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Mutiple query search in a classical database
using quantum algorithm
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Abstract-- A quantum search for a classical object
can be performed with no coherent evolution on
the quantum computer being used for the search.
It is done so by using interaction free
measurement as a subroutine in a quantum search
algorithm. In addition to providing a simple
example of how non-unitary processes which
approximate unitary ones can be useful in a
quantum algorithm, this procedure requires only
one photon regardless of the size of the database,
thereby establishing an upper bound on the
amount of energy required to search an arbitrarily
large database.

This paper applies quantum computing to a
problem in information processing and presents
an algorithm that is significantly faster than any
classical algorithm can be. The problem is this:
there is an unsorted database containing N items
out of which just one item satisfies a given
condition - that one item has to be retrieved.
Once an item is examined, it is possible to tell
whether or not it satisfies the condition in one
step. However, there does not exist any sorting on
the database that would aid its selection. The
most efficient classical algorithm for this is to
examine the items in the database one by one. If
an item satisfies the required condition stop; if
it does not, keep track of this item so that it is
not examined again. It is easily seen that this
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algorithm will need to look at an average of N/2
items before

finding the desired item and also makes a faster
approach compared to the classical algorithm.

Index Terms-- Quantum algorithm,Grover’s
algorithm, Walsh Hadamard transform,selective
rotation.

[.INTRODUCTION

The quantum search algorithm was originally
phrased in terms of searching an unsorted
database for a marked item. But this did not meet
the practical needs of retrieving information from
the database. As with so many things in quantum
information theory, the ultimate definition should
conveniently coincide with a problem which can
be solved by using the algorithm. In theoretical
computer science, the typical problem can be
looked at as that of examining a number of
different possibilities to see which, if any, of
them satisfy a given condition. This is analogous
to the search problem stated in the abstract
above, except that usually there exists some
structure to the problem, i.e some sorting does
exist on the database. Most interesting problems
are concerned with the effect of this structure on
the speed of the algorithm. For example the SAT
problem [3] asks whether it is possible to find
any combination of » binary variables that
satisfies a certain set of clauses C, the crucial
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issue in NP-completeness is whether it is possible
to solve it in time polynomial in n. In this case
there are W = 2n possible combinations which
have to be searched for any that satisfy the
specified property and the question is whether we
can do that in a time which is polynomial in , i.e.
Thus if it were possible to reduce the number of
steps to a finite power , it would yield a
polynomial time algorithm for NP-complete
problems.

A. Search Problems in Computer Science:

In view of the fundamental nature of the search
problem in both theoretical and applied computer
science, it is natural to ask - how fast can the
basic identification problem be solved without
assuming anything about the structure of the
problem? It is generally assumed that this limit is
since there are N items to be examined and a
classical algorithm will clearly take steps.
However, quantum systems can simultaneously
be in multiple Schrodinger cat states and carry
out multiple tasks at the same time. This paper
presents an step algorithm [2] for the search
problem.

B. Evolution Of the Quantum Computer:

Quantum computers will consist of
quantum states instead of classical ones. So, the
electric potential can be replaced by some
quantum state: the quantum bit (qubit for short).
Just as a bit has a state 0 or 1, a qubit also has a
state |0>or |1>. This is called the Dirac notation
and it is the standard notation for states in
Quantum Mechanics. The difference between bits
and qubits is that a qubit |¥> can also be in a
linear combination
of states |0> and |1»

[¥>= al0> + B|D

The state |0> is not the zero vector, but simply

the first vector of the basis.
The matrix representations of the vectors |0> and
|1> are given by
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ILUNSORTED DATABASE SEARCH:

Let the database contain N distinct objects
arranged in a random order. A certain object has
to be located in the database by asking a set of
questions. Each query is a yes/no question based
on a property of the desired object (e.g. is this the
object that I want or not?). In the search process,
the same query is repeated using different input
states until the desired object is found. Let Q be
the number of queries required to locate the
desired object in the database.

Using classical probability analysis, it can be
easily seen that

Option (a) :

<{Q> = N when all objects are available with equal
probability for each query (i.e. each query has a
success probability of 1/N)

Option (b):

<Q> = (N + 1)/2 when the objects which have
been rejected earlier in the search process are not
picked up again for a query. Here the angular
brackets represent the average expectation values.

Option (b) is available only when the system
possesses memory to recognise what has already
been tried before. In the random cellular
environment, the rejected object is thrown back
into the database, and only option (a) is available
to a classical ASSEMBLY operation.

Lov Grover discovered a quantum database
search algorithm that locates the desired object
using fewer queries. Quantum algorithms work
with amplitudes, which evolve in time by unitary
transformations. At any stage, the observation
probability of a state is the absolute value square
of the corresponding amplitude. The quantum
database is represented as an N—dimensional
Hilbert space, with the N distinct objects as its
orthonormal basis vectors. The quantum query
can be applied not only to the basis vectors, but
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also to their all possible superpositions (i.e. to any
state in the Hilbert space). Let |bi be the desired
state and |si be the symmetric superposition state .

Ib>=[(0...010...0)] T

I =[AAN) d...D]*T - Q)

Let Ub=1-2|b><b| and

Us=1—-2|s><s|
be the reflection operators corresponding to these
states .

The operator Ub distinguishes between the
desired state and the rest. It flips the sign of the
amplitude in the desired state, and is the query or
the quantum oracle. The operator Us treats all
objects on an equal footing. It implements the
reflection about the average operation. Grover’s
algorithm starts with the input state |si, and at
each step applies the combination —UsUb to it.
Each step just rotates the state vector by a fixed
angle (determined by |b>|s»| = 1/VN) in the plane
formed by |b> and |s»|. Q applications of —UsUb
rotate the state vector all the way to |by|, at which
stage the desired state is located and the
algorithm is terminated.

(-UsUb)Q[>= [b> - (2)

This relation is readily solved, since the state
vector rotates at a constant rate, giving
(2Q + 1) sin—1(1AN) =[]/2 - 3)

A. Grover’s Algorithm:

i. For a given N, the solution for Q
satisfying Eq.(3) may not be an integer.
This means that the algorithm will have to
stop without the final state being exactly
|bi on the r.h.s. of Eq.(2). There will
remain a small admixture of other states in
the output, implying an error in the search
process. The size of this admixture is
determined by how close one can gets to
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[1/2 on the r.h.s. of Eq.(3). Apart from
this, the algorithm is fully deterministic.

il. The algorithm is known to be optimal
going from [$»| to |by| along a geodesic.
No other algorithm, classical or quantum,
can locate the desired object in an
unsorted database with a fewer number of
queries.

iii.  The iterative steps of the algorithm can be
viewed as the discretised evolution of the
state vector in the Hilbert space, governed
by a Hamiltonian containing two terms,
|b>|<b| and |s»|<s|. The former represents a
potential energy attracting the state
towards |bi, while the latter represents a
kinetic energy diffusing the state
throughout the Hilbert space. The
alteration between Ub and Us in the
discretised steps is reminiscent of
Trotter’s formula[8] used in construction
of the transfer matrix from a discretised
Feynman’s path[11] integral.

iv.  Asymptotically, Q = [JVN/4. The best that
the classical algorithms can do is to
random walk through all the possibilities,
and that produces Q = O(N) as mentioned
above. With the use of superposition of all
possibilities at the start, the quantum
algorithm performs a directed walk to the
final result and achieves the square-root
speed-up.

v. The result in Eq.(3) depends only on

|h>|s>|; the phases of various components
of |s» can be arbitrary, i.e. they can have
the symmetry of bosons, fermions or even
anyons.

B. Walsh — Hadamard Transformation:

If x be the n-bitbinary string describing

If y the starting state and the n-bit binary string.
describing the resulting string, the sign of the
amplitude of y is determined by the parity of the
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bitwise dot product of x and y, i.e. . (—1)*" .
This transformation is referred to as the Walsh-
Hadamard transformation This operation (or a
closely related operation called the Fourier
Transformation) is one of the things that makes
quantum mechanical algorithms more powerful
than classical algorithms and forms the basis for
most significant quantum algorithms.

When N=2n, the discrete Walsh Hadamard
Tranform is:

W(u) = Z f(?{-‘]ﬂiw (x4 a)® =(—1)PPai-1(w)

x=0
Where bk(z) is the kth bit in the binary
representation of z.

III. THE ABSTRACTED PROBLEM:

Let a system have N = 2n states which are
labelled S7,52,...SN. These 2n states are
represented as n bit strings. Let there be a unique
state, say Sn, that satisfies the condition C(8n) =
1, whereas for all other states S, C(S) = (assume
that for any state S, the condition C(S) can be
evaluated in unit time). The problem is to identify
the state Sn.

IV. QUANTUM ALGORITHM:

The above mentioned Grover’s algorithm is not
typically projected to solve multiple query states.
So this quantum algorithm might pave the way to
solve complex query searches with the help of
multiple unitary states.

(1) Initialize the system to the distribution:
l:ljﬂl_ﬁ 1;'?? lg‘ﬂﬁ ljﬂﬁ J i.e. there is the same
amplitude to be in each of the N states. This

distribution can be obtained by simulating
annealing[5].
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ii)Repeat the following unitary operations O(log
N) times (the precise number of repetitions is
important as discussed in

(a) Let the system be in any state S:

Corollary 1: In case C(S)= 1,
rotate the phase by radians;
Corollary 2: In case C(S)= 0,

leave the system unaltered.

(b) Apply the diffusion transform D
which is defined by the matrix D as
follows:

i) Di,.=§ if i

2
if) Dy= -1+~

This diffusion transform, D, can be
implemented as , where R the Rotation
matrix & W the Walsh-Hadamard
Transform Matrix are defined as follows:

i) Rij=0if i%;
i) Rii=1 if i=0 Rii=-1 if i#0;

As discussed in section 11.B:
Wij = 27%/2-n/2(—1)"*"

where is the

il is binary representation of 1, and

il.j1 denotes the bitwise dot product of
the two n bit 1 and j strings.

(i11) Sample the resulting state. In case there is a
unique state Sn such that the final state is Sn with
a probability of at least /5.
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Note that step (ii) (a) is a phase rotation
transformation by using selective rotation.

of the phase of the amplitude in certain states.
The transformation describing this for a 4 state
system is of the form ,

B et 0 0 0_
0 el®z 0 0
0 0 el?? 0
0 0 0 el®*

where j=V-1 and ¢1, $2, $p3, P4 are arbitrary
real numbers. Note that, unlike the Walsh-
Hadamard transformation and other state
transition matrices, the probability in each state
stays the same since the square of the absolute
value of the amplitude in each state stays the
same.

In a practical implementation this would involve
one portion of the quantum system sensing the
state and then deciding whether or not to rotate
the phase. It would do it in a way so that no trace
of the state of the system be left after this
operation (so as to ensure that paths leading to the
same final state were indistinguishable and could
interfere). The implementation does not involve a
classical measurement.

V.INVERSION ABOUT AVERAGE
OPERATION:

The loop in step (ii) above, is the heart of the
algorithm. Each iteration of this loop increases

the amplitude in the desired state by O(_,iw_), as a
result in repetitions of the loop, the amplitude and

hence the probability in the desired state reach
O(1). In order to see that the amplitude increases

by O(_,i\_), in each repetition, we first show that
N

the diffusion transform, D, can be interpreted as
an inversion about average operation. A simple
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inversion is a phase rotation operation and by
SELECTIVE ROTATION ,which it is unitary.

The inversion about average operation also a
unitary operation and is equivalent to the
diffusion transform D as used in step (ii)(a) of the
algorithm and at the same time The inversion
about average operation is applied to a
distribution in which all but one of the
components is initially negative. This operation is
precisely explained below:

CASE I:

Let @ denote the average amplitude over all

states, i.e. if ©; be the amplitude in the i*"state,
then the average

.1 N1

1S 4...'r_m i=1 {Il

As a result of the operation D, the amplitude in
each state increases (decreases) so that after this
operation it is as much below (above) a as it was
above (below) a before the operation.

‘\ Average(a)
A B d D
BEFORE
Average(a)
A | B C D
AFTER

Figure 1:Inversion about average Operation
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The diffusion transform, , is defined as follows:
. 2.
i) D= . if i#j

2
ii) Dii= '1+E

Next it is proved that is indeed the inversion
about average as shown in figure 1 above.
Observe that D can be represented in the form
where is the identity matrix and is a projection
matrix with for all .

The following two properties of P
are easily verified:

First: It is P*=P

Second: that P acting on any vector gives a
vector each of whose components is equal to the
average of all components.

Using the fact that P2=P , it follows immediately
from the representation

D=-1+2P that D*=1

and hence D is unitary.

CASE II:

Next consider what happens when the inversion
about average operation is applied to a vector
where each of the components, except one, are
equal to avalue, say C, which is approximately

ﬁ; the one component that is different is negative

The average A4 is approximately equal to C. Since
each of the (N-1) components is approximately
equal to the average, it does not change
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significantly as a result of the inversion about
average. The one component that was negative to
start out, now becomes positive and its magnitude
increases by approximately 2C , which is

. 2
approximately —
VN

"TT'I'TTTVPFF?T"[

BEFORE

A
v

Average
TP T
AFTER

Figure 2 : The inversion about average operation is
applied to a distribution

A
v

VIL.EVOLUTION OF THIS ALGORITHM:

It is very much important that the above
algorithm must be implemented in way that how
accurately is it possible to find the desired
element from the database There is a matching
lower bound that suggests that it is not possible to
identify the desired element in fewer than Q(VN)
steps.[4] This result states that any quantum
algorithm running for 7 steps is only sensitive to
O(T?) queries (i.e. if there are more possible
queries, then the answer to at least one can be
flipped without affecting the behaviour of the
algorithm).

So in order to correctly decide the answer
which is sensitive to multiple queries will take a
running time of Q(VN). To see this assume that
C(S)=0 for all states and the algorithm returns the
right result, i.e. that no state satisfies the desired
condition. Then, by T< Q(VN),the answer to at
least one of the queries about C(S) for some S can
be flipped without affecting the result, thus giving
an incorrect result for the case in which the
answer to the query was flipped. gives a direct
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proof of this result along with tight bounds
showing the algorithm of this paper is within a
few percent of the fastest possible quantum
algorithm.

A. Implementation Considerations:

This algorithm 1is likely to be simpler to
implement as compared to other quantum
mechanical algorithms for the following reasons:

1)The only operations required are, first, the
Walsh -Hadamard transform, and second, the
conditional phase shift operation both of which
are relatively easy as compared to operations
required for other quantum  mechanical
algorithms.

(1i1)) Quantum algorithms based on the Walsh-
Hadamard transform are likely to be much
simpler to implement than those based on the
large scale Fourier transform.

(ii1) The conditional phase shift would be much
easier to implement if the algorithm was used in
the mode where the function at each point was
computed rather than retrieved from memory.
This would eliminate the storage requirements in
quantum memory.

B. A Real time Example — Quantum Search:

Imagine a phone directory containing N names
arranged in completely random order. In order to
find someone's phone number with a probability

1 . .
of 5 - any classical algorithm (whether
deterministic or probabilistic) will need to look at
a minimum of 5 hames.

Quantum systems can be in a superposition of
states and simultaneously examine multiple
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names. By properly adjusting the phases of
various operations, successful computations
reinforce each other while others interfere
randomly. As a result, the desired phone number
can be obtained in only O(VN), steps. The
algorithm is within a small constant factor of the
fastest possible quantum algorithm.

C.Efficiency And Query Complexity:

By Reichardt' span-program formalism [7], it is
now known that the quantum query complexity of
any formula of O(1) fan in on N variables
is O(YN) This result culminates that a query
search on 2n variables can be evaluated on
quantum computers in time O(20.5n) using a
continuous-time quantum walk, whereas classical

computers require €2(20.753 n) queries.

So the query Complexity is less when compared to
classical algorithms. Discrete Quantum Walks[10]
are specialized in this algorithm.

VII. OTHER OBSERVATIONS:

The algorithm as discussed here assumes a unique
state that satisfies the desired condition. It can be
easily modified to take care of the case when
there are multiple

states satisfying the condition and it is

required to find one of these.

Two ways of achieving this are:

(1) The first possibility would be to repeat the
experiment so that it checks for a range of
degeneracy, i.e.

redesign the experiment so that it checks for the
degeneracy of the solution being in the range
(kk+1,k+2,... 2k) for various k. Then within log
N repetitions of this procedure, one can ascertain
whether or not there exists at least one out of the
N states that satisfies

the condition. [4]
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(i1) The other possibility is to slightly perturb the
problem in a random fashion as discussed in so
that with a high probability the degeneracy is
removed. There is also a scheme discussed in [3]
by which it is possible to modify any algorithm
that solves an NP search problem with a unique
solution and use it to solve an NP-search problem
in general.

VIII.CONCLUSION:

It is possible for quantum system to make
interaction-free measurements by using the
duality properties of photons]. In these the
presence (or absence) of an object can be deduced
by allowing for a very small probability of a
photon interacting with the object. Therefore
most probably the photon will not interact,
however, just allowing a small probability of
interaction is enough to make the measurement.

This suggests that in the multiple search problem
also, it might be possible to find the object
without examining all the objects but just by
allowing a certain probability of examining the
desired object which is something like what
happens in the algorithm in this paper.

IX.REFERENCES:

[1]A. Berthiaume and G. Brassard, Oracle
quantum computing, Journal of Modern
Optics, Vol.41, no. 12, December 1994,
pp- 2521-2535

[2]Quantum searching a classical database
(or how we learned to stop worrying and
love the bomb).pdf

[3]http://www.proofwiki.org/wiki/CNF_S
AT is NP-complete

[4] C.H. Bennett, E. Bernstein, G. Brassard
& U.Vazirani, Strengths and weaknesses
of quantum computing, to be published

Proceedings of International Conference “ICSEM’13”

in the SIAM Journal on Computing.

[5]. M. Boyer, G. Brassard, P. Hoyer & A.
Tapp, Tight bounds on quantum searching,
Proceedings, PhysComp 1996
(lanl e-print quant-ph/9605034).

[6] P. W. Shor, Algorithms for quantum
computation: discrete logarithms and
factoring, Proceedings, 35th Annual
Symposium on Fundamentals of Comp.
Science (FOCS), 1994, pp. 124-134.

[7]www.stp.dias.ie/~dorlas/Papers/Feynman4.pdf

[8] Hazewinkel, Michiel, ed. (2001),
"Trotter product formula",Encyclopedia of
Mathematics, Springer, ISBN 978-1-55608-
010-4

[9] Terry Rudolph and Dr.(Strange)Lov Grover
Bell Labs, 600-700 Mountain Ave., Murray
Hill, NJ 07974, U.S.A.(Dated: February 1,
2008).

[10]http://pra.aps.org/abstract/PRA/v48/12/p1687
1

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings 325



