
Non-Intrusive Decentralized Attack Analyzer & Network Controller to

Monitoring and Prevent Vulnerability in VM Network System

K. Senthil Raja

1
, G. Sudhakar

2
, Dr. S. Nithiyanandam

3

1M.E/CSE, Ranganathan Engineering College, Coimbatore,

2AP/CSE, Ranganathan Engineering College, Coimbatore,
 3Principal, PGP Engineering College & Technology, Namakkal.

Abstract
Cloud security is one of most important issues

that have attracted a lot of research and

development effort in past few years Vulnerable

virtual machines are an easy target and existence of

such weak nodes in a network its entire security

structure. Resource sharing nature of cloud favors

the attacker, in that, compromised machines can be

used to launch further devastating attacks. We

propose a hybrid intrusion detection framework to

detect vulnerabilities, attacks, and their carriers, i.e.

malicious processes in the virtual network and

virtual machines. This framework is built on attack

graph based decentralized analytical models,

VMM-based malicious process detection, and

reconfigurable virtual network-based

countermeasures. The proposed framework

leverages Software Defined networking to build a

monitor and control plane over distributed

programmable virtual switches in order to

significantly improve the attack detection and

mitigate the attack consequences.

1. Introduction

Security is one of the concerns that still make

people think twice before migrating to the cloud.

Virtualization introduces several attack surfaces for

the cloud, like hypervisor, virtual machines (VMs),

virtual network [1] to name a few. Among them,

VMs are the most important resources for user and

the most vulnerable target for the attacker. In

traditional data centers, where system

administrators have some control over the host

machines, vulnerabilities can be detected and

patched. However, patching known security holes

in a cloud, where customers usually have the

privilege to control the software installed on their

VMs, may not work effectively and any action by

the administrator might violate the Service Level

Agreement (SLA) [2]. Furthermore, these

vulnerable VMs are not only harmful to their users,

but also pose a threat to other VMs. The challenge

is to establish an effective detection and response

System for accurately identifying vulnerabilities

and malicious processes on users‟ VMs, rapidly

detecting attacks from internal and external

network, and efficaciously minimizing the

impact of security breaches to cloud users.

Using Software Defined Networking (SDN) has

been gradually adopted by commercial companies

such as Citrix XenServer [7] and VMWare NSX

[8]. SDN provides the ability to control the traffic

in the virtual network for the QoS purpose, it also

can be used to improve security and mitigate the

attacks in a virtual cloud networking environment,

for example, to build the basic firewalls, VPN, and

network based intrusion framework. We leverage

SDN to build a monitor and control plane over

distributed programmable virtual switches in order

to significantly improve the attack detection and

mitigate the attack consequences.

The proposed framework does not intend to

improve any of the existing intrusion detection

algorithms. Instead, we create this framework

based on Xen virtualization platform and establish

a system having following features:

1. A light-weight network based intrusion

detection engine in the dom0 of each

cloud server for capturing and analyzing

the network traffic.

2. Attack graph analytical model for

describing vulnerabilities and their

dependencies in the cloud system.

3. VM process monitor for monitoring and

detecting hidden malicious processes in

each VM using VMI and semantic

reconstruction technologies.

4. Countermeasure selection by matching

and correlating alerts from intrusion

detection engine, vulnerabilities in the

attack graph and signal from VM process

monitor.

5. Deployment of virtual network

reconfiguration based countermeasure

through decentralized network controller

using Software Defined Networking

(SDN).

3422

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10470

2. Related Work

Detection of compromised machines currently

takes place largely at host level and/or network

level. At the host level, while anti-virus and anti-

spyware systems are effective in catching and

preventing the spread of known threats [9],

majority of users do not keep these security

software updated or properly configured. At the

network level, IDSs and network firewalls fail to

address already compromised vulnerabilities within

the networks they protect. For example, when a

system within the firewall becomes compromised

by the careless actions of an authorized user, like

allowing a trojan horse access to the internal

network, then once such a system has been

compromised, a personal firewall loses

effectiveness because the attacker has already

gained some level of control over the system.

Intrusion Detection System (IDS) attempt to

detect and prevent the spread of compromised

machines or their attacks by developing

characteristic network traffic profiles, called

signatures, and using them to identify attacks.

However, similar to anti-virus solutions, IDSs are

generally effective only as far as the malicious

traffic pattern is detectable. In most cases, the

intruder is able to continue to evade detection by

blending malicious actions and activity with

legitimate usage. Recent trends have shown

intruders exploiting limitations and vulnerabilities

within firewalls and IDS to better conceal the

identities of zombies, thus making it harder to

detect attacks. While system and network

administrators attempt to combat this problem by

addressing vulnerabilities in firewalls and anti-

virus software as soon as they become known,

zombies and their agents have been evolving even

faster.

In a virtualized environment, such as a cloud

system, it becomes easy for the attacker magnify

the loss. In order to prevent the compromised VM

from attacking vulnerable VMs due to the possible

security hole cased by the resource sharing, the

detection and monitor tools are necessary to secure

each VM in a cloud system. For the VMM based

malware detection, Livewire [3] proposed first

concept of placing an “out-of-VM” monitor and

applying VMI technology to reconstruct the

semantic view of the internal structure of the VM.

However, it can only reconstruct low-level VM

states (e.g., disk blocks and memory pages). The

high-level VM states (e.g., processes, kernel

module, and files) still require an intrusive way to

bridge the semantic gap. VMwatcher [4] is another

“out-of-box” approach that overcomes the semantic

gap created by the missing information about

detailed internal view of the system by “in-the-

box” approaches. To close the semantic gap, it

applies a technique called „guest view casting‟ and

non-intrusively reconstructs the high level internal

VM semantic views from outside. However, it

VMwatch only focuses on the malware detection in

VMs and cannot monitor or detect the security

status in the virtual network.

3. System Overview And Models

3.1. Design Goals and Assumption

We establish a hybrid intrusion detection

framework to detect and monitor the malicious

traffic in the network and malicious process in each

VM using VMI technology. To achieve that, we

have following design goals:

 The framework should be able to capture

all of vulnerabilities in the cloud system

and enumerate all possible attack paths

after analyzing the vulnerabilities and their

dependencies.

 The framework should be able to detect

malicious processes in VMs immediately

when the process is created, but such

detection shall not be done by any piece of

code running on VM.

 The framework should be able to select

the optimal countermeasure and deploy it

before the attacker takes the next

exploitation step.

In this work, we assume that the hypervisor is

trusted and secured, which means the hypervisor

properly isolates Vulnerabilities on nodes A, B and

C for the resources and environment for the

running VMs. The hypervisor is protected against

any exploits launched by the attacker and the

detection engine installed in the hypervisor is

invisible to the attacker. We also assume that users

are able to install vulnerable software and execute

any malware or malicious code in their VMa

simple network system. System administrator

cannot patch the software or remove the malicious

code without users‟ agreement. However, the

Cloud Service Provider (CSP) allows to block the

traffic issued by such processes. Furthermore, the

VM outage caused by cloud system reliability [19]

is out the scope of this paper.

3423

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10470

v1 v2
A v4

v3
C

B

 Exploit vulnerability v1 on A Exploit vulnerability v3 on B

 Knowledge form A

 Exploit vulnerability v2 on A

 Privilege
 Knowledge form A
 Escalation on B

 Exploit vulnerability v4 on C

 Knowledge form C

Figure 1. A simple attack graph example.

3.2. Attack Graph Model

An attack graph is a modeling paradigm to

illustrate all possible attack paths in a network that

can be exploited by internal or external attackers. It

is a crucial model to under-stand threats and then to

decide appropriate countermeasures in a protected

network [20]. In an attack graph, each node

represents a condition or an action. A condition

node is a precondition and/or a consequence of an

exploit. It represents a system configuration or an

access privilege that should be true in order to

exploit any other vulnerabilities. An action node is

a step that attacker exploits an existing

vulnerability in order to compromise a VM. It

depends upon existence of one or more conditions

along the path and is not necessarily an active

attack since a normal protocol interaction can also

be used for an attack.

As the attack graph lists all known

vulnerabilities in the system and the connectivity

information, one can get a whole picture of current

security situation of the system. We can then see

the possible threats and attacks by correlating

detected events or activities with that depicted by

the attack graph. Attack graph is thus helpful in

identifying potential threats, possible attacks and

known vulnerabilities in a cloud system. Once an

event is recognized as a potential attack, attack

graph tells important information about how the

attacker can utilize that event the damage it can

cause to other machines. With this information in

hand we can apply specific countermeasures to

mitigate a malicious event impact and take actions

to prevent it from contaminating other virtual

machines.

Fig. 1 shows a simple example of an attack graph.

The left hand side of the figure shows a simple

network topology with three VMs. VM A contains

two vulnerabilities, v1 and v2. V2 can only

exploited by an attacker if (s) he has exploited v1

and obtained the required privilege to exploit v2.

VM B and C have v3 and v4 vulnerabilities

respectively. The right hand side of the figure

shows the generated attack graph corresponding to

the network topology in the figure. Oval nodes

represent attacker‟s action to exploit vulnerability.

Diamond nodes represent precondition of

exploiting next vulnerability on the path and/or the

consequence (post-condition) of an exploit. It

shows that there are two possible attack paths to

reach the goal which means to compromise VM C.

4. System Design

4.1. System Architecture

The proposed system is designed to work in a

cloud virtual networking environment. It consists

of a cluster of cloud servers and their

interconnections. We assume that the latest

virtualization solutions are deployed on cloud

servers. The virtual environment can be classified

as Privilege Domains, e.g., the dom0 of XEN

Servers [7] and the host domain of KVM [21], and

Unprivileged Domains, e.g., VMs. Cloud servers

are interconnected through programmable

networking switches, such as physical OpenFlow

Switches (OFS) [22] and software based Open

vSwitches (OVS) [23] deployed in the Privilege

Domains. In this work, we refer OFSs and OVSs

and their controllers as to the Software Defined

Network (SDN). The deployed security mechanism

focuses on providing a non-intrusive approach to

prevent attackers from exploring vulnerable VMs

and use them as a stepping stone for further attacks.

The system architecture of our solution is

illustrated in Fig. 2. The control center consists of a

decentralized network controller, a VM profiler,

and a decentralized attack analyzer.

A network intrusion detection engine NICE-A

can be installed in either Dom0 or DomU of a XEN

cloud server.

3424

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10470

Figure 2: System Architecture

Its job is to capture and filter malicious traffic.

Alerts from NICE-A are sent to control center upon

detection of anomalous traffic. After receiving an

alert, decentralized attack analyzer evaluates the

severity of the alert based on the attack graph. It

then initiates countermeasures through the

decentralized network controller after deciding

what countermeasure strategies to take.

As described in [6], countermeasures initiated by

the decentralized attack analyzer are based on the

evaluation results from the cost benefit analysis of

the effectiveness of countermeasures. The

decentralized network controller initiates

countermeasure actions by reconfiguring virtual or

physical OpenFlow switches. We must note that the

alert detection quality of NICE-A depends on the

implementation of NICE-A that uses Snort. We do

not focus on the detection accuracy of Snort in this

paper. Dom0 consists of VM Process Monitor

which uses VMI to monitor running processes on

VMs.

4.2. Decentralized Attack Analyzer

Attack Analyzer is a decentralized information

process center to process the security-related

information and has the whole picture of the

security status of the monitoring cloud server

cluster. The major tasks of this component include

collecting and processing information about the

identified alerts, suspicious traffic and suspected

processes from each VM Process Monitor,

selecting the best countermeasure based on the

knowledge of current attacks and system status, and

sending the commands to the Decentralized

Network Controller for countering or mitigating the

attack. These functionalities are realized by four

subcomponents: Attack Graph analysis model,

countermeasure selection, and VM profiler.

Figure 3: workflow of attack analyzer

3425

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10470

Figure 3 shows the workflow in the

decentralized attack analyzer component. Alert

received from NICE-A is checked against the

vulnerability in the attack graph (AG). If a match is

found, i.e. the vulnerability corresponding to the

alert already exists in the attack graph then it can be

regarded as a known attack matching with

signature in the alert message. If no alert matches

in the AG, then alert correlation and analysis is

performed and AG is updated. However, for a

matching alert, decentralized Attack analyzer

locates the VM in the matched node based on the

destination IP address in the alert. The VM Process

Monitor then performs the inspection action on the

corresponding VM using VMI to detect and

identify the suspicious process with reference to the

VM profiler. If a process is identified as suspicious,

a selected countermeasure is applied by the

decentralized network controller based on the

severity of evaluation results. If the inspected

process is found to be harmful, appropriate

countermeasure is applied by the decentralized

network controller, otherwise the outgoing traffic is

resumed from the suspended VM.

4.3. Attack Graph

To keep track of all possible attack in the cloud,

AA maintains an attack graph analysis model to

analyze vulnerabilities and their relationship from

all monitored VMs. The related tasks to the attack

graph include constructing and updating the attack

graph when vulnerability is patched or the network

topology is changed, correlating alerts with attack

graph, predicting attacks, managing the VM

Profiler, and selecting the optimal countermeasure.

The attack graph is pre-constructed based on the

following information:

 Cloud system information: it is collected

from each PD. The information includes

the number of VMs in each cloud server,

the running services on each VM, and

VM‟s Virtual Interfaces (VIFs)

information.

 Virtual network topology and

configuration information: NC collects

this information, that includes virtual

network topology, host connectivity, VM

connectivity, every VM‟s IP address,

MAC address, port information, and

traffic flow information.

 Vulnerability information: it is generated

by both on-demand vulnerability scanning

and regular penetration testing using the

well-known vulnerability databases, such

as Open Source Vulnerability Database

(OSVDB)[24], Common Vulnerabilities

and Exposures List (CVE)[25], NIST

National Vulnerability Database (NVD)

[26], etc. Such scanning can be initiated

by the NC and VM process monitor.

Many alert correlation techniques have been

proposed [27][28][29] to reduce the false detection

rate. In our frame-work, alert correlations and

analysis are also handled by Decentralized Attack

Analyzer in the control center. This component has

two major functions: (1) correlate alerts and

integrate them into the attack graph model, (2)

provide threat information or countermeasure to

Decentralized Network Controller for virtual

network reconfiguration or further inspection.

4.4. Decentralized Network Controller

Decentralized Network controller is the main

component to conduct the VM oriented (high level)

countermeasure on the suspicious and malicious

traffic based on the decision from decentralized

Attack Analyzer. Decentralized Network controller

is the key component to support programmable

network using OpenFlow protocol [30]. In our

framework, each cloud server has a software

switch, i.e., implemented by using Open vSwitch

(OVS) [23] as the edge switch to handle all of

traffic to and from VMs. The communication

between cloud servers (i.e., physical servers) is

handled by OFS. Both OVS and OFS are controlled

by the Decentralized Network Controller, allowing

the controller to set security/filtering rules on both

OVS and OFS. Decentralized Network Controller

is also responsible for collecting network

information of current OpenFlow network, and

provides inputs to decentralized Attack Analyzer to

construct attack graphs.

4.5. VM Profiler

VM Profiler keeps tracking the security-related

status of each VM. These profiles are necessary for

the decentralized Attack Analyzer to identity

suspicious events. We use three lists to record the

security status of the processes for VMs in the

cloud.

 Frequently Compromised Process List

(FCP): FCP is a list of processes related to

well known vulnerabilities in CVE, NVD,

and OSVDB because these vulnerabilities

are easy to be compromised by zero-day

attacks, for example, IExplorer.exe,

Acrobat.exe, WinRAR.exe, WIN-

WORD.exe and so on. FCP is a public list

for all VMs.

 Blacklist (BL): BL is a list of malicious

processes that have been identified by a PI

3426

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10470

from a VM. The process in BL is not

allowed to establish a communication

channel to other VMs in the cloud.

 Whitelist (WL): WL is a list of processes

that have not been identified as suspicious.

4.6. VM Process Monitor

Detecting the hidden malicious process is a very

important task for securing the system. For the

malicious process detection, traditional methods

primarily rely on the detection and monitoring

agent installed in the protected system. However,

such systems have drawbacks like system integrity

is not pre-served, detection and monitor agent is

easy to be attacked, and the correctness of the

detection result cannot be guaranteed. To address

these problems, placing the detection and monitor

agent out of the protected VM is reasonable.

Virtualization Technology equips VM with three

properties: isolation, encapsulation, and privilege.

Due to these properties, it is easy to deploy the

detection and monitoring agent in the virtualization

platform. In this article, we focus on XEN

virtualization platform only. We place the detection

and monitor agent out of the protected VM, use

VMI technology and semantic reconstruction to

traverse thread dispatched database, and to

reconstruct the complete process list of kernel and

compare the user-level process with the kernel-

level process using cross-view technology to

identify the hidden process.

Figure 4 shows VM Process Monitor. We

develop five sub-modules in this monitor: security

console, daemon, VMI, semantic reconstruction,

extractor and executor. Security console is an

interactive console for administrators to setup the

VM to be monitored and configure the monitor

strategies and rules. These configuration messages

will be sent to the daemon

To VM profiler and attack graph constructor

Figure 4. VM Process Monitor.

Module with a command and displayed on the

console to notify the administrators or serve as a

log. Daemon, extractor and executor are all

supporting functions for VMI and reconstruction

modules to pass the messages and commands

between VMM and VM Process Monitor.

VMI module is responsible for mapping the

addresses between the application process‟ virtual

address space in the VM and the actual physical

address space through two-layer mappings. The

first layer translates the Guest Virtual Address

(GVA) to the Guest Physical Address (GPA). The

second layer translates the GPA to the Host

Physical Address (HPA). By reading the GVA

from the outside of VM, VMI is able to read the

content of the memory information in the VM

through the translation from VM‟s GVA to VM‟s

HPA.

5. Countermeasure Strategies

We consider the countermeasure strategies at

both network level and host level. The network

level countermeasures

Figure 5. Network topology for case study

As for the host-level countermeasure strategies,

our system mainly involves two levels of actions:

VM-level network reconfiguration and process-

level network reconfiguration. Virtual switch, i.e.,

the OVS in a XEN system, is the main component

in the virtual networking of a cloud system for the

VM connectivity. A VM in the XEN environment

is connected to a virtual bridge in the OVS through

the Virtual Interfaces (VIFs) attaching to the VM.

VMs on different bridges are isolated at layer-2.

Even the traffic between VMs on the same bridge

is under the control of the virtual switch. Our

framework utilizes this layer-2 traffic management

capability to propose a VM-level network

reconfiguration strategy. The VM-level

reconfiguration strategy can either disable the

suspicious VM‟s VIF to isolate it from other VMs

or force the suspicious traffic redirect to an in-line

mode intrusion detection system for further deep-

packet inspection.

3427

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10470

Process level network reconfiguration provides a

fine-grained and scrutinized control over the

network connections. With the processes and

sockets information of a VM reported from VM

Process Monitor, the Decentralized Network

Controller is able to make OVS to isolate the traffic

issued by the inspected processes or to redirect the

traffic to an in-line mode intrusion detection system

for further inspection before delivering to the

destination. The advantage of the process-level

network reconfiguration is that all other network

services remain untouched while the activity of the

suspicious process is monitored or isolated.

In summary, the host level countermeasure

strategies include:

1. VMIsp: VM-level Inspection put a

suspected VM under the inspection of a

in-line mode intrusion prevention system

(IPS).

2. VMIso: VM-level Isolation disables all

network traffic to and from a suspected

VM.

3. PrIsp: Process-level Inspection redirects

the traffic of a suspicious process in the

VM to a in-line mode IPS.

4. PrIso: Process-level Isolation prevents

the suspicious process in a suspected VM

from communicating with other VMs

while the network services from other

processes stay unaffected.

6. Evaluation

6.1. Case Study for Security Performance

Analysis

To demonstrate the security performance of our

framework, we created an attack scenario to

evaluate our network intrusion detection system

with attack graph model and non-intrusive process

based monitoring system with VMI technology.

Figure 6 shows the test network topology

consisting of three users. User1 and User2 acquire

a VM for their workstations respectively. They are

all connect to the common virtual network trough

OVS

Table I lists the vulnerabilities present on the

VMs inside the test network.

TABLE I: VULNERABILITIES IN THE TEST

NETWORK.

Owner Host Vulnerability CVE ID

User1

Workst

ation Internet Explorer CVE2009-1918

User2

Workst

ation none None

User3

Web

Server

Apache HTTP

service CVE2006-3747

User3

Databas

e Server

MySQL database

service CVE2009-2446

 User3 creates a private network to host a

database server which cannot be accessed directly

from external network and a web server which can

be accessed from internet through firewall and

virtual network through OVS. Attacker is assumed

to be outside the network and has access to the

network through internet. The target for attacker is

to get root access on the database server. Attack

graph for the test network is shown in Fig. 6. The

original attack graph contains only one attack path

which is the path on the right side from node 1 to

node 16. Node 1 in attack graph represents the

attacker. Node 16 represents the situation where

attacker obtains root privilege on database server

in the private network of User3 and allows to

execute any code on the server which is the

attacker‟s goal. After node 4 has been exploited, it

can lead to node 6 and allows attacker to remotely

execute malicious code on user VM. The

execution of malicious script allows the attacker

network access to the database server through tcp

on port 3306, as denoted by node 8. From here,

the attacker can exploit another vulnerability on

node 16 and can gain root access to the database

server. Another possible exploitation sequence the

attacker can follow is to go for exploitation of

vulnerability denoted by node 12 which can lead

the attacker to node 13 allowing permission to

execute code on the apache webserver.

The attack path on the left side is dynamically

created by the attack graph constructor when the

vulnerability on the node 4 (CVE-2012-0158) is

detected by NICE-A, which means a user in the

virtual network has downloaded a malicious file

containing the vulnerability of MSCOMCTL.OCX

from attacker‟s website. Whenever the victim

opens the downloaded malicious file, a hidden

connection is established to the remote attacker. In

order to detect if user on a VM has executed the

file, we need to enable the suspicious process

monitoring and detection module.

3428

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10470

For better understanding we grouped attacker‟s

actions as follows:

1) Attack Preparation: Attacker places a

Figure 7. Unknown process dependence with

WINWORD.EXE.

Malicious file on a website and waits for a novice

user to download it. The malicious file is capable of

connecting back to the attacker to provide a shell

control, if it is opened by the victim.

Exploitation: When a cloud user downloads the

malicious DOC files, NICE-A raises an alert to

report CVE-2012-0158 vulnerability. At this stage,

the receiver VM is not exploited by the remote

attacker, until a user opens the file with MS Office

2007. When the file is opened, the embedded

shellcode establishes a connection, under the

process name WINWORD.EXE, to the remote

attacker. Although the connection can be detected

by NICE-A, we cannot say it‟s a malicious

behavior. Now, the suspicious process detector

(SPD) in the VM Process Monitor is activated to

monitor the process using VMI technology. The

SPD detects an unknown process created by

WINWORD.EXE and tries to make a connection to

a remote host. Figure 7 shows the process

dependency for WINWORD.EXE detected by

SPD. Figure 8 further details out the network

connections established by WINWORD.EXE

Figure 8: Network connections created by

WINWORD.EXE in Fig. 7.

3) Persistent Control: To be able to control the

compromised VM, attacker takes help of a

malware. For instance, malwares like GP.EXE and

FU.EXE are used to manage processes remotely

and also allow hiding of processes to avoid

detection by the user. In our test case, attacker can

be anywhere including internal and external

network, (s)he also can change the location

(attacker‟s IP address) to get hold of command and

control anytime.

Figure 9. Unknown process dependency

The attacker then transfers these two files stealthy

through the reverse connection created by the

victim. After GP.EXE is executed on victim VM, it

will extract and install a malicious daemon GPd on

the victim and sets up a connection to the attacker.

The GPd modifies victim‟s auto run registry to

attach itself to auto start script, which guarantees

persistent control by the attacker.

3429

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10470

The attacker now can fully control and manage the

processes on the victim VM. Since SPD has been

enabled, it can detect an unknown process

(GP.EXE) which is created by WINWORD.EXE,

as shown in Fig. 9. Even though GP.EXE is closed,

SPD still be able to detect unknown process

GPD.EXE depending on WINWORD.EXE, as

shown in Fig. 10. We got the experiment result of

Fig. 7-10 with support from volatility project [31].

3) Hidden Control: Hiding processes and their

dependency is a common strategy for attacker to

obfuscate the detection.

As we can see from Fig. 13, the average process

time for each test run approaching to a horizontal

line which means the detection time is independent

from the number of process. However, the average

process time is proportional to the number of VM

to be monitor simultaneously, as shown in Fig. 13.

To measure the fine-grained performance impact

of our suspicious process detector, we used

UnixBench benchmark [32]. The results are shown

in Fig. 14. The worst-case overhead of our system

is 9.25%, while the overheads in most other cases

are below 10%. The overall system performance

overhead is 3.6% which is a small amount.

7. Conclusion

The system we proposed in this paper integrates a

network based intrusion detection system to

monitor and detect the traffic in the virtual network

and a non-intrusive host based suspicious process

monitor and detection system using “out-of-box”

VMI technology. Moreover, the host-based

intrusion detection is based on VM introspection

techniques that do not need the implement special

codes in users‟ VMs.

Figure 14. SPD Overhead measurement using

unixbench benchmark.

3430

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10470

When hardening network security, hosts cannot

be kept apart. Our IDS framework takes care of

network security and VM Process Monitor

accounts for the security of the host machines. The

major benefit for using our framework is to gain

the ability to select optimal countermeasures and

making the virtual system attack resilient by

deploying these countermeasures swiftly.

Furthermore, agility of our defense mechanism can

be greatly improved with the use of SDN approach

and provide an adaptive defense-in-depth approach.

From the case study for the security analysis and

system performance we conducted in the evaluation

section, it shows that our system is able to capture

the malicious traffic and detect the suspicious

process related to the alert.

In order to increase the detection accuracy of

intrusion and presence of malware in the cloud, we

need develop a more sophisticated malware

analysis and detection system for our framework in

the future to cover different types of VMs,

operation systems, vulnerabilities, and attacks.

Additionally, our proposed solution suffers from

scalability issues since generation of attack graph is

complex.

References

[1] W. Jansen, “Cloud hooks: Security and privacy

issues in cloud computing,” in 2011 44th

Hawaii International Conference on System

Sciences (HICSS), Jan. 2011, pp. 1 –10.

[2] H. Qian and D. Medhi, “Server operational

cost optimization for cloud computing service

providers over a time horizon,” in Proceedings

of the 11th USENIX conference on Hot topics

in management of internet, cloud, and

enterprise networks and services, ser.

HotICE‟11, 2011.

[3] T. Garfinkel and M. Rosenblum, “A virtual

machine introspection based architecture for

intrusion detection,” in Proc. of the 10th

Annual Network and Distributed Systems

Security Symposium, 2003.

[4] X. Jiang, X. Wang, and D. Xu, “Stealthy

malware detection and monitoring through

VMM-based ”out-of-the-box” semantic view

re-construction,” ACM Transaction on

Information and System Security, vol. 13, no.

2, pp. 12:1–12:28, Mar. 2010.

[5] X. Jiang and X. Wang, “Out-of-the-Box

monitoring of VM-Based high-interaction

honeypots,” in Recent Advances in Intrusion

Detection, ser. Lecture Notes in Computer

Science, C. Kruegel, R. Lippmann, and A.

Clark, Eds. Springer Berlin Heidelberg, Jan.

2007, no. 4637, pp. 198–218.

[6] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and

D. Huang, “NICE: network intrusion detection

and countermeasure selection in virtual

network systems,” IEEE Transactions on

Dependable and Secure Computing, vol. 10,

no. 4, pp. 198–211, Jul. 2013.

[7] “Citrix XenServer.” [Online]. Available:

http://www.citrix.com/xenserver

[8] “VMware NSX Network Virtualization.”

[Online]. Available:

http://www.vmware.com/products/nsx/

[9] P. Salvador, A. Nogueira, U. Franca, and R.

Valadas, “Framework for zombie detection

using neural networks,” in Fourth International

Conference on Internet Monitoring and

Protection, 2009. ICIMP ‟09, 2009, pp. 14–20.

[10] S. T. Jones, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau, “Antfarm: Tracking

processes in a virtual machine environment,”

in Proceedings of the USENIX Annual

Technical Conference, 2006, pp. 1–4.

[11] S. T. Jones, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau, “VMM-based hidden process

detection and identification using lycosid,” in

Proceedings of the fourth ACM

SIGPLAN/SIGOPS international conference

on Virtual execution environments, ser. VEE

‟08. New York, NY, USA: ACM, 2008, pp.

91–100.

[12] C. Benninger, S. Neville, Y. Yazir, C.

Matthews, and Y. Coady, “Maitland: Lighter-

weight VM introspection to support cyber-

security in the cloud,” in 2012 IEEE 5th

International Conference on Cloud Computing

(CLOUD), Jun. 2012, pp. 471 –478.

[13] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu,

“Process out-grafting: an efficient ”out-of-

VM” approach for fine-grained process

execution monitoring,” in Proceedings of the

18th ACM conference on Computer and

communications security, ser. CCS ‟11. New

York, NY, USA: ACM, 2011, pp. 363–374.

[14] O. Sheyner, J. Haines, S. Jha, R. Lippmann,

and J. M. Wing, “Automated generation and

analysis of attack graphs,” in 2002 IEEE

Symposium on Security and Privacy, 2002.

Proceedings. IEEE, 2002, pp. 273– 284.

[15] O. M. Sheyner, “Scenario graphs and attack

graphs,” Ph.D. dissertation, Carnegie Mellon

University, 2004.

3431

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10470

[16] P. Ammann, D. Wijesekera, and S. Kaushik,

“Scalable, graph-based net-work vulnerability

analysis,” in Proceedings of the 9th ACM

conference on Computer and communications

security, ser. CCS ‟02. New York, NY, USA:

ACM, 2002, pp. 217–224.

[17] S. Jajodia, “Topological analysis of network

attack vulnerability,” in

Proceedings of the 2nd ACM symposium on

Information, computer and communications

security, ser. ASIACCS ‟07. New York, NY,

USA: ACM, 2007, pp. 2–2.

[18] X. Ou, S. Govindavajhala, and A. W. Appel,

“MulVAL: a logic based network security

analyzer,” in Proceedings of the 14th

conference on USENIX Security Symposium -

Volume 14. Berkeley, CA, USA: USENIX

Association, 2005, pp. 8–8.

[19] H. Qian, D. Medhi, and T. Trivedi, “A

hierarchical model to evaluate quality of

experience of online services hosted by cloud

computing,” in 2011 IFIP/IEEE International

Symposium on Integrated Network

Management (IM), 2011, pp. 105–112.

[20] X. Ou, W. F. Boyer, and M. A. McQueen, “A

scalable approach to attack graph generation,”

in Proceedings of the 13th ACM conference on

Computer and communications security, ser.

CCS ‟06. New York, NY, USA: ACM, 2006,

pp. 336–345.

[21] “Kernel based Virtual Machine (KVM).”

[Online]. Available: http://www.linux-

kvm.org/

[22] “OpenFlow project,” http://openflow.org/.

[Online]. Available: http://openflow.org/

[23] “Open vSwitch project,”

http://openvswitch.org/. [Online]. Available:

http://openvswitch.org/

[24] “Open source vulnerability database

(OVSDB),” http://osvdb.org/.

[25] Mitre Corporation, “Common vulnerabilities

and exposures, CVE,” http://cve.mitre.org/.

[26] NIST, “National vulnerability database,

NVD,” http://nvd.nist.gov.

[27] L. Wang, A. Liu, and S. Jajodia, “Using attack

graphs for correlating, hypothesizing, and

predicting intrusion alerts,” Computer

Communications, vol. 29, no. 15, pp. 2917–

2933, Sep. 2006.

[28] S. Roschke, F. Cheng, and C. Meinel, “A new

alert correlation algorithm based on attack

graph,” in Computational Intelligence in

Security for Information Systems, ser. Lecture

Notes in Computer Science. Springer, 2011,

vol. 6694, pp. 58–67.

[29] S. Roschke, F. Cheng, and C. Meinel, “A

flexible and efficient alert correlation platform

for distributed IDS,” in 2010 4th International

Conference on Network and System Security

(NSS). IEEE, Sep. 2010,

pp. 24–31.

[30] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S.

Shenker, and J. Turner, “OpenFlow: enabling

innovation in campus networks,” SIGCOMM

Comput. Commun. Rev., vol. 38, no. 2,

pp. 69–74, Mar. 2008.

[31] “Volatility.” [Online]. Available:

https://code.google.com/volatility/ “Unixbench

– a Unix benchmark suite.” [Online].

Available:

http://www.tux.org/pub/tux/niemi/unixbench/

3432

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10470

