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Abstract: The effects of both MHD and porous medium on peristaltic transport of a Prandtl 

fluid in an asymmetric channel have been studied under the assumptions of long wave length 

and low-Reynolds number. The flow is examined in a wave frame of reference moving with 

the velocity of the wave. The channel asymmetry is proposed by choosing the peristaltic 

wave train on the walls to have different amplitudes and phase. The expressions for stream 

function, velocity and pressure rise are obtained. The effects of different parameters like 

magnetic parameter, permeability parameter and Prandtl parameters on velocity and pressure 

rise are discussed numerically and explained graphically.  
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1 Introduction 

Peristalsis is a mechanism of pumping viscous fluids in ducts against an increased pressure  

rise in general, by means of a series of  moving  contractile rings on the wall. Now the  

technique of  peristalsis  is well-known  to  physiologists  as one  of  the major mechanisms 

for fluid transport in many biological systems. In particular, this mechanism is involved in 

urine transport from kidney to bladder, swallowing of food through the esophagus, movement 

of chyme in the gastro-intestinal tract, the transport of  spermatozoa in the ducts efferentes of 

the male reproductive tract and in the  movement of ovum in the fallopian tubes and in the 

vasomotion of small blood vessels. In addition, peristaltic pumping has many  industrial  

applications involving biomechanical systems. The literature on this topic is quite extensive. 

Some significant  contributions describing Newtonian and non- Newtonian fluid peristaltic 

transport are given in  [1-11]. 

Recently it is a well accepted fact that the peristaltic flows of magnetohydrodynamic (MHD) 

fluids are important in medical sciences and bioengineering. The MHD characteristics are 

useful in the development of magnetic devices, hyperthermia, blood reduction during 

surgeries and cancer tumor treatment. Also the effect of magnetic field on viscous fluid has 

been reported for treatment of the following pathologies: Gastroenric pathologies, 

rheumatisms, constipation and hypertension that can be treated by placing one electrode 

either on the back or on the stomach and the other on the sole of the foot; this location will 

induce a better blood circulation. Hence several scientists having in mind such  importance 

extensively discussed the peristalsis with magnetic field effects. Mekheimer and Al-

Arabi[12] analyzed the  non-linear peristaltic transport of MHD flow through a porous 

medium. Ali et al.[13] studied the slip effects on the peristaltic transport of MHD fluid with 

variable viscosity. Hayat and Ali[14] discussed the Peristaltic motion of a Jeffrey fluid under 

the effect of a magnetic field in a tube. Kothandapani and Srinivas[15] studied the Peristaltic 

transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel 

Srinivas et al. [16] investigated the influence of slip condition, wall properties and heat 
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transfer on MHD peristaltic transport. Hayat et al. [17] discussed the MHD flow of a Carreau 

fluid in a channel with different wave forms.  

 

Viscous flow through porous medium is of fundamental importance in ceramic engineering, 

ground water hydrology, petroleum technology, power metallurgy, industrial filtration and 

such other fields.  In springs of the geothermal region, water is known to be an electrically 

conducting fluid.  Flow through porous medium has been studied by a number of researchers 

Hayat et al.[18] investigated the influence of partial slip on the peristaltic flow in a porous 

medium. The Effect of heat transfer on the peristaltic flow of an electrically conducting fluid 

in a porous space has bean studied by Hayat et al.[19]  . Vajravelu et al.[20] discussed the 

influence of  heat transfer on the peristaltic transport of a Jeffrey fluid in a vertical porous 

stratum. Singh and Rathee[21] studied the analysis of non-Newtonian blood flow through 

stenosed vessel in porous medium under the effect of magnetic field. 

 

              Keeping the above discussion in view, the non- linear peristaltic transport of a 

conducting Prandtl fluid in a porous asymmetric channel is investigated. The governing 

equations of Prandtl fluid model have been simplified under the assumptions of long 

wavelength and low Reynolds number approximations and are solved by using perturbation 

technique. The expressions for stream function, pressure gradient and pressure rise have been 

obtained. The effects of various parameters on the velocity and pressure rise are discussed 

through graphs.           

2 Mathematical formulation  

We consider an incompressible MHD prandtl fluid in an asymmetric channel with porous 

medium of width 
1 2d d . Let c be the speed by which sinusoidal wave trains propagate along 

the channel walls. Consider the rectangular coordinate system   ,X Y where X  axis and Y 

axis are taken parallel and transverse to the direction of wave propagation respectively. The 

wall surfaces are modeled as (
1H  is the upper wall and 

2H  is the lower wall) 

 1 1 1

2
Y H d a Cos X ct





 
    

 
,  2 2 1

2
Y H d b Cos X ct






 
      

 
     (1) 

where 
1a and

1b are the amplitudes of the waves,   is the wave length, t  is the time,   is the 

phase difference varying in the range 0 , 0     corresponds to symmetric channel with 

waves are out of phase and    with waves are in phase, and further andddba 2111 ,,,  

satisfy the condition 2 2 2

1 1 1 1 1 22 cos ( )a b a b d d     so that walls will not intersect with 

each other.  

The governing equations in the laboratory frame  are 

0
U V

X Y

 
 

 
                                                                                            (2) 

2

0

XX XY

e

U U U P S S
U V U B U

kt X Y X X Y


 
      

        
      

                            (3) 
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YX YYV V V P S S
U V V

kt X Y Y X Y



      

       
      

                                               (4) 

where U  and V are the velocities in the X  and Y directions and P is the pressure  in fixed 

frame,   is the density,  is the coefficient of viscosity of the fluid, 
0B is a constant magnetic 

field and 
e  is the electrical conductivity. We introduce the following transformations 

between fixed and wave frames  

 , , , , ( , )x X ct y Y u U c v V p x P X t                                                     (5) 

where ,u v , p   are the velocity components and pressure in the wave frame respectively. 

The extra tensor S  for Prandtl fluid is given by 

1 2
2 2

1

1 2
2 2

1
sin

u v
A

c y x
u

S
y

u v

y x



       
     
             

       
    
      

                                                                       (6) 

in which A  and C are material constants of prandtl fluid model. 

The non–dimensional quantities and the expressions for stream functions are given by 

2

1 1 1
1

1 1

2 2
2 0 12 1 2 1 1 1

2

1 1 1 1

2 22 2
, , , , , , , ,

1
,Re , , , , , ,e

d d p Hx y u v t
x y u v p t h

d c c c d

B dH cd d a b Sd
h d a b M S

d d d d c k

  


     




  


        





       



                (7) 

and  ,u v
y x

  
  
 

                                                                                                         (8) 

where R is the Reynolds number,   is the dimensionless wave number,  M is  the magnetic 

parameter and   permeability parameter .       

After using the equations (7), (8) and long wave length and low Reynolds number  

approximation  the basic equations reduces to 

3
2 2

2 2

2 2
( ) 1

dp
M

dx y y y y

  
  
       

        
        

                                                              (9) 

3
2 2 2 2

2 2

2 2 2 2
0 ( )M

y y y y

  
  
     

     
      

                                                                     (10) 
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where  

2

2

1

,
A c

C C d


 


 

 

corresponding non-dimensional boundary conditions are 

 

1

2

, 1 1 cos
2

, 1 cos
2

F
at y = h a x

y

F
at y = h d ba x

y





 


    




       


                                     (11)  

The flux at any axial station in the fixed frame is  

1

2

1 2( 1)

h

h

Q u dy h h q                                                                                                   (12) 

The average volume flow rate over one period of the peristaltic wave is defined as 

 1 2

0 0

1 1
1

T T

Qdt h h q dt q d
T T

                                                                                (13) 

3 Series solution 

We note that the resulting equation  (10) is highly non linear, hence we expand the flow 

quantities in a power series of the small parameter   as follows: 

 

 

 

2

0 1

2

0 1

20 1

O

F F q O

dp dpdp
O

dx dx dx

   

 

 


   


   


  


                                                                                     (14) 

Using the above relation in equations (10) and  (11), we obtain a system of equations of 

different orders. 

 

3.1 Zero- order System 

The governing equations of the zero-order are 

2 22
2 20 0

2 2 2
0 ( )M

y y y

 
 
  

   
   

                                                                                  (15)                                                                                 

The appropriate boundary conditions are 
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 

0 0
0 1

0 0
0 2

, 1 1 cos
2

, 1 cos
2

F
at y = h a x

y

F
at y = h d ba x

y





 


    




       



                                                         (16)    

The solution of equation (14) in terms of stream function, is given by 

 

     

2 2 2 2

0 1 2 3 4cosh sinh
M M

c c y c y c y
 


 

 
                                                (17) 

and the axial velocity is        

     

2 2 2 2 2 2

0 2 3 4( sinh sh )
M M M

u c c y c co y
  

  

  
                                   (18) 

 

 3.2 First- order System 

The governing equations of the first-order are 

3
22 22

2 201 1

2 2 2 2
0 ( )M

y y y y

 
 
   
     

      

                                                                  (19)                                                              

The corresponding boundary conditions are 

1 1
1 1

1 1
0 2

, 0
2

, 0
2

F
at y = h

y

F
at y = h

y








 




  



                                                                                             (20) 

The solution of equation (19) in terms of stream function, is given by 

2 2 2 2

1 5 6 7 8

2 2 2 2 2 2

6 72

5 2
2 2 2 2 2 2

8

3 42

cosh sinh

( cosh 3 sinh 3
8

sinh cosh

M M
c c y c y c y

M M M
L y L y

LM M M
y c y c y

 


 

  

  

  

   

 
   

  
 

    
        

                                 (21)                                                                                  

The axial velocity and the corresponding pressure gradient from the momentum equation are 
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2 2 2 2 2 2

1 6 7 8

5 2
2 2 2 2 2 2

6 72

3
2 2 2 2 2 2

8
3 42

5 2
2 2 2 2 2 2

8
3 42

( sinh cosh )

3
sinh 3 cosh 3

8

cosh sinh

sinh cosh

M M M
u c c y c y

M M M
L y L y

L M M M
y c y c y

L M M M
c y c y

  

  

  

   

  

   

  

   

  
  

    
        

    
        

   
  

  




 


                      (22)                    

Finally the expressions for axial velocity, the corresponding pressure gradient and pressure 

rise  are given by 

      
0 1u u u                                                                                                            (23) 

The pressure gradient is obtained from the dimensionless equation of motion as 

    0 1
dp dpdp

dx dx dx
                                                                                                        (24) 

In which 

    
 2 20

2( 1)
dp

c M
dx

    and  2 21
6

dp
c M

dx
                            (25)                                                                                   

     

1

0

dp
p dx

dx
                                                                                                                     (26)   

4. Results and Discussion 

The expression for velocity in terms of  y is given by the equation (23).  Velocity profiles are 

plotted in Fig.1 to study the effects of the different parameters such as the magnetic 

parameter M , permeability parameter , phase difference  , volume flow rate  and Prandtl 

parameters  and   on the velocity distribution. Fig.1a. and Fig.1b. are drawn to study the 

effect of M  and   on the velocity. We noticed that the velocity profiles are parabolic. We 

found that the velocity increases with increasing M ,  and meet at -0.5 and then opposite 

behavior is observed. From Fig.1c. we seen that the velocity decreases with an increase in   

and coincide at a point between -0.5 and 0 after that opposite behavior is observed.  From 

Fig.1d.  we observe that the velocity increases with increasing  . Fig.1e. and Fig.1f. are 

plotted to study the effect of   and    on the velocity. We observed that the velocity 

decreases with increasing ,   and meet at     -0.5 and then opposite behavior is observed.  

We have calculated the pressure rise p  in terms of the mean flow   from equation (26). 

The variation of pressure rise with the mean flow for different M and   is shown in figures 

2a. and 2b. It is noticed that the pressure rise decreases with the increase in  . We found that 

for a given  , pressure rise increases with increasing ,M   and coincide at a point between 

0 and 0.5 after that opposite behavior is observed. From Fig. 2c. we observed that for a given 
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 , pressure rise increases with increasing  . Fig.2d. and  Fig.2e are plotted to study the 

effects of Prandtl parameters   and  . We noticed that the pressure rise increases with 

increasing   and  .  

(a)            (b) 

(c)               (d)                                                                                               

(e)               (f) 

. 1Fig . Velocity distribution  0.5, 0.5,d 1,x 1a b   

       2, 0.2, 1; 0.1, 0.1;   2, 0.2, 1, 0.1;   2, 0.1,1.2, 1, 0.11 ;.2,M Ma b c                         

       0.2, 0.1, 1, 0.1; 2, 0.2, 0.1, 0.11.2 ;   2, 0.2,, 1. 0.1, 1;2, 1.2,M M f Md e                       

(a)             (b)   
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(c)               (d) 

                                        (e) 

.2Fig .graph of Pressure gradient  0.5, 0.5,d 1a b  

     0.2, 1; 0.5, 0.5;   0.2, 1, 0.5; 0.5, 1,1.2, 1 5;. 0.2,a b cM M                   

     0.2, 0.5, 0.5;1.2, 1.2,  0.2, 0.5, 1;e Md M              
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