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Abstract--In this paper, two nonparametric control charts are 

developed for monitoring the process variability. The charts are 

Shewhart-type charts and are based on nonparametric two 

sample tests for testing equality of variance developed by 

Sukhatme and Mood. The performance of the proposed control 

charts is evaluated through average run length for the normal, 

double exponential and uniform distributions.  
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1. INTRODUCTION 

 

     Control charts are statistical process control tools that are 

widely used for controlling and monitoring a process. 

Shewhart R and S control charts are most popular control 

charts for monitoring process variability. Both of these control 

charts are designed and evaluated under the assumption that 

the underlying distribution of the quality characteristic is 

normal. In real applications, there are many situations in 

which the process data come from a non-normal distribution 

which need to be monitored by appropriate control charts. To 

monitor such type of data, development of control charts that 

do not depend on a particular distributional assumption is 

desirable. Nonparametric control charts can serve this purpose. 

The main advantage of a nonparametric control chart is that it 

does not assume any probability distribution for the 

characteristic of interest. A formal definition of nonparametric 

or distribution-free control chart is given in terms of its in-

control run length distribution. The number of samples that 

needs to be collected before the first out-of-control signal 

given by a chart is a random variable called the run-length; the 

probability distribution of the run-length is referred to as the 

run-length distribution. If the in-control run length distribution 

is same for every continuous distribution then the chart is 

called distribution-free or nonparametric (Chakraborti et al. 

(2004)). 

     In literature, several nonparametric control charts are 

proposed for monitoring location of a univariate process. 

Some of these are based on sign and/or rank statistics by 

assuming a known in-control target value for process location. 

Chakraborti et al. (2001) presented an extensive overview of 

the literature on univariate nonparametric control charts. Bakir 

(2004) developed a distribution-free Shewhart control chart 

for monitoring process center based on the signed-ranks of 

grouped observations. Bakir (2006) proposed Shewhart, 

CUSUM and EWMA control charts based on signed-rank-like 

statistics of grouped data for monitoring a process center when 

in-control target center was not specified and studied the 

robustness of the charts against outliers.      There exist only 

few articles on nonparametric charts for monitoring process 

variability. Lehmann (1975) suggested using non-parametric 

tests for the equality of two variances for use as control 

statistics in nonparametric control charts for variability. 

Control charts using tests statistics for comparing two 

variances would require obtaining an initial sample (of size m) 

when the process is considered to be in-control. Then at each 

sample time i, a sample of size n is obtained from the process, 

and the pooled sample of size (m + n) is obtained. The 

observations in the pooled sample then are ranked from 

smallest to largest, and some statistic based on the ranks of the 

observations is calculated. Das and Bhattacharya (2008) 

proposed a nonparametric control chart for monitoring process 

variability based on Conver’s squared rank test for variance. 

Das (2008) developed two nonparametric control charts for 

monitoring process variability based on two nonparametric 

tests. Murakani and Matsuki (2010) proposed a nonparametric 

control chart for dispersion based on the rank sum statistic.   

 

     When the process distribution is normal, Shewhart R and S 

charts are appropriate control chart for monitoring the process 

variability. If underlying process distribution is non-normal, 

then the need of development of nonparametric control chart 

based on appropriate nonparametric test arises. In this paper, 

we introduce two Shewhart-type nonparametric control charts 

for monitoring process variability for the case that the location 

parameter is under control. The proposed nonparametric 

control charts are based on two sample nonparametric tests 

proposed by Sukhatme (1956) and Mood (1954). These are 

most powerful test statistics for detecting scale shifts. The 

performance of the proposed charts is assessed for both the in-

control state and out-of-control state under different 

underlying distributions.  

 

2. MATERIALS AND METHODS 

 

2.1 Sukhatme test based nonparametric control chart 

     Sukhamte (1956) proposed a nonparametric test for two 

independent samples dispersion problem. Suppose we want to 

compare two independent random samples  
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)X,...,X,X(X m21  and  )Y,...,Y,Y(Y n21  which 

are drawn from absolute continuous distributions and differ 

only in the scale parameters. Let YX and  be the arbitrary 

measures of dispersion of X and Y respectively then problem 

of testing of hypothesis is YX0 :H   against 

YX1 :H  . The Sukhamte test statistic for testing null 

hypothesis is defined as,  
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and variance of the statistic T is given by, 
4

1
)T(E   and 

nm48

)7nm(
)T(Var


                                        

For a large sample,   

                                    
)T(Vat

)T(ET
Z


                       (2) 

has a standard normal distribution and the test is performed on 

the basis of tabulated values of the standard normal 

distribution and the test is performed on the basis of tabulated 

values of the standard normal distribution. 

     We consider Z as the control chart statistic for the 

nonparametric control chart for monitoring process variability 

and the chart is referred as NP-S chart. We 

consider )X,...,X,X(X m21 , as reference sample of 

size m from an in-control process and that 

)Y,...,Y,Y(Y n21 be an arbitrary test sample of size n. 

The sample statistics Z computed from independent 

observations from the process are plotted against an upper 

control limit UCL = 3 and LCL = -3. The process is 

considered out-of-control when a plotted point lies above UCL 

or below LCL. 

 

2.2 Mood test based nonparametric control chart 

     Mood (1954) developed a nonparametric test for equality 

of variances.  

      Suppose, we have two independent random  

samples )X,...,X,X(X m21  and )Y,...,Y,Y(Y n21 . 

We wish to test YX0 :H    against YX1 :H   . Let 

m21 R....RR  be the combined samples ranks of the 

X-values in increasing order of magnitude. The Mood test 

statistic for testing null hypothesis is defined as,                                                                        

nmNwhere,
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The mean and variance of the statistic M is given as 
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For N greater than or equal to 30, we may consider the 

normalized random variable W 

    
)M(Var

)M(EM
W


                                              (4)                                                   

and perform the test on the basis of tabulated values of the 

standard normal distribution. 

     For N less than 30, it is not advisable to use directly the 

normal approximation. In that case, Laubscher recommended 

the use of a correction for continuity yielding the following 

test statistic:       

                                                      

)M(Var2
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
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and perform the test again based on the tabulated values of the 

standard normal distribution. 

     We consider W as the control chart statistic for the 

nonparametric control chart for monitoring process variability 

and the chart is referred as NP-M chart. We consider 

)X,...,X,X(X m21 , as reference sample of size m 

from an in-control process and that )Y,...,Y,Y(Y n21
 

be an arbitrary test sample of size n. The sample statistics W 

computed from independent observations from the process are 

plotted against an upper control limit UCL = 3 and LCL = -3. 

The process is considered out-of-control when a plotted point 

lies above UCL or below LCL. 

 

3. PERFORMANCE OF THE PROPOSED CONTROL 

CHARTS 

 

     To examine the ability of proposed NP-S and NP-M charts 

to detect variability shift in a process, we consider underlying 

process distributions as normal, double exponential and 

uniform with mean zero and variance one. The uniform 

distribution is considered as process distribution to see the 

effect of a light tailed distribution and double exponential 

distribution is considered to see the effect of heavy tailed 

distribution on the performance of proposed nonparametric 

control charts. Consider a process where quality characteristic 

of interest X is distributed with mean μ  and standard 

deviationσ . Let 0μ  and 0σ be the in-control values of μ  and 

σ  respectively. When a shift in process standard deviation 

occurs, we have change from the in-control value 0σ  to the 

out-of-control value )1δ0(σδσ 01  . Therefore, 

when control chart for variability is employed, the process 

shifts are measured through 

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052054

International Journal of Engineering Research & Technology (IJERT)

2359



 

 

 

0

1




 .   When 1δ  , the process is considered to be in-

control . For 1δ   an increase in  occurs and for 1 , 

decrease in   occurs. Computer programs written in C 

language are used to study the performance of the proposed 

control charts. The in-control and out-of-control ARL values 

of the proposed control charts are computed using 10000 

simulations for sample size of n = 10, 15, 20 and 25.   

 

     Table 1 to Table 4 provide the ARL values of the proposed 

nonparametric control charts when the underlying process data 

actually follows normal, double exponential and uniform 

distributions with sample sizes n =10, 15, 20 and 25 

respectively. 

 

Table-1: ARL values of NP-S and NP-M charts when n = 10 

 

 

Shift 

  

NP-S Chart NP-M Chart 

Normal Double 

Exponential 

Uniform Normal Double 

Exponential 

Uniform 

1.0 332.45 340.16 339.58 328.93 332.94 335.48 

1.2 158.54 189.13 116.89 135.24 174.71 85.03 

1.4 85.85 133.77 53.03 62.06 92.96 30.26 

1.6 51.65 75.38 29.67 33.09 54.86 14.83 

1.8 34.50 52.40 19.90 20.13 36.10 9.16 

2.0 24.85 40.09 14.01 13.66 24.69 6.43 

2.2 18.59 30.24 10.71 9.91 18.15     5.01 

2.4 15.00 24.80 8.70 6.82 12.63 3.71 

2.6 12.24 20.71 7.44 6.13 11.67 3.44 

2.8 10.04 17.16 6.38 5.13 9.51 2.99 

3.0 8.84 14.98 5.60 4.39 7.96 2.69 

3.5 6.40 10.73 4.45 3.34 5.79 2.25 

4.0 5.24 8.57 3.71 2.71 4.45 1.95 

4.5 4.36 7.05 3.26 2.34 3.67 1.79 

5.0 3.82 5.88 2.92 2.10 3.16 1.67 

 

Table-2: ARL values of NP-S and NP-M charts when n = 15 

 

 

Shift 

 

NP-S Chart NP-M Chart 

Normal Double 

Exponential 

Uniform Normal Double 

Exponential 

Uniform 

1.0 414.70 419.74 415.25 420.16 415.82 411.57 

1.2 164.85 213.42 105.95 137.21 184.70 66.75 

1.4 68.36 103.25 35.08 46.02 78.83 17.62 

1.6 34.13 58.25 16.18 20.50 39.69 7.49 

1.8 19.71 34.98 9.46 11.25 23.02 4.53 

2.0 12.61 23.20 6.41 7.10 14.85 3.19 

2.2 8.94 16.49 4.80 5.00 10.45 2.44 

2.4 6.56 12.65 3.76 3.59 6.75 1.91 

2.6 5.29 9.76 3.14 3.05 5.95 1.80 

2.8 4.30 8.03 2.69 2.59 4.83 1.64 

3.0 3.72 6.65 2.41 2.23 4.05 1.53 

3.5 2.67 4.57 1.93 1.74 2.85 1.32 

4.0 2.20 3.53 1.67 1.49 2.26 1.23 

4.5 1.86 2.83 1.52 1.36 1.92 1.18 

5.0 1.66 2.43 1.42 1.28 1.71 1.16 

 

Table-3: ARL values of NP-S and NP-M charts when n = 20 

 

Shift 

 

NP-S Chart NP-M Chart 

Normal Double 

Exponential 

Uniform Normal Double 

Exponential 

Uniform 

1.0 332.45 340.16 339.58 418.01 414.41 416.31 

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052054

International Journal of Engineering Research & Technology (IJERT)

2360



 

 

1.2 158.54 189.13 116.89 109.29 166.97 45.11 

1.4 85.85 133.77 53.03 31.19 58.02 10.23 

1.6 51.65 75.38 29.67 12.73 26.67 4.42 

1.8 34.50 52.40 19.90 6.61 14.51 2.65 

2.0 24.85 40.09 14.01 4.09 8.92 1.95 

2.2 18.59 30.24 10.71    2.93 6.11 1.58 

2.4 15.00 24.80 8.70 2.28 4.50 1.42 

2.6 12.24 20.71 7.44 1.87 3.46 1.28 

2.8 10.04 17.16 6.38 1.66 2.87 1.20 

3.0 8.84 14.98 5.60 1.47 2.44 1.16 

3.5 6.40 10.73 4.45 1.25 1.81 1.09 

4.0 5.24 8.57 3.71 1.15 1.51 1.05 

4.5 4.36 7.05 3.26 1.09 1.34 1.04 

5.0 3.82 5.88 2.92 1.07 1.24 1.03 

 

Table-4: ARL values of NP-S and NP-M charts when n = 25 

 

Shift 

 

NP-S Chart NP-M Chart 

Normal Double 

Exponential 

Uniform Normal Double 

Exponential 

Uniform 

1.0 416.96 420.62 420.04 418.44 424.64 426.27 

1.2 108.62 154.37 55.64 90.68 139.41 33.15 

1.4 31.47 55.39 13.23 22.46 44.64 6.83 

1.6 12.92 24.67 5.44 8.39 19.05 2.96 

1.8 6.82 13.41 3.19 4.42 9.86 1.88 

2.0 4.14 8.32 2.25 2.83 5.81 1.46 

2.2 2.96 5.61 1.78 2.05 4.10 1.27 

2.4 2.27 4.15 1.51 1.65 3.05 1.16 

2.6 1.88 3.26 1.36 1.44 2.41 1.11 

2.8 1.64 2.62 1.26 1.29 2.02 1.07 

3.0 1.48 2.28 1.19 1.20 1.76 1.05 

3.5 1.24 1.69 1.10 1.09 1.39 1.02 

4.0 1.14 1.42 1.05 1.04 1.21 1.01 

4.5 1.08 1.26 1.03 1.02 1.13 1.01 

5.0 1.05 1.17 1.02 1.02 1.08 1.00 

 

 

     Examinations of Table 1 to Table 4 lead to the following 

findings: 

 In-control ARL values of the proposed NP-S and NP-M 

control charts for different process distributions are 

approximately same.   

 Out-of-control ARL values of NP-M chart are smaller than 

that of the NP-S chart. Therefore, NP-M chart is more 

efficient than NP-S chart for normal, light tailed uniform 

and heavy tailed double exponential distributions. 

 For normally distributed data, both NP-S and NP-M charts 

performs better than double exponential data. 

 For uniformly distributed data, both NP-S and NP-M charts 

perform better than normally and doubly exponential data.                  

 

 

4. CONCLUSIONS 

 

       In this paper, two nonparametric control charts are 

developed for monitoring process variability. The 

performance of the proposed control charts is studied by 

simulation under normal, light tailed and heavy tailed 

distributions. Our simulation study indicates that the NP-M 

control chart is more efficient than NP-S control chart for 

detecting shifts in process variability for different process 

distributions. Both NP-M and NP-S control charts perform 

better when underlying process distribution is light tailed. 
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