New Function With "Gem-Set" in Topological Space

^{1.} Luay A. AL-Swidi, ^{2.} Maryam A. AL-Ethary ^{1,2.} Mathematics Department, College of Education For Pure sciences University of Babylon.

Abstract—In this paper we introduce a new class of maps called A-map , AO - map and Am - map under the idea of '' Gemset'' in topological spaces and study some of it's basic properties and relations among them .

I. INTRODUCTION

The impression of ideals in topological spaces in treated in the standard text by Kuratowski [2] and Vaidyanathaswamy [5] ,O.Njastad was introduced the idea of compatible ideals in 1966. This ideal was also called as super compact by R.Vaidyanathaswamy . Furher D.Jankovic and T.R.Hamlett are also worked in this area , Jankovic and Hamlett [1] investigated supplementary properties of ideal spaces . An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties : (1) $A \in I$ and $B \in A$ implies $B \in I$; (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I) , For a subsets $A \subseteq X$, $A^*(I,\tau) = \{x \in X ; A \cap U \notin I \text{ for any } U \in A\}$ $\tau(X, x)$ is called the local function of A with respect to o I and τ [2] .In 2012 [4], Al-Swidi and Al-Sada introduced a new type of ideals for a one point and denoted by I_x , they defined the I_x is an ideal on a topological space (X, τ) at point x is defined by $I_x = \{U \subseteq X : x \in U^c\}$, where U is non-empty set of X. In a topical paper, Al-Swidi and Al- Naff [2013] [3] hare considered a new set in topological space namely "Gemset" and depending on the I_x , and, and some its properties are studied, define a new separation axioms by using the idea of "Gem-set" namely " $I^* - T_i$ - space" and " $I^{**} - T_i$ - space", i=0,1,2 . and defines two mapping is called " $I^* - map$ " and " $I^{**} - map$ " to carry properties of "Gem-Set" from a space to other space and give more properties for new separation axioms. The aim of this paper is to introduce and study the concepts of new class of maps namely A - map, AO - mapand Am - map and Study of the most important properties and the relationship between them, as well as connect the properties of the separation axioms type of $I^* - T_i$ - space" and " $I^{**} - T_i$ space", i=0,1,2 with the functions and their effect upon . For a sub set A of X, A^{*x} is the Gem-set of A at the point $x \in X$.

II. PRELIMINARIES :

We recall the folloing definitions and results :-

Definition (2.1) [3] : Let (X, τ) is a topological space , $A \subseteq X, x \in X$, we defined A^{*x} with respect to space (X, τ) as follows : $A^{*x} = \{ y \in X : G \cap A \notin I_x, for every G \in T(y) \}$ where $T(y) = \{ G \in T : y \in G \}$, A set A^{*x} is called "Gem-Set". **Definition (2.2) [3]:** Let (X, τ) is a topological space, $A \subseteq X$, We defineb ${}^{*x}pr(A) = A^{*x} \cup A$, for each $x \in X$. **Definition (2.3) [3]:** A subset A of a topological space (X, τ) is called perfected set if $A^{*x} \subseteq A$, for each $x \in X$, and called coperfect if A^c is a perfected set.

Definition (2.4) [3]: A topological space (X, τ) is called :

- $I^* T_0$ space if and only if for each pair if distinct points x,y of X, there non-empty subsets A,B of X such that $y \notin A^{*x}$ or $x \notin B^{*y}$.
- *I*^{*} − *T*₁- space if and only if for each pair if distinct points x,y of X, there non-empty subsets A,B of X such that y ∉ A^{*x} and x ∉ B^{*y}.

 $I^* - T_2$ - space if and only if for each pair if distinct points x,y of X, there non-empty subsets A,B of X such that $A^{*x} \cap B^{*y} = \emptyset$, with $y \notin A^{*x}$ and $x \notin B^{*y}$

- $I^{**} T_0$ space if and only if for each pair if distinct points x,y of X, there non-empty subset A of X such that $y \notin A^{*x}$ or $x \notin A^{*y}$.
- $I^{**} T_1$ space if and only if for each pair if distinct points x,y of X, there non-empty subset A of X such that $y \notin A^{*x}$ and $x \notin A^{*y}$.
- $I^{**} T_2$ space if and only if for each pair if distinct points x,y of X, there non-empty subset A of X such that $A^{*x} \cap A^{*y} = \emptyset$, with $y \notin A^{*x}$ and $x \notin A^{*y}$.

Theorem (2.5) [3]: For a topological space (X, τ) , then the following properties hold :

- 1- Every T_0 space is a $I^* T_0$ space.
- 2- Every T_1 space is a $I^* T_1$ space.
- 3- Every T_2 space is a $I^* T_2$ space.
- 4- Every T_0 space is a $I^{**} T_0$ space.
- 5- Every T_1 space is a $I^{**} T_1$ space.
- 6- Every T_2 space is a $I^{**} T_2$ space.

Definition (2.6) [3] : A mapping $f : (X, \tau) \to (Y, \rho)$ is called I^* - map if and only if, for every subset A of X, $x \in X$, $f(A^{*x}) = (f(A))^{*f(x)}$.

Definition (2.7) [3]: A mapping $f : (X, \tau) \to (Y, \rho)$ is called I^{**} - map if and only if, for every subset A of Y, $y \in Y$, $f^{-1}(A^{*y}) = (f^{-1}(A))^{*f^{-1}(y)}$.

III. THE NEW FUNCTION AND IT'S PROPERTIES:

In this section we introduce a new class of functions namely A - map, AO - map and Am - map, and study their properties and relationships.

A mapping $f: (X, \tau) \to (Y, \sigma)$ is said to be :

- f is A map at $x \in X$ if $f \forall B \subseteq Y$, $\exists A \subseteq X$ s.t $f(A^{*x}) \subseteq B^{*f(x)}$.
- Also f is said to be A map on X if f it is A map at each point on X.
- f^{-1} is $A \operatorname{map} iff$ $\forall A \subseteq X \exists B \subseteq Y \ s.t \ f^{-1}(B^{*y}) \subseteq A^{*f^{-1}(y)}$.
- f is AO map iff $\forall A \subseteq X \exists B \subseteq Y \text{ s.t } B^{*y} \subseteq f[A^{*f^{-1}(y)}].$
- fis $Am map \ iff$ f is A map, $f^{-1} \ is A map$ and f is bijective.

Theorem (3.2) : A mapping f from a topological space (X, τ) into a topological space (Y, ρ) is A - map at $x \in X$. iff for each $B \subseteq Y$ there exist $A \subseteq X$ such that $H_y \cap B \notin I_{f(x)}$, $\forall H_y \in \tau_Y(y)$ whenever $y \in f(A^{*x})$.

Proof:- By definition of A - map.

Theorem (3.3) : A mapping *f* from a topological space (X, τ) into a topological space (Y, ρ) is A - map at $x \in X$. iff for each $B \subseteq Y$ there exist $A \subseteq X$ such that $y \in f(A^{*x})$ there exist $a \in A^{*x}$ and $V_y \cap B \notin A$.

 $I_{f(x)}$ whenever $V_y \in N(y)$ and y = f(a).

Proof: By definition of A - map & theorem (1.6).

Theorem (3.4) : A mapping f from a topological space (X, τ) into a topological space (Y, ρ) is A - map if $[f^{-1}(B)]^{*f^{-1}(y)} \subseteq f^{-1}(B^{*y})$.

Proof :- Suppose that fA - map and let $B \subseteq Y$, Put $A = f^{-1}(B)$ and $x = f^{-1}(y)$, Since f is A - map so we get that $f(A^{*x}) \subseteq B^{*y}$ but f is one to one hence $f([f^{-1}(B)]^{*x}) \subseteq (B^{*y})$, it follows $[f^{-1}(B)]^{*x} \subseteq f^{-1}(B^{*y})$.

Conversely : Let $B \subseteq Y$ and $y \in Y$, Put $A = f^{-1}(B)$ and $x = f^{-1}(y)$, By hypotheses : $[f^{-1}(B)]^{*x} \subseteq f^{-1}(B^{*y})$ it follows that $f(A^{*x}) \subseteq f(f^{-1}(B^{*y})) = B^{*y}$. Thus f is A – map.

Theorem (3.5) :_ An injective map f from a topological space (X, τ) onto a topological space (Y, ρ) is A - map iff $\forall B \subseteq Y \ s.t \ pr^{*x}(f^{-1}(B)) \subseteq f^{-1}(pr^{*f(x)}(B))$ whenever $B \subseteq Y$.

Proof: By definition of A - map and identifiable of $pr^{*x}(A)$.

Theorem (3,6): A function $f:(X,\tau) \to (Y,\sigma)$, is A - map if and only if $f(pr^{*x}(A)) \subseteq pr^{*f(x)}(f(A))$ for $x \in X$ and $A \subseteq X$.

Proof :-_By definition of A - map and identifiable of $pr^{*x}(A)$.

Note (3.7) :-

(1) Let $f:(X,\tau) \to (Y,\sigma)$, if f is injective map, then $f(I_x) = I_{f(x)}$.

Proof:- Since the map f is injective, then for $f(I_x) = \{f(G) : G \subseteq I_x\} = \{f(G) : x \in G^c\} = \{f(G) : f(x) \in (f(G))^c\} = I_{f(x)}.$

(2) In the function $f:(X,\tau) \to (Y,\sigma)$ is bijective , then $f^{-1}(I_y) = I_{f^{-1}(y)}$.

Proof :- By bijective of the map f, we accomplished $f^{-1}(I_y) = \{ f^{-1}(A) : A \in I_y \} = \{ f^{-1}(A) : y \in A^c \} = \{ f^{-1}(A) : f^{-1}(y) \in (f^{-1}(A))^c \} = I_{f^{-1}(y)}.$

Theorem (3.8): If a bijective mapping $f: (X, \tau) \to (Y, \sigma)$ $I^{**} - map$ then f is A - map.

Proof :- By noti function of $I^{**} - map$.

Theorem (3.9) : An injective map f from a topological space (X, τ) onto a topological space (Y, ρ) is AO - map iff f^{-1} is A - map.

Proof :- Assume that f be AO - map map , such that for $y \in Y$ and $A \subseteq X$, we gotting that, there exists $B \subseteq Y$ such that $B^{*y} \subseteq f[A^{*f^{-1}(y)}]$. But f is injective, so $f^{-1}(B^{*y}) \subseteq f^{-1}(f[A^{*f^{-1}(y)}]) = A^{*f^{-1}(y)}$ and $f^{-1}(B^{*y}) \subseteq A^{*f^{-1}(y)}$. Thus f^{-1} is A - map.

Conversely: For $A \subseteq X \And y \in Y$ and by identifiable of A - map of f^{-1} , we have there exist $B \subseteq Y$ such that $f^{-1}(B^{*y}) \subseteq A^{*f^{-1}(y)}$ so we get that $f[f^{-1}(B^{*y})] \subseteq f[A^{*f^{-1}(y)}]$ and by surjective of f, we getting that $(B^{*y}) \subseteq f[A^{*f^{-1}(y)}]$. Then f is AO - map.

Theorem (3.10) : A bijective A - map function is AO - map if f its Am - map.

proof :- By definition of A - map and theorem (3.9).

Theorem (3.11) : Every injective $I^* - map$ function is A - map.

Proof :- Firsthand from definition of $I^* - map$ function.

Theorem (3.12) : A bijective is A - map function f $I^* - map$ if f is continuous function.

Proof :- By continuity of f and definition of A - map and used the note (3.7) we can prove this theorem .

Theorem (3.13) : Every $I^* - map$ is AO - map if the function f is injective.

Proof :- Let $A \subseteq X, y \in Y$ Put $B = f(A) \& x = f^{-1}(y)$ [Since f is injective], So by $I^* - map$, we get that $f(A^{*x}) = (f(A))^{*f(x)} = B^{*y}$ then $B^{*y} \subseteq f(A^{*f^{-1}(y)})$. Hence f is AO - map.

Theorem (3.14) : Every $I^{**} - map$ is AO - map if the function f is bijective.

Proof :- Let $B \subseteq Y, x \in X$ Put $A = f^{-1}(B) \& y = f(x)$ [Since f is bijective], So by $I^{**} - map$, we get that $f^{-1}(B^{*y}) = [f^{-1}(B)]^{*f^{-1}(y)} = A^{*x}$ then $f(f^{-1}(B^{*y})) = f(A^{*x})$ so we get that $B^{*y} \subseteq f(A^{*x})$. Hence f is AO - map.

Theorem (3.15) : If $f:(X,\tau) \to (Y,\sigma)$ is AO - map, open. and bijective map then f is $I^{**} - map$.

Proof :- Let $B \subseteq Y$, $y \in Y$, Put $f^{-1}(B) = A$, $f^{-1}(y) = x$. Since f is AO - map so $B^{*y} \subseteq f(A^{*x})$. Now we must prove that $f(A^{*x}) \subseteq B^{*y}$. Let $b \in f(A^{*x})$ so there exists $a \in X$ such that b = f(a) and $a \in A^{*x}$. Therefore $G_a \cap A \notin I_x$, $\forall G_a \in \tau$. The $f(G_a \cap A \notin I_x)$ it follows that $f(G_a) \cap f(A) \notin f(I_x)$. By note (3.7)(1) we have $f(I_x) = I_{f(x)}$, f(A) = B since f is bijective. So we get that $f(G_a)_b \cap B \notin I_{f(x)}$ for $f(G_a)_b \in \sigma$, Hence $b \in B^{*y}$. Therefore $f(A^{*x}) \subseteq B^{*y}$. Thus f is $I^{**} - map$. **Theorem (3.16) :** Let $f: (X, \tau) \to (Y, \sigma)$ be bijective function. Then f is Am - map iff f is $I^* - map$.

Proof :- By definition of Am - map and $I^* - map$.

Theorem (3.17) : Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be bijective function. Then f is Am - map iff f is $I^{**} - map$.

Proof :- Straight from definition of Am - map and $I^{**} - map$.

Remark (3.18) : For a function $f:(X,\tau) \rightarrow (Y,\sigma)$, the following diagram holds :

Diagram (3.1) : The relationship between the maps .

Diagram (3.1) : The relationship between the maps .

Remark (3.17): The converse of theorems need not true as seen from the following examples .

Example(3.18) (1): Let $f: (X, \tau) \to (Y, \sigma)$ if f is A - map then f need not $I^* - map$.

Let $X = \{a, b, c, d\}$, and $f: (X, \tau) \to (X, \sigma)$ such that $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}, \sigma = \{X, \emptyset\}, f(a) = c, f(b) = a, f(c) = d, f(d) = b.$ f is A - map but f is not I^* - map since let $A = \{a, b\}, x = a \to f(A) = \{c, d\}, f(a) = c$ $f(A^{*a}) = f(\{a\}) = \{c\}, (f(A))^{*c} = \{b, c, d\}, \quad \therefore f(A^{*a}) \neq (f(A))^{*c}$.

(2): Let $f:(X,\tau) \to (Y,\sigma)$ if f is A - map then f need not $I^{**} - map$.

Let $X = \{x, y, z\}$ and $f: (X, p(X)) \to (X, \tau)$ such that $\tau = \{X, \emptyset, \{z\}, \{z, x\}\}, f(x) = y, f(y) = x, f(z) = z$.

 $f \text{ is } A - map \text{ but not } I^{**} - map \text{ since }, \text{ let } B = \{x\} \to B^{*y} = \{x, y\} \to f^{-1}(B^{*y}) = \{x, y\}.$

 $f^{-1}(B) = \{y\} \rightarrow [f^{-1}(B)]^{*x} = \{y\}b$, So we get that $f^{-1}(B^{*y}) \neq [f^{-1}(B)]^{*x}$.

(3): Let $f:(X,\tau) \xrightarrow{1-1} (Y,\sigma)$ if f is AO - map then f is $I^* - map$.

Let $X = \{x, y, z\}$ and $f: (X, \tau_1) \to (X, \tau_2)$ such that $\tau_1 = \{X, \emptyset, \{x\}, \{x, z\}\},\$

 $\tau_2 = \{X, \emptyset, \{x\}, \{x, z\}, \{x, y\}, \{y\}\}, f(x) = x, f(y) =$

y, f(z) = z. so f^{-1} is A - map, by theorem (3.9) we get that f is AO - map. Let $A = \{x\} \rightarrow A^{*x} = \{x, z\} \rightarrow$ $f(A^{*x}) = \{y, z\}, f(A) = \{y\} \rightarrow [f(A)]^{*y} = \{x, y, z\}$, So we get that $f(A^{*x}) \neq [f(A)]^{*y}$. Therefore f is not $I^* - map$. (4) : Let $f: (X, \tau) \rightarrow (Y, \sigma)$ if f is AO - map then f is $I^{**} - map$.

Let

 $X = \{x, y, z\}, Y = \{a, b, c\} and f: (X, \tau) \rightarrow$ (Y, σ) such that $\tau = \{X, \emptyset, \{y\}, \{x, y\}\},\$ $\sigma = \{Y, \{c\}, \{a, c\}, \{b, c\}, \{b\}\} f(x) = c, f(y) = b, f(z) = c$ a. f is AO - map but f is not $I^{**} - map$ since B = $\{z\}, B^{*c} = \{a, c\}, f^{-1}(\{a, c\}) = \{x, z\}, [f^{-1}(\{z\})]^{*f^{-1}(c)} =$ ${x}^{*x} = {x}, {x} \neq {x, z}.$ (5): Is the same example (3.18)(1) f is A - map but f is not AO - map since if $B = \{x\}$, $\exists A = \{y\}$ $f^{-1}(y) = x \rightarrow A^{*x} = y, B^{*y} = \{x, y\}, f^{-1}(B^{*y}) = \{x, y\}$ so $f^{-1}(B^{*y}) \not\subseteq A^{*x}$ and $\not\equiv A$ in X such that $f^{-1}(B^{*y}) \subseteq A^{*x}$. (6): Is the same example (3.18) (3) f^{-1} is A - map but f is not A - map since if $B = \{x\}$ so $\nexists A$ in X such that $f(A^{*x}) \subseteq$ $B^{*f(x)}$ **Theorem (3.18) :** Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be A – map at $x \in$ *X* and $g: (Y, \sigma) \rightarrow (Z, \rho)$ is A – map at $f(x) \in Y$, then : $g \circ f: (X, \tau) \longrightarrow (Z, \rho)$ be A – map at $x \in X$. Proof:- $C \subseteq Z$ then $\exists B \subseteq Y$ s.t $q(B^{f(x)}) \subseteq$ Let $C^{g(f(x))}$ by A - map of g at $f(x) \in Y$. But $B \subseteq$ *Y* then there exist $A \subseteq X$ by A - map of f at $x \in$ *X*. so we get that $f(A^{*x}) \subseteq B^{*f(x)}$ it follows that $g(f(A^{*x})) \subseteq g(B^{*f(x)}) \subseteq C^{*g(f(x))} \text{so } g(f(A^{*x})) \subseteq$ $\mathcal{C}^{*g(f(x))}$. Thus $g \circ f: (X, \tau) \to (Z, \rho)$ be $A - \max x \in X$. **Theorem (3.19) :** Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be A - map Then for $A \subseteq X$, the following statements are true :-**1**)) The inclusion function :

 $i: (A, \tau_A) \longrightarrow (X, \tau)$ is A - map.

2)) ${}^{f}/_{A}$: $(A, \tau_{A}) \rightarrow (Y, \sigma)$ is A - map. 3)) i_{d} : $(X, \tau) \rightarrow (X, \tau)$ is always A - map.

IV. THE FUNCTION AND SEPARATION AXIOMS :

In this section we study the relationships between separations axioms T_{i} space , i = 0,1,2 ; $I^*_{-}T_{i}$ space , i = 0,1,2 and $I^{**}_{-}T_{i}$ space , i = 0,1,2; by using the maps .

Theorem (4.1) : Let $f: (X, \tau) \to (Y, \sigma)$ be bijective open mapping. Then :

- (1) if (X, τ) is strongly and $I^{**}_{-}T_o$ space then (Y, ρ) is T_o -space.
- (2) if (X, τ) is strongly and $I^{**}_{-}T_1$ space then (Y, ρ) is T_1 -space.
- (3) if (X, τ) is strongly and $I^{**}_{-}T_2$ space then (Y, ρ) is T_2 -space.

Proof:- Closely from use the definition of strongly space , open map and $I_{-}^{**}T_i$ space, i = 0, 1, 2, we evidential this theorem .

Remark (4.2): The converse of theorem need not true as seen from the following examples .

Example (4.3) :

(1) Let $X = \{x, y, z\}$ and $f: (X, \tau_1) \rightarrow (X, \tau_2)$ s.t $\tau_1 = \{X, \emptyset, \{x\}, \{x, y\}\} \& \tau_2 =$ $\{X, \emptyset, \{x\}, \{y\}, \{x, y\}, \{y, z\}\}$ and f(x) = x, f(y) = y, f(z) = z. Then (X, τ_2) is T_0 – space .Let A = $\{x\} \rightarrow A^{*x} = \{x, y, z\}$ is not open set in (X, τ_1) , So we get that (X, τ_1) is not strongly space.

- (2) Let $X = \{x, y, z\}$ and $f: (X, \tau_1) \rightarrow (X, p(x))$ s.t $\tau_1 = \{X, \emptyset, \{x\}, \{x, y\}\}$ and f(x) = x, f(y) = y, f(z) = z. Then (X, p(x)) is $T_1 - space$. Let $A = \{x\} \rightarrow A^{*x} = \{x, y, z\}$ is not open set in (X, τ_1) So we get that (X, τ_1) is not strongly space.
- (3) Let $X = \{x, y, z\}$ and $f: (X, \tau_1) \rightarrow (X, p(x))$ s.t $\tau_1 = \{X, \emptyset, \{x\}, \{x, y\}\}$ and f(x) = x, f(y) = y, f(z) = z. Then (X, p(x)) is T_2 - space .Let $A = \{x\} \rightarrow A^{*x} = \{x, y, z\}$ is not open set in (X, τ_1) So we get that (X, τ_1) is not strongly space.

Corollary (4.4): Let $f: (X, \tau) \to (Y, \sigma)$ is bijective and open maping, Then:

- **1-** if (X, τ) is strongly and T_o space then (Y, ρ) is T_o -space.
- **2-** if (X, τ) is strongly and T_1 space then (Y, ρ) is T_1 -space.
- **3.** if (X, τ) is strongly and T_2 space then (Y, ρ) is T_2 -space.

Proof:- By theorem (2.5) and (4.1).

Theorem (4.5) : Let $f: (X, \tau) \to (Y, \sigma)$ is bijective and continuous mapping, Then :

- (1) if (Y, ρ) is strongly & $I^{**}_{-}T_0$ space then (X, τ) is T_0 -space.
- (2) if (Y,ρ) is strongly & $I^{**}_{1}T_{1}space$ then (X,τ) is T_{1} -space.
- (3) if (Y,ρ) is strongly & $I^{**}_{2}T_{2}space$ then (X,τ) is T_{2} -space.

Proof:- By definition of strongly space , continuous map & $l_{-}^{**}T_i$ space, i = 0, 1, 2.

Remark (4.6): The converse of theorem need not true as seen from the following example .

Example(4.7) :

- (1) Let $X = \{x, y, z\}$ and $f: (X, \tau_1) \rightarrow (X, (X, \tau_2))$ s.t $\tau_1 = \{X, \emptyset, \{x\}, \{y\}, \{x, y\}\}$ and $\tau_2 = \{X, \emptyset, \{x\}, \{z\}, \{x, z\}\}$, $f(x) = x, f(y) = z, f(z) = y \cdot f$ is cont. & 1 - 1, Then (X, τ_1) is $T_0 - space$. Let $A = \{x\} \rightarrow A^{*x} = \{x, y\}$ is not open set in (X, τ_2) , So we get that (X, τ_2) is not strongly space
- (2) Let $X = \{x, y, z\}$ and $f: (X, p(x)) \rightarrow (X, (X, \tau_1))$ s.t $\tau_1 = \{X, \emptyset\}$ and f(x) = x, f(y) = y, f(z) = z. f is cont. & 1 - 1, Then (X, p(x)) is T_1 – space. Let $A = \{x\} \rightarrow A^{*x} = \{x, y, z\}$ is not open set in (X, τ_1) , So we get that (X, τ_1) is not strongly space.
- (3) Let $X = \{x, y, z\}$ and $f: (X, p(x)) \to (X, (X, \tau_1))$ s.t $\tau_1 = \{X, \emptyset\}$ and f(x) = x, f(y) = y, f(z) = z. f is cont. & 1 - 1, Then (X, p(x)) is T_2 - space.

Let $A = \{x\} \rightarrow A^{*x} = \{x, y, z\}$ is not open set in

 (X, τ_1) , So we get that (X, τ_1) is not strongly space.

Corollary (4.8) : Let $f: (X, \tau) \to (Y, \sigma)$ is surjective continuous maping, Then :

- **1-** if (Y, ρ) is strongly and T_o space then (X, τ) is T_o -space.
- **2-** if (Y, ρ) is strongly and T_1 space then (X, τ) is T_1 -space.
- **3-** if (Y, ρ) is strongly and T_2 space then (X, τ) is T_2 -space.

Proof:- By theorem (2.5) and (4.5).

Theorem (4.9): Let $f: (X, \tau) \to (Y, \sigma)$ be bijective open mapping, Then:

- (1) if (X, τ) is strongly and $I^*_T_o$ space then (Y, ρ) is T_o_space .
- (2) if (X, τ) is strongly and $I^*_T_1$ space then (Y, ρ) is T_1 -space.
- (3) if (X, τ) is strongly and $I^*_T_2$ space then (Y, ρ) is T_2 -space.

Proof:- By definition of strongly space , open map and $I_{-}^{*}T_{i}$ space, i = 0, 1, 2.

Remark (4.10): The converse of theorem need not true as seen from the same example (4.3).

Theorem (4.11) : Let $f:(X,\tau) \to (Y,\sigma)$ is bijective continuous mapping, Then :

- (1) if (Y, ρ) is strongly and $I^*_Tospace$ then (X, τ) is T_0 -space.
- (2) if (Y,ρ) is strongly and $I^*_T_1$ space then (X,τ) is T_1 -space.
- (3) if (Y, ρ) is strongly and $I^*_T_2$ space then (X, τ) is T_2 -space.

Proof:- By definition of strongly space, continuous map and $I_{-}^{*}T_{i}$ space, i = 0, 1, 2.

Remark (4.12): The converse of theorem need not true as seen from the same example (4.7).

REFERENCES

- [1] James R.Munkres , (2000) . "Topology" , Second edition , Prentice Hall , Incorporated , QA611.M82 , pp 102-112 .
- [2] K. Kuratowski, Topologies I, Academic press, New York (1966).
- [3] L.A.AL-Swidi and Ahmed B.AL-Nafee ,(2013). "New Separation Axioms Using the idea of "Gem-Set" in topological Space " Mathematical Theory and Moodeling, Vol.3, No 3, pp 60-66.
- [4] L. A. AL-Swidi and Dheargham A. Al-Sada "Turing Point of Proper Ideal" Archive Des Science (Impact factor 0.474) ISSN:1661-464X Volume 65 No. 7 Jul(2012), 219-220.JST Journal. All rights reserved.
- $[5] \ R.Vaidyanathaswamy , Set Topology , Chelsea . Publishing CO. , New York (1960) .$