New Function With "Gem-Set" in Topological Space

${ }^{1 .}$ Luay A. AL-Swidi, ${ }^{2}$ Maryam A. AL-Ethary
${ }^{1,2 .}$ Mathematics Department, College of Education For Pure sciences University of Babylon .

Abstract

In this paper we introduce a new class of maps called A-map, AO - map and Am - map under the idea of '' Gemset"' in topological spaces and study some of it's basic properties and relations among them .

I. INTRODUCTION

The impression of ideals in topological spaces in treated in the standard text by Kuratowski [2] and Vaidyanathaswamy [5] ,O.Njastad was introduced the idea of compatible ideals in 1966 . This ideal was also called as super compact by R.Vaidyanathaswamy . Furher D.Jankovic and T.R.Hamlett are also worked in this area , Jankovic and Hamlett [1] investigated supplementary properties of ideal spaces. An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties : (1) $A \in I$ and $B \in A$ implies $B \in I$; (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I), For a subsets $A \subseteq X, A^{*}(I, \tau)=\{x \in X ; A \cap U \notin I$ for any $U \in$ $\tau(X, x)\}$ is called the locall function of A with respect to o I and τ [2] .In 2012 [4], Al-Swidi and Al-Sada introduced a new type of ideals for a one point and denoted by I_{x}, they defined the I_{x} is an ideal on a topological space (X, τ) at point x is defined by $I_{x}=\left\{U \subseteq X: x \in U^{c}\right\}$, where U is non-empty set of X . In a topical paper, Al-Swidi and Al- Naff [2013] [3] hare considered a new set in topological space namely "Gemset" and depending on the I_{x}, and, and some its properties are studied, define a new separation axioms by using the idea of "Gem-set" namely " $I^{*}-T_{i}$ - space" and " $I^{* *}-T_{i}$ - space", $\mathrm{i}=0,1,2$. and defines two mapping is called " $I^{*}-$ map" and "I* - map" to carry properties of "Gem-Set" from a space to other space and give more properties for new separation axioms. The aim of this paper is to introduce and study the concepts of new class of maps namely $A-$ map , $A O$ - map and $A m$ - map and Study of the most important properties and the relationship between them, as well as connect the properties of the separation axioms type of $I^{*}-T_{i}$ - space" and " $I^{* *}-T_{i^{-}}$ space", $\mathrm{i}=0,1,2$ with the functions and their effect upon . For a sub set A of $X, A^{* x}$ is the Gem-set of A at the point $x \in X$.

II. PRELIMINARIES :

We recall the folloing definitions and results :-
Definition (2.1) [3] : Let (X, τ) is a topological space $A \subseteq X, x \in X$, we defined $A^{* x}$ with respect to space (X, τ) as follows : $A^{* x}=\left\{y \in X: G \cap A \notin I_{x}\right.$, for every $G \in$ $T(y)\}$ where $T(y)=\{G \in T: y \in G\}$, A set $A^{* x}$ is called ' Gem-Set ".

Definition (2.2) [3]: Let (X, τ) is a topological space , $A \subseteq X$, We defineb ${ }^{* x} \operatorname{pr}(A)=A^{* x} \cup A$, for each $x \in X$. Definition (2.3) [3]: A subset A of a topological space (X, τ) is called perfected set if $A^{* x} \subseteq A$, for each $x \in X$, and called coperfect if A^{c} is a perfected set .
Definition (2.4) [3]: A topological space (X, τ) is called :

- $I^{*}-T_{0}$ - space if and only if for each pair if distinct points x, y of X , there non-empty subsets A, B of X such that $y \notin A^{* x}$ or $x \notin B^{* y}$.
- $\quad I^{*}-T_{1}$ - space if and only if for each pair if distinct points x, y of X , there non-empty subsets A, B of X such that $y \notin A^{* x}$ and $x \notin B^{* y}$.
$I^{*}-T_{2^{-}}$space if and only if for each pair if distinct points x, y of X , there non-empty subsets A, B of X such that $A^{* x} \cap$ $B^{* y}=\emptyset$, with $y \notin A^{* x}$ and $x \notin B^{* y}$
- $\quad I^{* *}-T_{0}$ - space if and only if for each pair if distinct points x, y of X , there non-empty subset A of X such that $y \notin A^{* x}$ or $x \notin A^{* y}$.
- $\quad I^{* *}-T_{1}$ - space if and only if for each pair if distinct points x, y of X , there non-empty subset A of X such that $y \notin A^{* x}$ and $x \notin A^{* y}$.
- $\quad I^{* *}-T_{2}$ - space if and only if for each pair if distinct points x, y of X , there non-empty subset A of X such that $A^{* x} \cap A^{* y}=\emptyset$, with $y \notin A^{* x}$ and $x \notin A^{* y}$.
Theorem (2.5) [3]: For a topological space (X, τ), then the following properties hold :

1- Every T_{0} - space is a $I^{*}-T_{0}$ - space.
2- Every T_{1} - space is a $I^{*}-T_{1}$ - space.
3- Every T_{2} - space is a $I^{*}-T_{2}$ - space.
4- Every T_{0} - space is a $I^{* *}-T_{0}$ - space.
5- Every T_{1} - space is a $I^{* *}-T_{1}$ - space.
6- Every T_{2} - space is a $I^{* *}-T_{2}$ - space.
Definition (2.6) [3] : A mapping $f:(X, \tau) \rightarrow(Y, \rho)$ is called I^{*} - map if and only if, for every subset A of $\mathrm{X}, x \in X$, $f\left(A^{* x}\right)=(f(A))^{* f(x)}$.
Definition (2.7) [3]: A mapping $f:(X, \tau) \longrightarrow(Y, \rho)$ is called $I^{* *}$ - map if and only if, for every subset A of Y, $y \in Y$,$f^{-1}\left(A^{* y}\right)=\left(f^{-1}(A)\right)^{* f^{-1}(y)}$.

III. THE NEW FUNCTION AND IT'S PROPERTIES:

In this section we introduce a new class of functions namely $A-m a p, A O-m a p$ and $A m-m a p$, and study their properties and relationships .

Definition

(3.1)

A mapping $f:(X, \tau) \longrightarrow(Y, \sigma)$ is said to be :

- f is A-map at $x \in X$ iff $\forall B \subseteq Y, \exists A \subseteq$ X s.t $f\left(A^{* x}\right) \subseteq B^{* f(x)}$.
- Also f is said to be A - map on X iff it is Amap at each point on X.
- f^{-1} is A - map iff $\forall A \subseteq X \exists B \subseteq Y$ s.t $f^{-1}\left(B^{* y}\right) \subseteq A^{* f^{-1}(y)}$.
- f is $A O$ - map iff $\forall A \subseteq X \exists B \subseteq Y$ s.t $B^{* y} \subseteq f\left[A^{* f^{-1}(y)}\right]$.
- f is $A m$-mapiff f is $A-\operatorname{map}, f^{-1}$ is $A-$ map and f is bijective .
Theorem (3.2) :_ A mapping f from a topological space (X, τ) into a topological space (Y, ρ) is $A-\operatorname{map}$ at $\mathrm{x} \in \mathrm{X}$. iff for each $B \subseteq Y$ there exist $A \subseteq X$ such that $H_{y} \cap B \notin$ $I_{f(x)}, \forall H_{y} \in \tau_{Y}(y)$ whenever $y \in f\left(A^{* x}\right)$.
Proof:- By definition of A - map .
Theorem (3.3) :_ A mapping f from a topological space (X, τ) into a topological space (Y, ρ) is $A-\operatorname{map}$ at $\mathrm{x} \in \mathrm{X}$. iff for each $B \subseteq Y$ there exist $A \subseteq X$ such that $y \in$ $f\left(A^{* x}\right)$ there exist $a \in A^{* x}$ and $V_{y} \cap B \notin$
$I_{f(x)}$ whenever $V_{y} \in N(y)$ and $y=f(a)$.
Proof:- By definition of $A-\operatorname{map} \&$ theorem (1.6).
Theorem (3.4) :_ A mapping f from a topological space (X, τ) into a topological space (Y, ρ) is A - map iff $\left[f^{-1}(B)\right]^{* f^{-1}(y)} \subseteq f^{-1}\left(B^{* y}\right)$.
Proof :- Suppose that $f A-m a p$ and let $B \subseteq Y$, Put $A=f^{-1}(B)$ and $x=f^{-1}(y)$, Since f is A - map so we get that $f\left(A^{* x}\right) \subseteq B^{* y}$ but f is one to one hence $f\left(\left[f^{-1}(B)\right]^{* x}\right) \subseteq\left(B^{* y}\right) \quad, \quad$ it follows $\quad\left[f^{-1}(B)\right]^{* x} \subseteq$ $f^{-1}\left(B^{* y}\right)$.
Conversely : Let $B \subseteq Y$ and $y \in Y$, Put $A=f^{-1}(B)$ and $x=f^{-1}(y)$, By hypotheses : $\left[f^{-1}(B)\right]^{* x} \subseteq f^{-1}\left(B^{* y}\right)$ it follows that $f\left(A^{* x}\right) \subseteq f\left(f^{-1}\left(B^{* y}\right)\right)=B^{* y}$. Thus f is $\mathrm{A}-$ map.
Theorem (3.5) :_ An injective map f from a topological space (X, τ) onto a topological space (Y, ρ) is $A-$ map iff $\forall B \subseteq Y$ s.t $p r^{* x}\left(f^{-1}(B)\right) \subseteq f^{-1}\left(p r^{* f(x)}(B)\right) \quad$ whenever $B \subseteq Y$.
Proof:- By definition of $A-m a p$ and identifiable of $p r^{* x}(A)$.
Theorem (3,6) :_ A function $f:(X, \tau) \rightarrow(Y, \sigma)$, is $A-$ map if and only if $f\left(p r^{* x}(A)\right) \subseteq p r^{* f(x)}(f(A))$ for $x \in$ X and $A \subseteq X$.
Proof :-_By definition of $A-m a p$ and identifiable of $p r^{* x}(A)$.
Note (3.7) :-
(1) Let $f:(X, \tau) \rightarrow(Y, \sigma)$, if f is injective map , then $f\left(I_{x}\right)=I_{f(x)}$.
Proof:- Since the map f is injective, then for $f\left(I_{x}\right)=$ $\left\{f(G): G \subseteq I_{x}\right\}=\left\{f(G): x \in G^{c}\right\}=\{f(G): f(x) \in$ $\left.(f(G))^{c}\right\}=I_{f(x)}$.
(2) In the function $f:(X, \tau) \rightarrow(Y, \sigma)$ is bijective, then $f^{-1}\left(I_{y}\right)=I_{f}{ }^{-1}(y)$.
Proof :- By bijective of the map f, we accomplished $f^{-1}\left(I_{y}\right)=\left\{f^{-1}(A): A \in I_{y}\right\} \quad=\left\{f^{-1}(A): y \in A^{c}\right\}$
$=\left\{f^{-1}(A): f^{-1}(y) \in\left(f^{-1}(A)\right)^{c}\right\}=I_{f^{-1}(y)}$.
Theorem (3.8) :_ If a bijective mapping $f:(X, \tau) \rightarrow(Y, \sigma)$ $I^{* *}$ - map then f is A - map.
Proof :- By noti function of $I^{* *}-m a p$.
Theorem (3.9) :_ An injective map f from a topological space (X, τ) onto a topological space (Y, ρ) is $A O-$ map iff f^{-1} is $A-m a p$.
Proof :-_ Assume that f be $A O$ - map map ,such that for $y \in Y$ and $A \subseteq X$, we gotting that , there exists $B \subseteq$ Y such that $B^{* y} \subseteq f\left[A^{* f^{-1}(y)}\right]$. But f is injective, so $f^{-1}\left(B^{* y}\right) \subseteq f^{-1}\left(f\left[A^{* f^{-1}(y)}\right]\right)=A^{* f^{-1}(y)}$ and $f^{-1}\left(B^{* y}\right) \subseteq$ $A^{* f^{-1}(y)}$. Thus f^{-1} is $A-\operatorname{map}$.
Conversely:- For $A \subseteq X \& y \in Y$ and by identifiable of $A-m a p$ of f^{-1}, we have there exist $B \subseteq Y$ such that $f^{-1}\left(B^{* y}\right) \subseteq A^{* f^{-1}(y)}$ so we get that $f\left[f^{-1}\left(B^{* y}\right)\right] \subseteq f\left[A^{* f^{-1}(y)}\right]$ and by surjective of f, we getting that $\left(B^{* y}\right) \subseteq f\left[A^{* f^{-1}(y)}\right]$. Then f is $A O-m a p$.
Theorem (3.10) :_ A bijective $A-\operatorname{map}$ function is $A O-$ map iff its $A m$ - map.
proof :- By definition of $A-$ map and theorem (3.9).
Theorem (3.11) :_ Every injective $I^{*}-\operatorname{map}$ function is A-map .
Proof :- Firsthand from definition of $I^{*}-m a p$ function.
Theorem (3.12) : A bijective is A-map function f $I^{*}-m a p$ if f is continuous function .
Proof :- By continuity of f and definition of $A-\operatorname{map}$ and used the note (3.7) we can prove this theorem .
Theorem (3.13) :_ Every $I^{*}-m a p$ is $A O$ - map if the function f is injective.
Proof :- Let $A \subseteq X, y \in Y$ Put $B=f(A) \& x=f^{-1}(y)$ [Since f is injective], So by $I^{*}-\operatorname{map}$, we get that $f\left(A^{* x}\right)=(f(A))^{* f(x)}=B^{* y}$ then $B^{* y} \subseteq f\left(A^{* f^{-1}(y)}\right)$. Hence f is $A O-$ map.
Theorem (3.14) : Every $I^{* *}-m a p$ is $A O-m a p$ if the function f is bijective.
Proof :- Let $B \subseteq Y, x \in X$ Put $A=f^{-1}(B) \& y=f(x)$ [Since f is bijective], So by $I^{* *}-m a p$, we get that $f^{-1}\left(B^{* y}\right)=\left[f^{-1}(B)\right]^{* f^{-1}(y)}=A^{* x}$ then $f\left(f^{-1}\left(B^{* y}\right)\right)=$ $f\left(A^{* x}\right)$ so we get that $B^{* y} \subseteq f\left(A^{* x}\right)$. Hence f is $A O-$ map.

Theorem (3.15) : If $f:(X, \tau) \longrightarrow(Y, \sigma)$ is $A O$ - map , open. and bijective map then f is $I^{* *}-m a p$.
Proof :- Let $B \subseteq Y, y \in Y$, Put $f^{-1}(B)=A, f^{-1}(y)=x$. Since f is $A O-\operatorname{map}$ so $B^{* y} \subseteq f\left(A^{* x}\right)$.Now we must prove that $f\left(A^{* x}\right) \subseteq B^{* y}$. Let $b \in f\left(A^{* x}\right)$ so there exists $a \in$ X such that $b=f(a)$ and $a \in A^{* x} \quad$.Therefore $\quad G_{a} \cap A \notin$ $I_{x}, \forall G_{a} \in \tau$.The $\quad f\left(G_{a} \cap A \notin I_{x}\right)$ it follows that $f\left(G_{a}\right) \cap$ $f(A) \notin f\left(I_{x}\right)$. By note (3.7)(1) we have $f\left(I_{x}\right)=I_{f(x)}$, $f(A)=B$ since f is bijective . So we get that $f\left(G_{a}\right)_{b} \cap B \notin$ $I_{f(x)}$ for $f\left(G_{a}\right)_{b} \in \sigma$, Hence $b \in B^{* y}$. Therefore $f\left(A^{* x}\right) \subseteq$ $B^{* y}$. Thus f is $I^{* *}-m a p$.

Theorem (3.16) :_ Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be bijective function. Then f is $A m-m a p$ iff f is $I^{*}-m a p$.
Proof:- By definition of $A m$ - map and $I^{*}-m a p$
Theorem (3.17) :_ Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ be bijective function. Then f is $A m-m a p$ iff f is $I^{* *}-m a p$
Proof :- Straight from definition of $A m-\operatorname{map}$ and $I^{* *}-$ map.
Remark (3.18) : For a function $f:(X, \tau) \longrightarrow(Y, \sigma)$, the following diagram holds :

Diagram (3.1) : The relationship between the maps .

Bijective.
O
Injective.$~$
Bijective and open.
Bijective and continuous.

Diagram (3.1) : The relationship between the maps .

Remark (3.17): The converse of theorems need not true as seen from the following examples .
Example(3.18) (1): Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ if f is $A-\operatorname{map}$ then f need not $I^{*}-m a p$.

Let $X=\{a, b, c, d\}$, and $f:(X, \tau) \rightarrow(X, \sigma)$ such that $\tau=$ $\{X, \emptyset,\{a\},\{b, c\},\{a, b, c\},\{b, c, d\}\}, \sigma=\{X, \emptyset\}, f(a)=$ $c, f(b)=a, f(c)=d, f(d)=b$.
f is $A-\operatorname{map}$ but f is not $I^{*}-\operatorname{map}$ since let $A=\{a, b\}, x=$ $a \rightarrow f(A)=\{c, d\}, f(a)=c$
$f\left(A^{* a}\right)=f(\{a\})=\{c\},(f(A))^{* c}=\{b, c, d\}, \quad \therefore f\left(A^{* a}\right) \neq$ $(f(A))^{* C}$
(2) : Let $f:(X, \tau) \rightarrow(Y, \sigma)$ if f is $A-\operatorname{map}$ then f need not $I^{* *}-m a p$.
Let $X=\{x, y, z\}$ and $f:(X, p(X)) \rightarrow(X, \tau)$ such that $\tau=$ $\{X, \emptyset,\{z\},\{z, x\}\}, f(x)=y, f(y)=x, f(z)=z$.
f is $A-$ map but not $I^{* *}$ - map since , let $B=\{x\} \rightarrow$ $B^{* y}=\{x, y\} \rightarrow f^{-1}\left(B^{* y}\right)=\{x, y\}$.
$f^{-1}(B)=\{y\} \rightarrow\left[f^{-1}(B)\right]^{* x}=\{y\} b$, So we get that $f^{-1}\left(B^{* y}\right) \neq\left[f^{-1}(B)\right]^{* x}$.
(3) : Let $f:(X, \tau) \xrightarrow{1-1}(Y, \sigma)$ if f is $A O-\operatorname{map}$ then f is $I^{*}-$ map .
Let $\quad X=\{x, y, z\}$ and $f:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{2}\right)$ such that $\tau_{1}=$ $\{X, \emptyset,\{x\},\{x, z\}\}$,
$\tau_{2}=\{X, \emptyset,\{x\},\{x, z\},\{x, y\},\{y\}\}, f(x)=x, f(y)=$
$y, f(z)=z$. so f^{-1} is A - map, by theorem (3.9) we get that $\quad f$ is $A O-$ map. Let $A=\{x\} \rightarrow A^{* x}=\{x, z\} \rightarrow$ $f\left(A^{* x}\right)=\{y, z\}, f(A)=\{y\} \rightarrow[f(A)]^{* y}=\{x, y, z\}$, So we get that $f\left(A^{* x}\right) \neq[f(A)]^{* y}$. Therefore f is not $I^{*}-\operatorname{map}$.
(4) : Let $f:(X, \tau) \rightarrow(Y, \sigma)$ if f is $A O-\operatorname{map}$ then f is $I^{* *}-m a p$.

Let
$X=\{x, y, z\}, Y=\{a, b, c\}$ and $f:(X, \tau) \rightarrow$
(Y, σ) such that $\tau=\{X, \emptyset,\{y\},\{x, y\}\}$,
$\sigma=\{Y,,\{c\},\{a, c\},\{b, c\},\{b\}\} f(x)=c, f(y)=b, f(z)=$
a. f is $A O-\operatorname{map}$ but f is not $I^{* *}-\operatorname{map}$ since $B=$ $\{z\}, B^{* c}=\{a, c\}, f^{-1}(\{a, c\})=\{x, z\}, \quad\left[f^{-1}(\{z\})\right]^{* f^{-1}(c)}=$ $\{x\}^{* x}=\{x\},\{x\} \neq\{x, z\}$.
(5) : Is the same example (3.18) (1) f is A - map but f is not $A O-$ map since if $B=\{x\}, \exists A=\{y\}$
$f^{-1}(y)=x \rightarrow A^{* x}=y, B^{* y}=\{x, y\}, f^{-1}\left(B^{* y}\right)=\{x, y\}$, so $f^{-1}\left(B^{* y}\right) \nsubseteq A^{* x}$ and $\nexists A$ in X such that $f^{-1}\left(B^{* y}\right) \subseteq A^{* x}$.
(6) : Is the same example (3.18) (3) f^{-1} is $A-\operatorname{map}$ but f is not $A-\operatorname{map}$ since if $B=\{x\}$ so $\nexists A$ in X such that $f\left(A^{* x}\right) \subseteq$ $B^{*} f(x)$.
Theorem (3.18) : Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be A - map at $x \in$ X and $g:(Y, \sigma) \rightarrow(Z, \rho)$ is A - map at $f(x) \in Y$, then :
$g \circ f:(X, \tau) \rightarrow(Z, \rho)$ be A - map at $x \in X$.
Proof:- Let $C \subseteq Z$ then $\exists B \subseteq Y$ s.t $g\left(B^{f(x)}\right) \subseteq$ $C^{g(f(x))}$ by $A-m a p$ of g at $f(x) \in Y$. But $B \subseteq$
Y then there exist $A \subseteq X$ by $A-\operatorname{map}$ of f at $x \in$
X. so we get that $f\left(A^{* x}\right) \subseteq B^{* f(x)}$ it follows that $g\left(f\left(A^{* x}\right)\right) \subseteq g\left(B^{* f(x)}\right) \subseteq C^{* g(f(x))}$ so $g\left(f\left(A^{* x}\right)\right) \subseteq$ $C^{* g(f(x))}$. Thus $g \circ f:(X, \tau) \rightarrow(Z, \rho)$ be A-map $x \in X$.
Theorem (3.19) : Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ be A - map Then for $A \subseteq X$, the following statements are true :-
1)) The inclusion function :
$i:\left(\mathrm{A}, \tau_{A}\right) \rightarrow(X, \tau)$ is $A-\operatorname{map}$.
2) ${ }^{f} /_{A}:\left(\mathrm{A}, \tau_{A}\right) \rightarrow(Y, \sigma)$ is $A-\operatorname{map}$.
3)) $i_{d}:(X, \tau) \rightarrow(X, \tau)$ is always $A-\operatorname{map}$.

IV. THE FUNCTION AND SEPARATION AXIOMS :

In this section we study the relationships between separations axioms $T_{i_{-}}$space , $i=0,1,2 ; I^{*}{ }_{-} T_{i}$ space , $i=0,1,2$ and $I^{* *} T_{i}$ space , $i=0,1,2$; by using the maps .
Theorem (4.1) : Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ be bijective open mapping. Then :
(1) if (X, τ) is strongly and $I^{* *} T_{o}$ space then (Y, ρ) is T_{o-} space .
(2) if (X, τ) is strongly and $I^{* *} T_{1}$ space then (Y, ρ) is $T_{1 _}$space .
(3) if (X, τ) is strongly and $I^{* *} T_{2}$ space then (Y, ρ) is T_{2} space .
Proof:- Closely from use the definition of strongly space, open map and $I_{-}^{* *} T_{i}$ space, $i=0,1,2$, we evidential this theorem .
Remark (4.2): The converse of theorem need not true as seen from the following examples .
Example (4.3) :
(1) Let $X=\{x, y, z\}$ and $f:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{2}\right)$ s.t $\tau_{1}=\{X, \emptyset,\{x\},\{x, y\}\} \& \tau_{2}=$
$\{X, \emptyset,\{x\},\{y\},\{x, y\},\{y, z\}\}$ and $\quad f(x)=x, f(y)=$ $y, f(z)=z$.Then $\left(X, \tau_{2}\right)$ is $T_{0}-$ space .Let $A=$ $\{x\} \rightarrow A^{* x}=\{x, y, z\}$ is not open set in $\left(X, \tau_{1}\right)$, So we get that $\left(X, \tau_{1}\right)$ is not strongly space.
(2) Let $X=\{x, y, z\}$ and $f:\left(X, \tau_{1}\right) \rightarrow(X, p(x))$ s.t $\tau_{1}=\{X, \emptyset,\{x\},\{x, y\}\}$ and $f(x)=x, f(y)=$ $y, f(z)=z$.Then $\quad(X, p(x))$ is T_{1} - space .Let $A=\{x\} \rightarrow A^{* x}=\{x, y, z\}$ is not open set in $\left(X, \tau_{1}\right)$ So we get that $\left(X, \tau_{1}\right)$ is not strongly space.
(3) Let $X=\{x, y, z\}$ and $f:\left(X, \tau_{1}\right) \longrightarrow(X, p(x))$ s.t $\tau_{1}=\{X, \emptyset,\{x\},\{x, y\}\}$ and $f(x)=x, f(y)=$ $y, f(z)=z$.Then $\quad(X, p(x))$ is T_{2} space .Let $A=\{x\} \rightarrow A^{* x}=\{x, y, z\}$ is not open set in $\left(X, \tau_{1}\right)$ So we get that $\left(X, \tau_{1}\right)$ is not strongly space.
Corollary (4.4) : Let $f:(X, \tau) \rightarrow(Y, \sigma)$ is bijective and open maping, Then :

1- if (X, τ) is strongly and T_{o} space then (Y, ρ) is T_{o-} space .
2- if (X, τ) is strongly and T_{1} space then (Y, ρ) is $T_{1 _}$space .
3- if (X, τ) is strongly and T_{2} space then (Y, ρ) is T_{2} space .
Proof:- By theorem (2.5) and (4.1) .
Theorem (4.5) : Let $f:(X, \tau) \rightarrow(Y, \sigma)$ is bijective and continuous mapping, Then :
(1) if (Y, ρ) is strongly \& $I^{* *} T_{0}$ space then (X, τ) is T_{0-} space .
(2) if (Y, ρ) is strongly \& $I^{* *} T_{1}$ space then (X, τ) is $T_{1 _}$space .
(3) if (Y, ρ) is strongly \& $I^{* *} T_{2}$ space then (X, τ) is $T_{2_{-}}$space .
Proof:- By definition of strongly space, continuous map \& $I_{-}^{* *} T_{i}$ space, $i=0,1,2$.
Remark (4.6): The converse of theorem need not true as seen from the following example .

Example(4.7) :

(1) Let $X=\{x, y, z\}$ and $f:\left(X, \tau_{1}\right) \rightarrow\left(X,\left(X, \tau_{2}\right)\right)$ s.t $\tau_{1}=\{X, \emptyset,\{x\},\{y\},\{x, y\}\}$ and $\tau_{2}=\{X, \emptyset,\{x\},\{z\},\{x, z\}\} \quad, \quad f(x)=x, f(y)=$ $z, f(z)=y . f$ is cont.\& 1-1, Then $\left(X, \tau_{1}\right)$ is $T_{0}-$ space. Let $A=\{x\} \rightarrow A^{* x}=\{x, y\}$ is not open set in $\left(X, \tau_{2}\right)$, So we get that $\left(X, \tau_{2}\right)$ is not strongly space
(2) Let $X=\{x, y, z\}$ and $f:(X, p(x)) \rightarrow\left(X,\left(X, \tau_{1}\right)\right)$ s.t $\tau_{1}=\{X, \emptyset\}$ and $f(x)=x, f(y)=y, f(z)=z$. f is cont. \& 1-1, Then $(X, p(x))$ is $T_{1}-$ space . Let $A=\{x\} \rightarrow A^{* x}=\{x, y, z\}$ is not open set in (X, τ_{1}), So we get that $\left(X, \tau_{1}\right)$ is not strongly space.
(3) Let $X=\{x, y, z\}$ and $f:(X, p(x)) \rightarrow\left(X,\left(X, \tau_{1}\right)\right)$ s.t $\tau_{1}=\{X, \emptyset\}$ and $f(x)=x, f(y)=y, f(z)=z$. f is cont.\& 1-1, Then $(X, p(x))$ is T_{2} - space .

Let $A=\{x\} \rightarrow A^{* x}=\{x, y, z\}$ is not open set in $\left(X, \tau_{1}\right)$, So we get that $\left(X, \tau_{1}\right)$ is not strongly space.
Corollary (4.8) :_ Let $f:(X, \tau) \rightarrow(Y, \sigma)$ is surjective continuous maping, Then :

1- if (Y, ρ) is strongly and T_{o} space then (X, τ) is T_{o-} space .
2- if (Y, ρ) is strongly and T_{1} space then (X, τ) is $T_{1 _}$space .
3- if (Y, ρ) is strongly and T_{2} space then (X, τ) is T_{2-} space .
Proof:- By theorem (2.5) and (4.5) .
Theorem (4.9): Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be bijective open mapping, Then :
(1) if (X, τ) is strongly and $I^{*}{ }_{-} T_{o}$ space then (Y, ρ) is T_{o-} space .
(2) if (X, τ) is strongly and $I^{*} T_{1}$ space then (Y, ρ) is $T_{1 _}$space .
(3) if (X, τ) is strongly and $I^{*} T_{2}$ space then (Y, ρ) is T_{2-} space .
Proof:- By definition of strongly space, open map and $I_{-}^{*} T_{i}$ space, $i=0,1,2$.
Remark (4.10): The converse of theorem need not true as seen from the same example (4.3).
Theorem (4.11) : Let $f:(X, \tau) \rightarrow(Y, \sigma)$ is bijective continuous mapping, Then :
(1) if (Y, ρ) is strongly and $I^{*} T_{0}$ space then (X, τ) is T_{0-} space .
(2) if (Y, ρ) is strongly and $I^{*} T_{1}$ space then (X, τ) is $T_{1_{-}}$space .
(3) if (Y, ρ) is strongly and $I^{*}{ }_{-} T_{2}$ space then (X, τ) is $T_{2_{-}}$space .
Proof:- By definition of strongly space, continuous map and $I_{-}^{*} T_{i}$ space, $i=0,1,2$.
Remark (4.12): The converse of theorem need not true as seen from the same example (4.7) .

REFERENCES

[1] James R.Munkres, (2000) . "Topology", Second edition, Prentice Hall , Incorporated, QA611.M82, pp 102-112.
[2] K. Kuratowski, Topologies I, Academic press, New York (1966).
[3] L.A.AL-Swidi and Ahmed B.AL-Nafee ,(2013) . "New Separation Axioms Using the idea of "Gem-Set" in topological Space " Mathematical Theory and Moodeling, Vol.3, No 3, pp 60-66.
[4] L. A. AL-Swidi and Dheargham A. Al-Sada "Turing Point of Proper Ideal" Archive Des Science (Impact factor 0.474) ISSN:1661-464X Volume 65 No. 7 Jul(2012), 219-220.JST Journal. All rights reserved.
[5] R.Vaidyanathaswamy, Set Topology, Chelsea . Publishing CO. , New York (1960) .

