
Filters for 
NSCT 

Average Classification Accuracy (%) 

Pyramidal Filters of NSCT 

pyr maxflat 9-7 pyrexc 

1 haar 93.750 85.156 100 100 

2 dmaxflat4 90.625 100 88.281 100 

3 dmaxflat5 82.813 100 88.281 93.750 

4 dmaxflat6 100 100 83.594 100 

5 dmaxflat7 87.500 100 88.281 83.594 

6 qmf2 96.094 70.313 100 100 

7 qmf 100 93.750 94.531 94.531 

8 lax 100 96.094 93.750 64.063 

9 pkva 87.500 93.750 94.531 92.969 

10 ko 93.750 96.094 100 100 

11 sinc 79.688 94.531 95.313 82.813 

12 sk 77.344 100 76.563 100 

13 vk 100 100 88.281 100 

14 cd 86.719 100 93.750 93.750 

15 dvmlp 100 100 100 83.594 
 
The Table 2. shows the pairs of 2-D directional 

filter and pyramidal filter used in the proposed 
method, which yielded optimal result (100%). 

 
Table 2. The different pairs of 2-D directional  

  filter and pyramidal filter, which yield optimal 
result (100%). 

Sl. 
No. 
  

Pair of 2-D directional 
filter and pyramidal 

filter. 

Time 
in sec. 

Training Testing 

1 haar, 9-7 258.5018 10.4278 

2 haar, pyrexc 261.8971 10.1643 

3 dmaxxflat4, maxflat 301.3827 12.7742 
4 dmaxxflat4, pyrexc 303.0670 12.9953 

5 dmaxflat5, maxflat 329.2040 15.405 

6 dmaxflat6, pyr 350.5524 16.3876 

7 dmaxflat6, maxflat 351.6857 15.8956 

8 dmaxflat6, pyrexc 352.2076 15.415 

9 dmaxflat7, maxflat 384.4168 17.9869 

10 qmf2, 9-7 262.6677 10.6049 

11 qmf2, pyrexc 261.9525 10.3589 

12 qmf, pyr 265.6508 10.5738 

13 lax, pyr 282.8375 11.6374 

14 ko, 9-7 259.1459 10.2003 

15 ko, pyrexc 259.8482 10.2113 

16 sk, maxflat 259.9656 10.8193 

17 sk, pyrexc 261.0526 10.4756 

18 vk, pyr 259.9656 10.2229 

19 vk, maxflat 261.0526 10.3571 

20 vk, pyrexc 260.7513 10.1785 

21 cd, maxflat 267.4015 10.8224 

22 dvmlp, pyr 267.4773 10.7117 

23 dvmlp, maxflat 267.2677 10.7314 

24 dvmlp, 9-7 266.229 10.6799 
 
The Table 3. shows the comparison of 

classification accuracies for each texture class 
obtained by the proposed method using haar and 9-
7 as optimal pair of 2-D directional filter and 
pyramidal filter  and other methods in the literature 
which are implemented on the experimental 
database. 

 
Table 3. Comparison of classification accuracies   
             (%) by different methods for 16 texture 

categories 
Sl.  
No. 

Image 
Name  

(Brodatz) 

Hiremath and 
Shivashankar 
[17] with k-

NN 
(105 features) 

Zhao et 
al. [21] 

with  
k-NN 
 (288 

features) 

Hiremath 
and 

Rohini 
[22]  

with k-
NN 
 (15 

features) 

Zhao et 
al. [21] 

with 
SVM 
(288 

features) 

Proposed 
Method 

with 
SVM 
(15 

features) 

1 D104 93.47 100 100 100 100 

2 D11 84.38 25 100 100 100 

3 D16 93.48 100 100 100 100 

4 D21 100 100 100 100 100 

5 D24 79.63 50 100 100 100 

6 D29 84.92 37.5 100 100 100 

7 D3 86.9 75 100 100 100 

8 D36 72.34 75 87.5 87.5 100 

9 D4 76.19 100 100 100 100 

10 D51 59.81 50 100 100 100 

11 D52 59.57 75 100 100 100 

12 D6 91.67 87.5 100 100 100 

13 D68 82.13 100 100 100 100 
14 D71 100 100 100 100 100 

15 D75 77.81 100 100 100 100 

16 D82 56.23 87.5 87.5 100 100 
Mean 

classification 
rate 81.158 78.906 98.437 99.210 100.0 
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The systematic comparison of the experimental 
results demonstrate that the proposed algorithm 
yields better results. The SVM classifier helps to 
improve the classification accuracy. The proposed 
system performs the better, among other 
approaches in the literature, yielding an accuracy of 
100%. 

 
8. Conclusion  
  

In this paper, a novel algorithm for texture 
image classification using support vector machine 
is proposed. Features are extracted using 
nonsubsampled contourlet transform and local 
directional binary patterns. To decrease the 
dimensionality of feature vector and to enhance the 
discriminality of classes, PCA, LDA techniques are 
used. Support vector machine is used to classify 
textured images. The classification performance is 
tested on sixteen Brodatz textures. The SVM 
classifier is found to give high classification 
accuracy and a smaller misclassification rate as 
compared to the other classifier techniques. 
Experimental results show that the proposed 
approach enhances average precision of texture 
image classification. 
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