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Abstract 
 

 

The effect of external magnetic field on the chemotactic 

bacterial bioconvection by considering a Continuum 

model is investigated. Chemotaxis causes cells to swim 

out of the plume because the high concentration of the 

cells constituting the plumes leads to a lower 

concentration of oxygen in the surrounding fluid.  

Further world’s major portion consists of bio-mass; 

therefore it is of immense interest and at most 

importance to study bioconvection under different types 

of constraints. A similarity solution is found for the 

plume in which the cell flux and the volume flux could 

be matched to those in the boundary layer and also 

outside the suspension regions. Axisymmetric plumes is 

formed by applying two scales one with respect to the 

radial co-ordinate and the other with respect to the 

similarity variable. The effects of magnetic field are 

remarkable and encouraging and the computed results 

are in excellent agreement with those of hydrodynamic 

case in the limiting case.  

 
1. Introduction  

 
The spontaneous formation of patterns in 

suspensions of swimming microorganisms due to their 

tactic nature viz.  oxytactic, gyrotactic, chemotactic etc., 

is termed as bioconvection. The microorganisms 

exhibiting bioconvection have the following key 

features: (i) They are denser than water (ii) They swim 

upwards due to their tactic nature. This leads to an 

unstable situation in the system and thus an overturning 

instability develops leading to pattern formation 

[1][2][3].  Also Magnetic field has a strong influence on 

the system in many real time situations. Experiments on 

bioconvection containing suspensions of bacteria 

(Bacillus Subtilis)   have    revealed   the formation of 

Falling plumes (Figure 1.) when the system becomes 

unstable.  
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Some literatures pertaining to bioconvection in 

deep chambers are [4][5]. The study of such a 

phenomenon has a variety of applications in biological 

and physiological problems. Further, chemotaxis and 

oxygen consumption are important in setting up the 

basic state and soon after, the resulting plumes are 

entirely buoyancy driven and the cells are merely 

advected.  In such cases, the velocity would vary across 

the plume [6][7] . The present work investigated the 

nonlinear Hydromagnetic bioconvection in order to 

study the effect of magnetic field on the formation of 

falling plumes (Axisymmetric) where the oxygen 

consumption and chemotaxis are important. The model 

constituted the quasi – steady situation in which an 

upper boundary layer containing a high concentration of 

bacteria feeds a falling plume of cell-rich fluid. The 

suspension was divided into three separate regions as 

shown in Figure 1, a cell-rich upper boundary layer of 

known thickness  , a falling plume of unknown width 

   which also contained a high concentration of 

bacteria and the fluid outside the plume which had to 

circulate in order to conserve mass. Here, the 

assumption of the axisymmetric nature of the plume 

reduced the 3D-problem to 2D-problem [8]. No much 

literature is available in this direction. The solutions 

were obtained by a Fast Computational Technique.   

 

 

Outer region 

re  Plume 

Figure 1. Formation of Bioconvection Plume  
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2. Mathematical Formulation  
 

The bacterial suspension (Bacillus Subtilis) 

contained in a deep chamber reveal the development of 

a thin upper boundary layer of cell-rich  saturated fluids 

which becomes unstable, leading to the formation of 

falling plumes which is a complex phenomenon. This 

was used as a basis for our mathematical model. The 

whole suspension was under the influence of uniform 

magnetic field . 

The dimensionless governing equations are:  

The equation of cell conservation 

   
N

. H N UN H N
t


         

  (1) 

The equation of oxygen concentration 

 . U H N
t


      

                             (2)                    
 

The Navier – Stokes equation (with Boussinesq 

approximation)      

   1 2

e

U
Sc U. U P U N B H. H

t

  
                   (3)   

 

The conservation of mass 

 .U 0                                                                     (4)                         
                                  

 

The magnetic induction equation 

    2

m

H
U. H H. U P H

t


     


                             (5)   

The variables are non – dimensionalized as :                    

 

   

min
N N0

0 0 min

N0
s 0 s 2

N0 0

N C C
,D D H ,

N C C

V bV H ,K K H .bV , t
h

HUh

H

1
,N ,

h
TD

,

U ,H
D


 



    

     



 





  

s

0

N0, 0

Where  h is  the Depth of the chamber
          V :It  has  dimensions of veloci ty
          N  :  Ini t ial cell  concentrat ion
          U :  Saturated fluid veloci ty
          D K :Constants           
       

 

N

0

0

   D :  The cell  diffusivi ty
           :  The oxygen concentrat ion
          C : Ini t ial Concentrat ion
          H :  The s tep funct ion
          T  :  The t ime
          H  :  The constant  magnet ic f ield



  

 

2.1 Dimensionless Parameters 

 

 
 

2 2 2

0 0 s c 0

c 0 min N0 N0 w N0

3

0 c w m
m

N0 w N0 N0

K N h bV D H h
, , ,B

D C C D D D

N gh
,Sc ,P

D D D


 

      
  

     
   

 

  

 :  Strength of Oxygen consumption 

     relat ive to i ts  diffusion

 : Measures the relat ive strengths of

     direct ional and random swimming

 : Rat io of Oxygen diffusivi ty to cell 

     diffusivi ty

 : B









m

c w

io-Rayleigh number

Sc : Schmidth number

P  : Magnetic Prandtl number

 : Kinematic viscosi ty of the fluid

,  :  Densi t ies  of cell and water

g : Accelerat ion due to gravi ty

 : Volume of a cell

B : Modified 



 



 m

Hotmann n umber

: MagneticPr eamibi li ty

: Magnetic viscosi ty of  the fluid





 

 

2.2 Boundary Conditions 
 

i. No slip condition at Z = 1(bottom of the         

chamber). 

ii. Stress free condition at the upper surface  of the 

chamber, i.e., at Z = 0. 

iii. The vertical components of velocity vanish at both 

the boundaries. 

iv. Zero cell – flux at both the boundaries. 

v.  Zero oxygen flux at the bottom surface and C = Co   

at the free surface. 

vi.  H = 0 at both the boundaries 

vii. The vertical components of velocity vanish at both 

the boundaries. 

Mathematically, 

At Z = 0, 

   

2

2

0

ˆ ˆU.Z 0, U.Z 0, 1
z

N ˆH NH 0, HZ .
Z Z

 
 

  
 


   



 
    
 

 

At Z = 1,                                                                 

Nˆ ˆ ˆU.Z 0,U Z 0, 0, 0,H.Z 0
Z Z

 
     

                
 

 

3. Axisymmetric Plumes using Radial          

     Co-ordinates 
 

In the plume, the radial co-ordinate is scaled as 
R r,0 1    

                      (6)                          
    

Rescaling: 

A A A

A A

N N n, 1 C C,W W w,

U W u,P P p

    

       (7)                
 

where NA , C A, WA , and PA are scale factors. Then the 

axisymmetric governing equations  (Neglecting O ( 2 ) 

terms) are, 
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2
2

A2

1 n n n n
W u w

r R r r z

    
         

2

A 2

n C n C C
C n

r r r r r

    
   

    

 

 (8) 

2 2 2

A A

2

A

W C C N n C 1 C
u w

r Z C r r r

       
         

 (9)    

   

             

u u w
0

r r Z

 
  
 

                           (10)                        

2

2 1 A

A 2

A

2

2 A

A

u u P p u
W Sc u w

r Z W r r
1 u H h hx xB h hx zr Zr r W




 
 
  

 
  

    
    

   
    

 

        (11)   

2 1 2 2A A
A

A A
2 2

2 A

2

A

w w P p N
W Sc u w n

r Z W Z W

w 1 w H h hz zB h hx zr Zr r r W



  
 
  

 
  

  
      

  

       
  

 (12)     

2 2

A A

A
m

A

u uu u
W u w H h hx zr Z r Z

2H h h1 x xP
r r 2W r

 
 
 
 

  
  

   

  
     

   

 
 

 

(13)                                      

2 2

A A

A
m

A

w ww w
W u w H h hx zr Z r Z

2H h h1 z zP
r r 2W r

 
 
 
  

  
  

   

  
    

   

  
 

(14)

 

Here,    

 

WA = 2    (to retain advection terms) 

C A = 2 /   (to retain chemotaxis term) 

NA = 2/  (to retain the oxygen consumption term in 9)        

  = O ( 1 2   ) (to retain the buoyancy term in 12)         

 PA = 4   
(to retain the pressure term in 12) 

2

AH    (to retain the induction term in 14) 

This leads to 
p

r




= 0 hence p = p (Z)  in (11).          (15)                                                                                                                                 

Substituting for  CA , WA and NA in (8) and (9) :  

2 2

n n n C n C
u w 2 2

r Z r r r r
2 2C 1 n n

2n 0
r r r r

    
   

    

  
  

  

   (16)                

2

2

1 C C 1 C C
u w n 0

r Z r r r

     
            

                   (17)

 
Differentiating (12) w.r.t. r and substituting for NA WA , 

HA and  :  

2 2u w w w w w1Sc u w
2r r r Z r Zr

3 2n w 1 w 1 w

3 2 2r r rr r r
2 2h h h h h hx z z z z zB h hz z2r r r Z r Zr

 
 
 
 

 
 
 
 

         
     

   
    
  

        
     

   (18)    

  Differentiating (14) w.r.t r and substituting for  HA,WA   

2 2u w w w w w
u w

2r r r Z r Zr

2 2h hw w w wx zh hx z2r r r Z r Zr

2 3h h h1 1z z zPm 2 2 3r rr r r

 
 
 
 

 
 
 
 

 
 
 
 

     
   

     

    
   

     

  
 

  

(19)               

Now, imposing the boundary conditions: 

n C w
0, 0,u 0, 0

r r r

  
   

  
                        

C
Also,r ,n 0, 0,w 0

r


   


                                                                                                                                                              

3.1  Similarity solution for axisymmetric case 

 
In order to obtain a similarity solution [9][10] for 

(16), (17), (18), (19) the solution was posed of the form                  
a b c d a b 1h Z ,w Z ,n Z ,C Z ,u Z                      (20)                                                                                             

(h: width of the plume, a = ½, b = 0, c = -1, d = 0)                                          

Since h :: Z
1/2

 , the  similarity  variable  is  defined     as 

                        
1/ 2


r

Z
                                          (21)                                                                                       

Assuming the solution in the form 

     1

1

2

n Z H ,C G , ZF ,

F F F
u Z ,w

2





      

   
   

  

      (22)    

(  : Stream functions, Primes denote differentiation 

w.r.t ). Substituting these into (16) and integrating 

once w.r.t    with the boundary conditions at  = 0, we 

get the following:    HF 2 HG           (23)                                             

Substituting into  (17)                          

1
G G G F H 0        


      

                   (24)                                                                      

Substituting into (18)   

2 3 3 2

3 2

1 1 1 1 11
F F F Sc FF FF

1 1*
H B MM MM 0

 
 
 
 

 
 
 
 


           

    

     

 



 (25) 
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Substituting into (19) 

M F                                                                (26)                                                                           
The boundary  conditions are ,                          

At   0  
 

2

F F F F
H G 0

2

   
       

  
                     

                                                                                                                                                    

At  
 

F M
H 0,G 0, 0, 0


   

                     
                        

4. Solution 

For 0  , CFD technique is employed. However for 

0   (i.e., when the chemotaxis is unimportant in the 

plume) analytical solutions are possible with β = O (1), 

Co = 1, No  = 2     and  = 2  . Following [4] [8] the 

solutions for the equations (23, 24, 25, 26) are found to 

be ( see table 1) 

 

1

12

1  




 
B

Sc B  

2

1

192 1

1  

 
  

   


A
C

Sc B  

Table 1. Solutions for F, H, G'
 

 
At Sc 1,  1  

 
        At Sc 2,  1  

 

  

2

2

12A
F

2 B 1 A

 


      

2

2

24A
F

3 2B 1 A

 


    

  

2

6
2 2 B

192A
H

2 B 1 A  



   

 

  

2

12
2 3 2B

384A
H

3 2B 1 A  



   

 

  

2

6
2 2 B

96A
G

2 B 1 A  


 

   

 

  

2

12
2 3 2B

192A
G

3 2B 1 A  


 

   

 

   

Also solutions satisfy the boundary conditions at 0   

and  .  

  
2

2 8
 1

2304

   
 

Q B B
A for Sc    

  
2

3 2 15 2
 2

9216

   
 

Q B B
A for Sc                                                        

             Since
0

 
   

 
HF d Q

 

 

5. Results and Discussion 

 
In this study, the deep chamber experiments of 

Figure.1 have been modelled in three separate regions: 

a. an upper boundary layer of depth R  

b. a falling plume of width    

c. the region outside the plume. 

  

In the sections 3 and 4, solutions for the cell and the 

oxygen concentration and the fluid velocity in the upper 

boundary layer are determined under the influence of a 

uniform vertical magnetic field. The solutions are found 

to depend on the parameters like, Sc (Schmidth 

number), Q ( the cell flux ),  (Bio-Rayleigh number), 
*B (Magnetic Parameter) and δ (diffusivity  ratio). The 

computations are performed using the MATLAB tool; 

the computed results are presented through graphs in 

Figures 2 to 14.  

 

The following observations are made: In Figures      

2,3,4,5. the effect of variation in the magnetic parameter 

*B on the profiles of velocity  1

 Fw


, the cell 

concentration H and the oxygen concentration G is 

studied for the values, Sc = δ =  = Q = 1.0. Here, the 

oxygen concentration is considered as 

   21   
 

G 


 where   is assumed to be always 

positive so that, all the bacteria are active. In Figure.2 

the effect of similarity variable   on the F profile are 

shown. F decreases enormously and remains constant as 

   for all values of *B . Further, F is negative and 

its value is highest in the hydrodynamic case. In other 

words, F increases in absolute value as *B  increases, 

and the vertical fluid velocity w, at the center of the 

plume increases indicating that the horizontal fluid flow 

into the plume increases. From Figure.5, w→0 as 

  as expected. In Figure.3 the effect of similarity 

variable on H profile is shown, it reveals that, as 
*B decreases the cell concentration in the plume 

increases as expected. Physically it means that, the 

higher the concentration of the cells, the greater is the 

consumption of oxygen which means that the oxygen 

concentration at the center of the plume decreases. In 

Figure.4 the effect of similarity variable on G’ profile is 

shown. Clearly the width of the plume decreases as 
*B increases. The oxygen concentration is more in the 

hydrodynamic case ( *B = 0) when compared to the 

hydro magnetic case ( *B ≠ 0). 
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                     Figure 2. F vs     

 

                                                                         
Figure 3. H vs    

 

                               
                                                  Figure 4. G  vs     

                               

 

            

               

Figure 5. F  vs     

Figures 6,7, 8. reveal the effect of variation of Q (= 0.5, 

3, 5) on the profiles of F, H, G'. As the cell flux 

increases, F slightly decreases and increases in absolute 

value. The values of F are considerably very large inside 

the plume and drastically decrease and become constant 

for large values of  and accordingly w→0 for large . 

Fig.7 reveals that the width of the plume drastically 

increases as the value of Q decreases and the plume 

becomes narrower for large values of Q. Thus, the high 

concentration of the cells leads to a greater consumption 

of oxygen which in turn reduces the oxygen 

concentration at the center of the plume. Thus, as the 

cell flux Q increases, the vertical fluid velocity w, at the 

center of the plume increases and the values of M 

increases, indicating the increase in the horizontal fluid 

flow into the plume. 

 

 
                  Figure 6. F vs    
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                   Figure 7. H vs    

 

                                                                 

              Figure 8. G  vs     

 

From Figure 8., it is found that the oxygen concentration 

in the plume is high for large Q(= 5) and the width of 

the plume drastically increases as Q decreases. This 

clearly indicates that the oxygen concentration at the 

center of the plume is less since there is a greater 

consumption of oxygen in the plume for large Q.  

Figures 9,10,11.  represent the effect of variation of 

  on the profiles F, H, G' for fixed values of the 

parameters  * 1Sc B   . The values of   

considered are 0.2, 2 and 5. 

The effect of buoyancy becomes important when   

is large. The cell concentration is more for small values 

of   and the plume becomes narrower for large . 

When the cell concentration in the centre of the plume 

increases, the plume becomes narrower, accordingly the 

oxygen profile becomes narrower and the oxygen 

concentration at the center of the plume increases. The 

consumption of oxygen will be more. Therefore, the 

velocity of the fluid in the center of the plume will be 

larger when the buoyancy force is dominant. But w→0 

more rapidly than for small values of  . The decrease 

in M for the increase in   indicates that less fluid is  

entrained by the plume. 

 

                             
Figure 9. F vs  

                         
Figure 10. H vs    

 

Figure 11. G  vs     
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Figures 12,13,14. present the graph of the profiles F, H, 

G' when the values of Sc (= 1, 2) are varied. The other 

parameters have fixed values viz., δ = 1, Q = 1 *B = 1. 

It is observed that as in the hydrodynamic case ( *B = 0), 

the variation in Sc has a significant effect on the 

behaviour of the profiles. There is a drastic change in 

the values of F for Sc = 1 and 2. As Sc increased, F 

decreases rapidly and F→ a constant value as 

  as expected. The cell concentration will be 

more for Sc = 2 and accordingly the oxygen 

consumption in the plume will be more and there will be 

a reduction in the oxygen concentration in the plume. 

 

 

 

 
                  Figure 12. F vs    
 

 

 

 

 

 

 

 
                 Figure 13. H vs    

 

 
                     Figure 14. G  vs     

 

 

Finally, it is concluded that  (i) the governing 

dimensionless parameters have a remarkable effect in 

the hydrodynamic as well as in the hydromagnetic cases 

(ii) the qualitative nature of the profiles is almost the 

same in both the cases but there is a drastic difference in 

the quantitative nature of the profiles. Figure 1. clearly 

indicates the strong influence of the magnetic parameter 

on the present bioconvective system, these clearly 

suggest that the plume convection could be suppressed 

or enhanced through the proper choice of the magnetic 

parameter. The results are in excellent agreement with 

the hydrodynamic case. 
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