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Abstract—To investigate nonlinear free vibration response of 

functionally graded materials (FGMs) spherical shell. It is 

subjected to uniform and non-uniform temperature changes with 

temperature independent (TID) material properties. The basic 

formulation is based on higher order shear deformation theory 

(HSDT) with Von-Karman nonlinear strains using modified C0 

continuity. A direct iterative based nonlinear finite element 

method combined with mean centered first-order perturbation 

technique (FOPT) proposed for the Functionally Graded 

Materials plate is extended for spherical shell subjected to 

thermo-mechanical loading. The present outlined approach will 

be validated with those available in literature. 

Index Terms— FGMs, Nonlinear free vibration, HSDT. 

INTRODUCTION 

  Laminated composite materials which have a strong 

discontinuity of mechanical properties across the interfaces of 

two layers cause several problems. An advantage of FGMs 

over laminated composites is that material properties vary 

continuously and smoothly through the thickness from one 

surface to other surface. This is achieved by continuously 

varying the volume fraction of constituent materials. These 

classes of materials can survive environment with high 

temperature gradient while maintaining the desired structural 

integrity. Hence it can be used in many applications like 

plasma facing for nuclear reactor, wear resistant lining in 

mineral processing industry, rocket heat shields, thermoelectric 

generators, dental implantation, and bone replacement, and 

electrically insulating metal/ceramic joints. A large number of 

literatures have been reported on linear and nonlinear free 

vibration of plates. K. R. Jagtap and Achchhe Lal [1] 

investigated effect of random material properties on free 

vibration response of functionally graded materials plate with 

cutouts in thermal environment by using higher order shear 

deformation theory with C
0 

continuity K. R. Jagtap et al. [2] 

investigated stochastic nonlinear free vibration analysis of 

functionally graded material plate resting on elastic foundation 

in thermal environment by using higher order shear 

deformation theory with von Karman nonlinear strain 

kinematics with modified C
0
 continuity. Achchhe Lal et al. [3] 

investigated Nonlinear bending response of laminated 

composite spherical shell panel with system randomness 

subjected to hygro-thermo-mechanical loading. A direct 

iterative based nonlinear finite element method combined with 

mean centered first-order perturbation technique (FOPT) for 

the plate is extended for the spherical shell panel subjected to 

hygro-thermo-mechanical loading. Hiroyuki Matsunaga [4] 

investigated free vibration and stability of functionally graded 

shallow shells according to a 2D higher-order deformation 

theory. Shankara CA, Iyenger NGR [5] investigated free 

vibration of laminated spherical panels with random material 

properties. 

 FORMULATION  

Consider a FGM shell consist of ceramic and metal at top 

and bottom layer of length a, width b, and total thickness h. 

 

 
Fig.1 Geometry of spherical shell. 

 

The properties of the FGMs shell are assumed to be varying 

through the thickness. The effective mechanical and thermal 

properties of the FGMs shell at an arbitrary point within the 

shell domain are expressed as [2], 
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Where, t and b represents the ceramic and metal 

constituents, E, α , 
ρ

 and k are the effective young modulus, 

thermal expansion coefficient, density and thermal 

conductivity VC  is the volume fraction index, function of 

coordinate in the thickness direction (z) 
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Where, n is volume fraction index and is always positive. 

For n=0, the shell is fully ceramic and when n=1, the 

composition of metal and ceramic is linear. The Poisson‟s ratio 
 depends weakly on temperature change and is assumed to be 

a constant. 

A. Displacement field model 

Higher order shear deformation theory with C0 continuity 

has been used to find displacement field model 

1 2

2

(1 ) ( ) ( )x x

z
u u f z f z

R
     , 

1 2
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Where ( , , )u v w  denote the displacement of a point along 

the (X, Y, Z) coordinates axe, (u, v, w) are corresponding 

displacements of a point on the mid plane, 
x  and y are the 

rotations at Z=0 of normal to the mid surface with respect to X 

and Y axes, x  and y are the slopes along X and Y directions

x

dw
θ =

dx
 and

y

dw
θ =

dy
. The function  1f z  and  2f z  can be 

written as, 
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The displacement vector for the modified model can be 

written as, 

   [u v  w  y   x   y   x ]
T

                                            (4) 

B. Strain Displacement Relations 

The strain vector consisting of strains in terms of mid-plane 

deformation, rotations of normal and higher order terms 

associated with displacement for isotropic layer is, 

       tl nl                                                                (5) 

 Where, l ,  nl  and  t  are the linear and nonlinear 

strain vectors (Von-Karman sense), thermal strain vector 

respectively. The nonlinear strain vector can be written as [2], 
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The thermal strain vector  t is represented as, 
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 Where
1 , 

2 and 
12 are the coefficient of thermal 

expansion in the x, y and z directions respectively which can 

be obtained from the thermal coefficient in the longitudinal 
1  

and transverse 
2  directions of the ceramic and metal using 

the transformation matrix and T  is the uniform and 

nonuniform temperature change. The temperature field for 

nonuniform temperature change is expressed as, 

T =   0T z T                                                                       (8) 

Where  T z is expressed as, 

     b t bT z T T T z   . 

 Where  T z is the temperature distribution along z 

direction,  

tT  And bT , are temperature of top and bottom surface, and  

Parameter  z is defined as, 
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Where,
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 With tb t bk k k   and k is defined as thermal conductivity. 

 The uniform temperature change Eq. can be written as, 

0( ) ( )t bT z T T T                                                                (10) 

Where, 0T is initial temperature. 

C. Stress strain Relation 

 The stress strain relation accounting thermal effect can be 

written as 
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 Where ijQ ,    and    are the transformed stiffness 

matrix, stress and strain vectors for isotropic shell 

respectively. For FGM material the elastic constants are 

defined as, 
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D. Strain energy of the shell 

The strain energy of the FGM shell is given by, 
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Above equation can be expanded as, 
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Where [ ]D , 3[ ]D , 4[ ]D and 5[ ]D are shell stiffness matrices 

and  l is the linear mid-plane vector. The strain energy 

function calculated for each element above can be summed to 

get the total strain energy. 
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Where [ lK ], [ nlK ] and {q} are defined as global linear, 

nonlinear stiffness matrix and displacement vector 

respectively. 

E. Work done 

 Because of uniform and nonuniform temperature change, 

pre-buckling stresses in FGM shell are generated. The in-plane 

pre-buckling stress resultant per unit length is reason for 

buckling. The work done (W) by in-plane stress resultants in 

producing out of plane displacements „w‟ can be expressed as, 
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 Where xN ,
yN  and 

xyN  are thermal in plane, thermal 

compressive and stress resultant per unit length. Using finite 

element method and summing over the entire element above 

equation can be written as, 
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 Where 
T and [ ]gK are defined as critical thermal 

buckling temperature and global geometric stiffness matrix. 

F. Kinetic energy of FGM shell 

 The kinetic energy (T) of the vibrating FGM shell can be 

expressed as, 
( )

ˆ ˆ{ } { }
k

T

V
T u u dV 

                                                            (17) 

Where  and ˆ{ }u  { u  v  w } are the density and velocity 

vector of the shell respectively, above equation can be 

expressed as, 
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Where, [M] is the global mass matrix. 

EQUATION OF MOTION AND ITS SOLUTION 

The governing equation for thermally induced nonlinear 

free vibration of the shell analysis can be derived using 

Lagrange‟s equation of motion. 
2

1

( ) 0

t

t

U W T dT                                                         (19) 

Substituting the values and obtaining in the form of 

nonlinear generalized eigenvalue problem as, 

[ ]{ } [ ]{ } 0K q M q                                                         (20) 

Where, [ ] {[ ] [ ( )] [ ] [ ( )] [ ]}l nl fl fnl T gK K K q K K q K       

 The above equation is nonlinear free vibration equation 

which can be solved as a linear eigenvalue problem assuming 

that the shell is vibrating in its principal made in each 

iteration, the above equation can be expressed as generalized 

eigenvalue problem as, 

[[ ] [ ]]{ } 0K M q                                                              (21) 

Where 2   with    is natural frequency of the shell. 

The nonlinear eigenvalue problem is solved by employing a 

direct iterative based 0C nonlinear finite element method in 

conjunction with perturbation technique. 

G. Solution- perturbation technique 

FOPT gives results with desired accuracy for problems 

with low variability. Hence the variance of the eigenvalue 

using FOPT can be expressed as, 

   , ,
1 1

,d d

i j i k

q q
r r

i j k
j k

Var Cov b b  
 

                  (22) 

RESULT AND DISCUSSION 

 A nine noded Lagrange isoparametric element with 63 DOFs 

per element for the present HSDT model has been used for 

discretizing the laminate and (4 × 4) mesh has been used for 

the study. Typical results are presented for functionally graded 

spherical shell made of ceramic and metal of the different 

compositions with their volume fractions index following the 

power law distribution through the shell thickness as shown in 
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Fig 1. The results are compared with those in literatures. The 

dimensionless mean natural frequency of the FGM shell is 

defined as, 

/c ch E                                                                (23) 

 Where,  is dimensionalized natural frequency of FGM 

shell. Table 1 gives the material properties used for 

computation. 

 

Table 1 

Material E (Mpa) 3( / )kg m  (1/ )c  

Aluminum 70 2707 0.0000023 

Alumina 380 3800 0.0000075 

 

Boundary Condition: 

All edges simply supported (SSSS):  
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y y

x x
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Table 2 

Validation table for frequency parameter ( /c ch E   ), 

for 2 3/Al Al O  FGM shell with a/b=1. 

1/a R  2/b R  n Present Matsunaga [4] 

0.5 0.5 

0 0.0752 0.07514 

0.5 0.0653 0.06569 

1 0.0594 0.06006 

1 1 

0 0.1124 0.1095 

0.5 0.0976 0.09782 

1 0.0887 0.09047 

  

RESULT AND DISCUSSION 

 Natural frequencies of simply supported FGMs 

spherical shell have been obtained by using higher order 

shear deformation theory for arbitrary values of volume 

fraction index. For case of isotropic (fully ceramic/metal) 

spherical shell, fundamental frequencies have been 

compared with existing results and it has been shown that 

the present results are in excellent agreement with the 

existing result. It is shown that the higher order shear 

deformation theory can provide accurate results for natural 

frequencies of FGM spherical shell. 
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