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
Abstract-- A quantum search for a classical object 
can be performed with  no coherent evolution on 
the quantum computer being used for the search. 
It is  done so by using interaction free 
measurement as a subroutine in a quantum search 
algorithm. In addition to providing a simple 
example of how non-unitary processes which 
approximate unitary ones can be useful in a 
quantum algorithm, this procedure requires only 
one photon regardless of the size of the database, 
thereby establishing an upper bound on the 
amount of energy required to search an arbitrarily 
large database.

      This paper applies quantum computing to a 
problem in information processing and presents 
an algorithm that is significantly faster than any 
classical algorithm can be. The problem is this: 
there is an unsorted database containing N items 
out of which just one item satisfies a given 
condition - that one item has to be  retrieved. 
Once an item is examined, it is possible to tell 
whether or not it satisfies the condition in one 
step. However, there does not exist any sorting on 
the database that would aid its selection. The 
most efficient classical algorithm for this is to 
examine the items in the database one by one. If 
an item satisfies the required condition stop; if 
it does not, keep track of this item so that it is 
not examined again. It is easily seen that this 

                                                          
 MAIN AUTHOR AFFILIATION INFORMATION GOES HERE.

algorithm will need to look at an average of N/2 
items before 

finding the desired  item and also makes a faster 
approach compared to the classical algorithm.

Index Terms-- Quantum algorithm,Grover’s 
algorithm,Walsh Hadamard transform,selective 
rotation.

I.INTRODUCTION

The quantum search algorithm was originally 
phrased in terms of searching an unsorted 
database for a marked item. But this did not meet 
the practical needs of retrieving information from 
the database. As with so many things in quantum 
information theory, the ultimate definition should
conveniently coincide with a problem which can 
be solved by using the algorithm. In theoretical 
computer science, the typical problem can be 
looked at as that of examining a number of 
different possibilities to see which, if any, of 
them satisfy a given condition. This is analogous 
to the search problem stated in the abstract 
above, except that usually there exists some 
structure to the problem, i.e some sorting does 
exist on the database. Most interesting problems 
are concerned with the effect of this structure on 
the speed of the algorithm. For example the SAT 
problem [3] asks whether it is possible to find 
any combination of n binary variables that 
satisfies a certain set of clauses C, the crucial 
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issue in NP-completeness is whether it is possible 
to solve it in time polynomial in n. In this case 
there are possible combinations which 
have to be searched for any that satisfy the 
specified property and the question is whether we 
can do that in a time which is polynomial in , i.e. 
Thus if it were possible to reduce the number of 
steps to a finite power , it would yield a 
polynomial time algorithm for NP-complete 
problems.

A. Search  Problems in Computer Science:

In view of the fundamental nature of the search
problem in both theoretical and applied computer 
science, it is natural to ask - how fast can the 
basic identification problem be solved without 
assuming anything about the structure of the 
problem? It is generally assumed that this limit is 
since there are N items to be examined and a 
classical algorithm will clearly take steps. 
However, quantum systems can simultaneously 
be in multiple Schrodinger cat states and carry 
out multiple tasks at the same time. This paper 
presents an step algorithm [2] for the search
problem.

B. Evolution Of the  Quantum Computer:

        Quantum computers  will consist of  
quantum states instead of classical ones. So, the 
electric potential can be replaced by some 
quantum state: the quantum bit (qubit for short). 
Just as a bit has a state 0 or 1, a qubit also has a 
state |0›or |1›. This is called the Dirac notation
and it is the standard notation for states in 
Quantum Mechanics. The difference between bits 
and qubits is that a qubit  |Ψ› can also be in a 
linear combination
of states |0› and |1›

                  |Ψ›= α|0› + β|1›

The state |0› is not the zero vector, but simply 
the first vector of the basis.
The matrix representations of the vectors |0› and 
|1›  are given by
                                      

|0› =                |1›  =       

                                           
II.UNSORTED    DATABASE SEARCH:

      Let the database contain N distinct objects 
arranged in a random order. A certain object has 
to be located in the database by asking a set of 
questions. Each query is a yes/no question based 
on a property of the desired object (e.g. is this the 
object that I want or not?). In the search process, 
the same query is repeated using different input 
states until the desired object is found. Let Q be 
the number of queries required to locate the 
desired object in the database.

Using classical probability analysis, it can be 
easily seen that

Option (a) :

‹Q› = N when all objects are available with equal
probability for each query (i.e. each query has a 
success probability of 1/N)

Option (b):

‹Q› = (N + 1)/2 when the objects which have 
been rejected earlier in the search process are not 
picked up again for a query. Here the angular
brackets represent the average expectation values. 

Option (b) is available only when the system 
possesses memory to recognise what has already 
been tried before. In the random cellular 
environment, the  rejected object is thrown back
into the database, and only option (a) is available 
to a classical ASSEMBLY operation.

Lov Grover discovered a quantum database 
search algorithm that locates the desired object 
using fewer queries. Quantum algorithms work 
with amplitudes, which evolve in time by unitary 
transformations. At any stage, the observation 
probability of a state is the absolute value square 
of the corresponding amplitude. The quantum 
database is represented as an N−dimensional 
Hilbert space, with the N distinct objects as its 
orthonormal basis vectors. The quantum query 
can be applied not only to the basis vectors, but 
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also to their all possible superpositions (i.e. to any
state in the Hilbert space). Let |bi be the desired 
state and |si be the symmetric superposition state .

|b› =[ (0 . . . 010 . . . 0)]^T 

|s› = [(1/√N)  (1. . . 1)]^T         - (1)
                                                           

Let Ub = 1 − 2|b›‹b|   and 

       Us = 1 − 2|s›‹s|
be the reflection operators corresponding to these 
states . 
    The operator Ub distinguishes between the 
desired state and the rest. It flips the sign of the 
amplitude in the desired state, and is the query or 
the quantum oracle. The operator Us treats all 
objects on an equal footing. It implements the
reflection about the average operation. Grover’s 
algorithm starts with the input state |si, and at 
each step applies the combination –UsUb to it. 
Each step just rotates the state vector by a fixed
angle (determined by |b›|s›| = 1/√N) in the plane 
formed by |b› and |s›|. Q applications of −UsUb 
rotate the state vector all the way to |b›|, at which 
stage the desired state is located and the 
algorithm is terminated.

      (−UsUb)Q|s›= |b› - (2)

This relation is readily solved, since the state 
vector rotates at a constant rate, giving
(2Q + 1) sin−1(1/√N) = ∏/2 - (3)

A. Grover’s Algorithm:

i. For a given N, the solution for Q 
satisfying Eq.(3) may not be an integer. 
This means that the algorithm will have to 
stop without the final state being exactly 
|bi on the r.h.s. of Eq.(2). There will 
remain a small admixture of other states in 
the output, implying an error in the search 
process. The size of this admixture is 
determined by how close one can gets to 

∏/2 on the r.h.s. of Eq.(3). Apart from 
this, the algorithm is fully deterministic.

ii. The algorithm is known to be optimal  
going from  |s›| to  |b›| along a geodesic. 
No other algorithm, classical or quantum, 
can locate the desired object in an 
unsorted database with a fewer number of 
queries.

iii. The iterative steps of the algorithm can be 
viewed as the discretised evolution of the 
state vector in the Hilbert space, governed 
by a Hamiltonian containing two terms, 
|b›|‹b| and |s›|‹s|. The former represents a 
potential energy attracting the state 
towards |bi, while the latter represents a 
kinetic energy diffusing the state 
throughout the Hilbert space. The 
alteration between Ub and Us in the 
discretised steps is reminiscent of 
Trotter’s formula[8] used in construction 
of the transfer matrix from a discretised 
Feynman’s path[11] integral.

iv. Asymptotically, Q = ∏√N/4. The best that 
the classical algorithms can do is to 
random walk through all the possibilities, 
and that produces Q = O(N) as mentioned
above. With the use of superposition of all 
possibilities at the start, the quantum 
algorithm performs a directed walk to the 
final result and achieves the square-root 
speed-up.

v. The result in Eq.(3) depends only on 
|h›|s›|; the phases of various components 
of |s› can be arbitrary, i.e. they can have 
the symmetry of bosons, fermions or even 
anyons.

B. Walsh – Hadamard Transformation:

If x  be the   n-bit binary   string describing
If y the starting state and the n-bit binary string.

describing the resulting string, the sign of the 
amplitude of y is determined by the parity of the 
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bitwise dot product of x and y, i.e. . . 
This transformation is referred to as the Walsh-
Hadamard transformation This operation (or a 
closely related operation called the Fourier 
Transformation) is one of the things that makes 
quantum mechanical algorithms more powerful 
than classical algorithms and forms the basis for 
most significant quantum algorithms.

When N=2n, the discrete Walsh Hadamard 
Tranform is:

Where bk(z) is the kth bit in the binary 
representation of z.

III. THE ABSTRACTED PROBLEM:

Let a system have N = 2n states which are 
labelled S1,S2,...SN. These 2n states are 
represented as n bit strings. Let there be a unique 
state, say Sn, that satisfies the condition C(Sn) =
1, whereas for all other states S, C(S) = (assume 
that for any state S, the condition C(S) can be 
evaluated in unit time). The problem is to identify 
the state Sn.

IV. QUANTUM  ALGORITHM:

The above mentioned Grover’s algorithm is not 
typically projected  to solve multiple query states. 
So this quantum algorithm might pave the way to 
solve complex query searches with the help of 
multiple unitary states.

(i) Initialize the system to the distribution:   
i.e. there is the same 

amplitude to be in each of the N states. This 
distribution can be obtained  by simulating 
annealing[5].

ii)Repeat the following unitary operations O(log 
N) times (the precise number of repetitions is 
important as discussed in 

(a) Let the system be in any state S: 

Corollary 1: In     case   C(S)=  1,
rotate the phase by radians;

Corollary 2: In     case   C(S)=  0,
leave the system unaltered.

     

(b) Apply the diffusion transform D 
which is defined by the matrix D as 
follows: 

                i) = if  i≠j

                ii) = -1+

This diffusion transform, D, can be 
implemented as , where R the Rotation  
matrix & W the Walsh-Hadamard
Transform Matrix are defined as follows:

   i) Rij=0 if  i≠j;
   ii) Rii=1 if i=0 Rii=-1 if i≠0;

As discussed in section II.B:

where is the
i1 is binary representation of i, and
i1.j1 denotes the bitwise dot product of 
the two n bit i and j strings.

(iii) Sample the resulting state. In case there is a 
unique state Sn such that the final state is Sn with 
a probability of at least ½. 
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Note that step (ii) (a) is a phase rotation 
transformation by using selective rotation.
of the phase of the amplitude in certain states. 
The transformation describing this for a 4 state 
system is of the form ,

                        0         0         0

                  0               0         0
                
                  0           0             0

                  0           0         0         

where j=√-1 and ɸ1, ɸ2, ɸ3, ɸ4 are arbitrary 
real numbers. Note that, unlike the Walsh-
Hadamard transformation and other state 
transition matrices, the probability in each state 
stays the same since the square of the absolute
value of the amplitude in each state stays the 
same.

In a practical implementation this would involve 
one portion of the quantum system sensing the 
state and then deciding whether or not to rotate 
the phase. It would do it in a way so that no trace 
of the state of the system be left after this 
operation (so as to ensure that paths leading to the 
same final state were indistinguishable and could 
interfere). The implementation does not involve a
classical measurement. 

V.INVERSION ABOUT AVERAGE 
OPERATION:

    The loop in step (ii) above, is the heart of the 
algorithm. Each iteration of this loop increases 
the amplitude in the desired state by O( ), as a 

result in repetitions of the loop, the amplitude and 
hence the probability in the desired state reach 
O(1). In order to see that the amplitude increases 
by O( ), in each repetition, we first show that 

the diffusion transform, D, can be interpreted as 
an inversion about average operation. A simple 

inversion is a phase rotation operation and by 
SELECTIVE ROTATION ,which it is unitary.

    The inversion about average operation also a 
unitary operation and is equivalent to the 
diffusion transform D as used in step (ii)(a) of the 
algorithm and at the same time The inversion 
about average operation is applied to a 
distribution in which all but one of the 
components is initially negative. This operation is 
precisely explained below:

CASE I:

Let denote the average amplitude over all 
states, i.e. if be the amplitude in the state, 
then the average

is 

As a result of the operation D, the amplitude in 
each state increases (decreases) so that after this 
operation it is as much below (above) a as it was 
above (below) a before the operation.

                                                   Average(α)

                                                                    

             A          B              C                  D

                     BEFORE

                                                  Average(α)

              A             B            C                  D

                    AFTER

Figure 1:Inversion about average Operation
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The diffusion transform, , is defined as follows:

               i) = if  i≠j

                ii) = -1+

Next it is proved that is indeed the inversion 
about average as shown in figure 1 above. 
Observe that D can be represented in the form 
where is the identity matrix and is a projection 
matrix with for all . 

The following two properties of P
are easily verified:

First: It is =P

Second: that  P acting on any vector gives a 
vector each of whose components is equal to the 
average of all components.

Using the fact that =P , it follows immediately
from the representation
D= - I + 2P   that
and hence D is unitary.

CASE II:

Next consider what happens when the inversion 
about average operation is applied to a vector 
where each of the components, except one, are 
equal to avalue, say C, which is approximately 

; the one component that is different is negative

The average A is approximately equal to C. Since 
each of the  (N-1) components is approximately 
equal to the average, it does not change 

significantly as a result of the inversion about 
average. The one component that was negative to
start out, now becomes positive and its magnitude 
increases by approximately 2C , which is 

approximately 

                
                                      Average

.                              BEFORE

                                             Average

                                 AFTER 
Figure 2 : The inversion about average operation is  

applied to a distribution

VI.EVOLUTION OF THIS ALGORITHM:

  It is very much important that the above 
algorithm must be implemented in way that  how 
accurately is it possible to find the desired 
element from the database There is a matching 
lower bound that suggests that it is not possible to 
identify the desired element in fewer than Ω(√N)
steps.[4] This result states that any quantum
algorithm running for T steps is only sensitive to 
O( ) queries (i.e. if there are more possible
queries, then the answer to at least one can be 
flipped without affecting the behaviour of the 
algorithm).

    So in order to correctly decide the answer 
which is sensitive to multiple queries will take a 
running time of Ω(√N). To see this assume that 
C(S)=0 for all states and the algorithm returns the 
right result, i.e. that no state satisfies the desired 
condition. Then, by T< Ω(√N),the answer to at 
least one of the queries about C(S) for some S can 
be flipped without affecting the result, thus giving 
an incorrect result for the case in which the 
answer to the query was flipped. gives a direct 
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proof of this result along with tight bounds 
showing the algorithm of this paper is within a 
few percent of the fastest possible quantum
algorithm.

A. Implementation Considerations: 

This algorithm is likely to be simpler to 
implement as compared to other quantum 
mechanical algorithms for the following reasons:

i)The only operations required are, first, the
Walsh -Hadamard transform, and second, the 
conditional phase shift operation both of which 
are relatively easy as compared to operations 
required for other quantum mechanical 
algorithms.

(ii) Quantum algorithms based on the Walsh-
Hadamard transform are likely to be much 
simpler to implement than those based on the 
large scale Fourier transform.

(iii) The conditional phase shift would be much 
easier to implement if the algorithm was used in 
the mode where the function at each point was 
computed rather than retrieved from memory. 
This would eliminate the storage requirements in 
quantum memory.

B. A Real  time Example – Quantum Search:

Imagine a phone directory containing N names
arranged in completely random order. In order to 
find someone's phone number with a probability 

of , any classical algorithm (whether 

deterministic or probabilistic) will need to look at 

a minimum of  names.

   Quantum systems can be in a superposition of
states and simultaneously examine multiple 

names. By properly adjusting the phases of 
various operations, successful computations 
reinforce each other while others interfere 
randomly. As a result, the desired phone number
can be obtained in only O(√N), steps. The 
algorithm is within a small constant factor of the 
fastest possible quantum algorithm.

C.Efficiency And Query  Complexity:

    By Reichardt' span-program formalism [7], it is 
now known that the quantum query complexity of 
any formula of O(1) fan in on N variables 
is O(√N) This result culminates that a query 
search on 2n variables can be evaluated on 
quantum computers in time O(20.5n) using a 
continuous-time quantum walk, whereas classical 
computers require Ω(20.753 n) queries.

So the query Complexity is less when compared to 
classical algorithms. Discrete Quantum Walks[10] 
are specialized in this algorithm.

VII. OTHER OBSERVATIONS:

The algorithm as discussed here assumes a unique
state that satisfies the desired condition. It can be 
easily modified to take care of the case when 
there are multiple
states satisfying the condition and it is
required to find one of these.

Two ways of achieving this are:

(i) The first possibility would be to repeat the 
experiment so that it checks for a range of 
degeneracy, i.e.
redesign the experiment so that it checks for the 
degeneracy of the solution being in the range
(k,k+1,k+2,… 2k)  for various k. Then within log 
N repetitions of this procedure, one can ascertain 
whether or not there exists at least one out of the 
N states that satisfies
the condition. [4]
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(ii) The other possibility is to slightly perturb the 
problem in a random fashion as discussed in so
that with a high probability the degeneracy is 
removed. There is also a scheme discussed in [3] 
by which it is possible to modify any algorithm 
that solves an NP search problem with a unique 
solution and use it to solve an NP-search problem 
in general.

VIII.CONCLUSION:

It is possible for quantum system to make 
interaction-free measurements by using the 
duality properties of photons]. In these the
presence (or absence) of an object can be deduced 
by allowing for a very small probability of a 
photon interacting with the object. Therefore 
most probably the photon will not interact, 
however, just allowing a small probability of 
interaction is enough to make the measurement.

This suggests that in the multiple search problem 
also, it might be possible to find the object 
without examining all the objects but just by 
allowing a certain probability of examining the 
desired object which is something like what 
happens in the algorithm in this paper.

IX.REFERENCES:

[1]A. Berthiaume and G. Brassard, Oracle
     quantum computing, Journal of Modern
     Optics, Vol.41, no. 12, December 1994,
     pp. 2521-2535

[2]Quantum searching a classical database
    (or how we learned to stop worrying and   
     love the bomb).pdf              

[3]http://www.proofwiki.org/wiki/CNF_S
    AT_is_NP-complete             

[4] C.H. Bennett, E. Bernstein, G. Brassard
     & U.Vazirani, Strengths and weaknesses
     of quantum computing, to be published

     in the SIAM Journal on Computing.

[5]. M. Boyer, G. Brassard, P. Hoyer & A.
      Tapp, Tight bounds on quantum searching,
      Proceedings, PhysComp 1996
     (lanl e-print quant-ph/9605034).

[6] P. W. Shor, Algorithms for quantum
     computation: discrete logarithms and
     factoring, Proceedings, 35th Annual
    Symposium on Fundamentals of Comp.
    Science (FOCS), 1994, pp. 124-134.

[7]www.stp.dias.ie/~dorlas/Papers/Feynman4.pdf

[8] Hazewinkel,   Michiel, ed. (2001),
"Trotter   product formula",Encyclopedia of       
Mathematics, Springer, ISBN 978-1-55608-
010-4

[9] Terry Rudolph and Dr.(Strange)Lov Grover    
      Bell Labs, 600-700 Mountain Ave., Murray 
      Hill, NJ 07974, U.S.A.(Dated: February 1,
      2008).    

[10]http://pra.aps.org/abstract/PRA/v48/i2/p1687
     _1

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings


