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Abstract 
 

Two types of nonlinear black-box (treepartition and sigmoid network NARX) modelswere developed 

for thereactive distillation processused for the production of ethyl acetate, water being the by-

product,from the esterification reaction between acetic acid and ethanol. The data used for the 

modeling were generated by operating the reactive distillation column setup. The model orders were 

determined using MDL and AIC criteriaand compared. The unit numbers of the nonlinear estimators 

were optimized and the optimized values were further used to develop the models. The good 

conformities between the experimental top segment temperatures and NARX models predicted 

onesrevealed that the models successfully represented the behavior of the ethyl acetate reactive 

distillation process. In addition, owing to the higher fit value and the lower loss function observed 

from the developed sigmoid network NARX model, it was found to be better than treepartition NARX 

model for this process. 

 
Keywords: Reactive distillation process,NARX model,treepartition, sigmoid network, ethyl acetate. 

 

1. INTRODUCTION 

 

Esters are of great importance to chemical process industries. Among them, acetate esters are 

important organic solvents widely used in the production of varnishes, ink, synthetic resins, and 

adhesive agents. They are produced from the reactions of acid and alcohols under an acidic condition. 

A key issue in the production of these esters is the low conversion from the reactions. As a result, 

heavy capital investments and high energy costs are inevitable. The reactive distillation is a very 

attractive way to reduce these investments and energy costs [8]. 

 

Reactive distillation is a process that combines both separation and chemical reaction into one unit. It 

has a lot of advantages for those reactions occurring at temperatures and pressures suitable for the 

distillation of the resulting components. Its main advantages are derived from the elimination of 

equipment and the constant removal of products [12]because it is known that increased overall 

conversion can be achieved in equilibrium reactions if the products are continuously removed from the 

reaction zone. 

 

The combination of both chemical reaction and separation in a single unit results in the complexity of 

this process which makes its modeling a very challenging task to chemical engineers because the 

unavailability of process models capable of reliably describing the several complexes and interrelated 

phenomena including simultaneous reaction and separation has made the safe scale-up from laboratory 

experiments to industrial plants quite challenging[7], especially when a packed column is the type 

involved in the reactive distillation. 

 

There are researches already carried out on the modeling of reactive distillation column using the first 

principles approach that normally incorporates many assumptions; most of them focused on tray 

columns. Those concerning packed column are few. In fact, very few researches were found regarding 

using plant data to develop models for a reactive distillation plant. From the information obtained from 

the literature, Giwa and Karacan (2012c) developed ARX and ARMAX models for ethyl acetate 
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reactive packed distillation process. Even though they were able to obtain good models that were 

capable of representing the process very well, the models they developed were linear. These linear 

models may not be able to account for some complexities happening in the reactive distillation process 

under certain conditions. Based on this, it was felt that it would be better to represent this process 

using nonlinear models because, naturally, the process is a nonlinear and a complex one. 

 

Therefore, this work is aimed at developing nonlinear black-box models for ethyl acetate reactive 

process using tree-partition and sigmoidnetwork as the nonlinearity estimatorswith the aid of System 

Identification Toolbox of MATLAB 2012a [10 and 11]. 

 

2. Process Description for Data Acquisition 

 

The data used for the development of the models in this work were acquired from the experiments that 

were carried out in a reactive packed distillation column (RPDC) set up as in Figure 1 and as also 

shown and described in the previous researches [1, 2, 3, 4, 5 and 6]. The column, excluding the 

condenser and the reboiler, had a height of 1.5 m and a diameter of 0.05 m. It consisted of a cylindrical 

condenser of a diameter and a height of 5 and 22.5 cm respectively. The main column section of the 

plant was divided into three subsections of 0.5 m each. The upper, middle and lower sections were the 

rectifying, the reaction and the stripping sections respectively. The rectifying and the stripping 

sections were packed with raschig rings while the reaction section was filled with Amberlyst 15 solid 

catalyst that had a surface area of 5300 m
2
/kg, a total pore volume of 0.4 cc/g and a density of 610 

kg/m
3
. The reboiler was spherical in shape with a volume of 3 Litre. The column was fed with acetic 

acid at the top (between the rectifying section and the reaction section) while ethanol was fed at the 

bottom (between the reaction section and the stripping section) with the aid of peristaltic pumps which 

were operated with the aid of a computer via MATLAB/Simulink program. All the signal inputs 

(reflux ratio (R), feed ratio (F) and reboiler duty (Q)) to the column and the measured outputs (top 

segment temperature (Ttop), reaction segment temperature (Trxn) and bottom segment temperature 

(Tbot)) from the column were sent and recorded respectively on-line with the aid of 

MATLAB/Simulink computer program and electronic input-output (I/O) modules that were connected 

to the equipment and the computer system. The esterification reaction occurring in the column was an 

equilibrium type that is given as: 

 

OHHCOOCCHOHHCCOOHCH
eqK

2523523  
     

(1) 

 

Applying the input data shown in Table 1 below, the experimental reactive distillation process 

together with the column described above was run to generate the experimental data used for the 

development of the nonlinear black-box models for the process with the aid of System Identification 

Toolbox contained in MATLAB[10 and 11]. 

 

Table 1. Experimental input values 

Parameter Signal Type Initial Level Final Level 

Reflux ratio (R) Step 4 2 

Feed ratio (Fa/Fe) Step 1 1.25 

Reboiler duty (Q, kJ/s) Step 0.56 0.49 
 

In developing the models, the experimental data were first converted to iddata type using iddata 

command before being fed into the System Identification Toolbox via MATLABmfile. The main 

command used for the development of the models in the MATLAB environment was nlarx. After 

developing the models, they were simulated and the simulated (model) top segment temperatures were 

compared with the experimental ones using the compare command of MATLAB. 
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Figure 1. Reactive Packed Distillation Column 
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3. Modeling Procedure 

 

3.1.Model Structure 

 

The nonlinear black-box model structure (which is referred to as “Nonlinear AutoRegressive with 

eXogenous inputs (NARX) model”) used in this work for the prediction of top segment temperature of 

ethyl acetate reactive distillation process is an extension of a linear ARXmodel. A linear SISOARX 

model has the structurethat is given as:  

 

 
       

       tenbtRbtRbtRb

natTatTatTatT

nb

topnatoptoptop





11

21

21

21




  (2) 

 

wherena is the number of past top segment temperatures(output) and nb is the number of past reflux 

ratios(input). The input delay nkhas been set to zero in the formulation in order to simplify the 

notation.This structure shown in Equation (2) implied that, with only the linear ARX model, the 

current top segment temperature (Ttop(t))would be predicted as a weighted sum of past top segment 

temperature values and current and past reflux ratio values. Rewriting the equation as a product: 

 

   

            Ttoptoptop

nbnatopp

nbtRtutRnatTtTtT

bbbaaatT

1,,1,,,,2,1

,,,,,,, 2121








   (3) 

 

 

where Ttop(t−1),Ttop(t−2),...,Ttop(t−na),R(t), R(t−1),...,R(t−nb−1) are delayed output and input variables, 

called regressors. The linear ARX model thus predicted the current output Ttoppas a weighted sum of 

the regressors. 

 

This structure wasfurther extended to create a nonlinear form by utilizing a more flexible nonlinear 

mapping function instead of the weighted sum that represented a linear mapping. The form of the 

nonlinear ARX model is: 

 

               ,2,1,,,3,2,1  tRtRtRtTtTtTftT toptoptoptopp    (4) 

 

wheref is a nonlinear function. Inputs to f are the model regressors.The nonlinear functions used in this 

work were tree partition and sigmoid network. 

 

Shown in Figure 2 below is a block diagram representing the structure of theNonlinear ARX model 

used for the development of the nonlinear black-box models involving the reflux ratio (input) and top 

segment temperature (output). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Structural block diagram of aNonlinear ARXModel 
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As can be observed from the figure, the structure of the NARX model consisted of both a linear and a 

nonlinear function. In the calculation aspect of the nonlinear ARX model,the top segment temperature 

was estimatedby first computing the regressors from the current and past input values and past output 

data using both the linear and the nonlinear function blocks of the nonlinearity estimator. Further, the 

nonlinearity estimator block mapped the regressors to the model output using a combination of 

nonlinear and linear functions. 

 

The nonlinearity estimator block included linear and nonlinear blocks in parallel as in [11]: 

 

      rxQgdrxLTxf          (5) 

 

xis a vector of the regressors. LT(x)+d is the output of the linear function block and is affine when d≠0. 

dis a scalar offset. g(Q(x−r))represents the output of the nonlinear function block. ris the mean of the 

regressors x. Q is a projection matrix that makes the calculations well-conditioned. The exactforms of 

f(x) were based on treepartition and sigmoid networks that were used in this work. 

 

Tree partition, coded using the treepartitioncommand in MATLAB R2012b, is a class representing 

binary-tree nonlinearity estimator for NARX models whereas sigmoid network which was coded in 

the same MATLAB version using the sigmoidnetcommand has a structure which is given as: 

 

    



n

k
kkk xxg

1

          (6) 

 

 

where     1
1


 ses is the sigmoid function. k is a row vector such that  kk x   is a scalar.  

 

Estimating a NARX model is the computation of the model parameter values, L, r, d, Q, and other 

parameters specifying g. The resulting models developed using the nlarx command are idnlarx objects 

that stored all the model data, including model regressors and parameters of the nonlinearity estimator. 

 

3.2.Model Order Selection 

 

The model orders (na, nb and nk) are the model parameters used to predict the current output (top 

segment temperature). The determinations of the optimum values of the orders were found to be very 

important in order to avoid any under-fitting or over-fitting of the models. As such, the model orders 

used were determined by minimizing Akaike Information Criterion (AIC) and Rissanen’s Minimum 

Description Length (MDL) criterion.  

 

The mathematical expression for the Akaike Information Criterion (AIC) is given as[9]: 

 

N

d
VAIC

2
log            (7) 

 

whereV is the loss function, d is the number of estimated parameters, and N is the number of values in 

the estimation data set.The loss function V is defined by the following equation: 

 

    
N

d
Vtt

N
V

TN

NN

2
log,,

1
det

1















          (8) 

 

where  N represents the estimated parameters. 

For d<<N: 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

5www.ijert.org



  

 

 

 
 

  
 

 

 



















N

d
VAIC

2
1log           (9) 

 

while that of the Rissanen’s Minimum Description Length is as well described as: 

 

 
 











N

Nd
VMDL

log
1          (10) 

 

Similarly, in Equation 10 above,V is the loss function, d is the total number of parameters in the 

structure, and N is the number of data points used for the estimation. 

 

3.3. Optimization of Nonlinear Model Estimator Units  
 

At present, as there is not any basic rule for choosing the number of units of the nonlinear estimators, 

the unit numbers of the estimators were determines by varying their numbers from 1 to 170 for the 

tree-partition and from 1 to 30 for the sigmoid network. The unit number with the highest fit value for 

each of the models was then chosen and used to develop the models. 

 

3.4.Model Parameter Estimation 

 

The estimation of the model parameters was carried out in MATLAB Environment by minimizing the 

error between the measured temperature and the model output temperature. That is,  

 

      tTtTte topptope minmin        (11) 

 

4. Results and Discussions 

 

The acquired data set from the experimentcarried out is as shown in Figure 3 below. 

 

 
Figure 3. Dynamic response of top segment temperature to a negative step (from 7 to 4) in reflux ratio 

It can be observed from the experimental results shown in Figure 3 above that the top segment 

temperature was able to respond to the change in the reflux ratio. The existence of the change in the 
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top segment temperature as a result of a change in the reflux ratio is one of the major reasons for using 

the reflux ratio as the input variable of the top segment temperature. 

 

The model orders obtained using the two criteria (MDL and AIC) are as shown in Table 2 below. 

From the results shown in Table 2, it can be noticed that the value of na given by the MDL criterion 

was higher than that of the AIC. This observation is in accordance with the information available in 

the literature because it has been discovered from the literature that MDL normally allows the shortest 

possible description of the observed data (Ljung, 1999). That is to say to that MDL can be chosen as 

the model orders selection criterion where a low-order model is required. 

 

Table 2.Model orders 

Parameters Range used for optimization Value given by MDL Value given byAIC 

na 1:10 4 9 

nb 1:10 1 1 

nk 1:10 1 1 

 

After obtaining the model orders, another important parameter considered were the unit numbers of 

the nonlinearity estimators (tree partition and sigmoid network) used. In order to determine the 

appropriate number of units for the estimators, the model orders obtained from the MDL criterion was 

used and the two nonlinearity estimators were used to develop the models. The fit values (describing 

the performances) of the models with the different unit numbers were calculated using Equation 12 

which is given as: 

 

 
  

100
1







topetope

topetopp

TmeanTnorm

TTnorm
fit

        (12) 

 

The terms Ttopp and Ttopein the Equation (12) equation stand for experimental and predicted top 

segment temperaturerespectively. 

 

The calculated fit values were recorded and further plotted as shown in Figures 4 and 5 respectively 

for the treepartition and sigmoid network estimators. 

 

 
Figure 4. Performance of tree partition unit number 

From Figure 4, the maximum fit value of 87.03% was found to occur in the treepartition nonlinear 

estimator when the unit numberwas63. This value (87.03%) was found to remain constant throughthe 
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unit number of 126 for this model. As such, 63 was chosen as the unit number used in developing the 

model with the treepartition nonlinear estimator. 
 

As can be seen from Figure 5, the performance of the sigmoid network was found to be zigzag with 

the highest performance value of 89.01% occurring with 3 units. This low value of units giving this 

good performance was found to be very encouraging in using the sigmoid network for the 

development of NARX model for the reactive distillation process being studied.  
 

 
Figure 5. Performance of sigmoid network unit number 
 

Based on the results obtained from Figures 4 and 5 above, 63 and 3 units were respectively used for 

the development of the tree partition and sigmoid network NARX model for the reactive distillation 

process. The results obtained from the models developed indicated that the two models had 5 

regressors (4 past outputs and 1 past input).  
 

 
Figure 6.Experimental andpredicted top segment temperatures 

However, the loss function of the sigmoid network NARX model which was found to be 
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model that had a loss function of approximately 0.00032, even though the difference between the loss 

functions of the two models was found to be very small.  

 

Simulating the developed models, comparisons were made between the experimental (measured) top 

segment temperature and the predicted (model) ones. The comparisons are as shown in Figure 6 

above.According to the results shown in Figure 6, the top segment temperatures predicted using the 

two methods (treepartition and sigmoid network) were found to be in good agreement with each other 

and with the experimentally measured ones. 

 

5. Conclusion 

 

The good conformities between the experimental top segment temperatures and those predicted using 

the developed nonlinear black-box (NARX) models have shown that the models can be used to 

successfully represent the behavior of the ethyl acetate reactive distillation process. However, owing 

to the higher fit value and lower loss function observed in the case of the NARX model developed 

using sigmoid network, it (sigmoid NARX model) has been found to be better than treepartition 

NARX model for this process. 
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7. Nomenclatures 

 
AIC  Akaike Information Criterion 

F  Feed ratio (mL s
-1

Fa / mL s
-1

 Fe) 

Fa  Acetic acid feed rate (mL/s) 

Fe  Ethanol feed rate (mL/s) 

MDL  Rissanen’s Minimum Description Length 

NARX  Nonlinear AutoRegressive with eXogenous Inputs 

Q  Reboiler duty (kJ/s) 

R  Reflux ratio 

RPDC  Reactive Packed Distillation Column 

t  Time (s) 

Tbot  Bottom segment temperature (
o
C) 

Trxn  Reaction segment temperature (
o
C) 

Ttop  Top segment temperature (
o
C) 

Ttope  Experimental top segment temperature (
o
C) 

Ttopp  Predicted top segment temperature (
o
C) 
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