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Abstract—In this paper, propose a protocol for secure mining 

of association rules in horizontally distributed databases. The 

current leading protocol is K and C protocol. This protocol is 

based on the Fast Distributed Mining(FDM) algorithm which 

is an unsecured version. We want to release aggregate 

information about the data, without leaking individual's 

information.The main ingredients in this protocol are two 

novel secure multi-party algorithms, first one computes the 

union of private subsets that each of the interacting players 

hold, and second tests the inclusion of an element held by one 

player in a subset held by another. This protocol offers 

enhanced privacy with respect to the other one. 

 

Keywords— Privacy Preserving Data Mining; Frequent 

Itemsets; Association Rules. 

 
I. INTRODUCTION 

Data mining is a power new technology has emerged as a 

means of identifying patterns and trends from large 

quantities of data and it is also a process of digging through 

and analyzing enormous sets of data and then extracting the 

meaning of the data. Data mining and data warehousing go 

hand-in-hand: most tools operate by gathering all data into 

a central site, then running an algorithm against that data 

present in the central site. However, for privacy concerns 

can prevent building a centralized warehouse – data may be 

distributed among several customers, none of which are 

allowed to transfer their data to another site. 

This concept addresses the problem of computing 

association rules within such a scenario. We assume 

homogeneous databases where all sites have the same 

schema, but each site has information on different entities. 

The main goal is to produce association rules that hold 

globally, while reducing the information shared about each 

site. 

The problem is that insurance companies will be 

concerned about sharing this data. Not only must the 

privacy of patient records be maintained, but insurers will 

be unwilling to release rules pertaining only to them. 

Imagine a rule indicating a high rate of complications with 

a particular medical procedure. If this rule doesn’t hold 

globally, the insurer would like to know this – they can 

then try to pinpoint the problem with their policies and 

improve patient care. If the fact that the insurer’s data 

supports this rule is revealed, the insurer could be exposed 

to significant public relations or liability problems. This 

potential risk could exceed their own perception of the 

benefit of participating in the CDC study. 

We study here the problem of secure mining of 

association rules in horizontally distributed databases. In 

that setting, there are several players that hold 

homogeneous databases, i.e., databases that share the same 

schema but hold information on different entities. The goal 

is to find all association rules with support at least s and 

confidence at least c, for some given minimal support size s 

and confidence level c, that hold in the unified database, 

while reducing the information disclosed about the private 

databases held by those players. The information that we 

would like to protect in this context is not only individual 

transactions in the different databases, but also information 

should available globally such as what association rules are 

supported and used locally in each of those databases. That 

goal defines a problem of secure multi-party computation. 

In such problems, there are M players that hold private 

inputs, x1, . . . . , xM, and they wish to securely compute y 

= f(x1 ,. . . , xM) for some public function f. If trusted third 

party is used, the players could give their inputs and he 

would perform the function evaluation and send to them 

the resulting output. If the trusted third party is not used, it 

is needed to devise a protocol that the players can run on 

their own in order to get the required output y. Such a 

protocol is considered perfectly secure if no player can 

learn from his view of the protocol more than what he 

would have learnt in the idealized setting where the 

computation is carried out by a trusted third party. In our 

problem, the inputs are the partial databases, and the 

required output is the list of association rules that hold in 

the unified database with support and confidence no 

smaller than the given thresholds s and c, respectively. As 

the above mentioned generic solutions rely upon a 

description of the function f as a Boolean circuit, they can 

be applied only to small inputs and functions which are 

realizable by simple circuits. In more complex settings, 

such as ours, other methods are required for carrying out 

this computation. In such cases, some relaxations of the 
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notion of perfect security might be inevitable when looking 

for practical protocols, provided that the excess 

information is deemed benign. Kantarcioglu and Clifton 

studied that problem in [4] and devised a protocol for its 

solution. The main part of the protocol is a sub-protocol for 

the secure computation of the union of private subsets that 

are held by the different players. That is the most costly 

part of the protocol and its implementation relies upon 

cryptographic primitives such as commutative encryption, 

oblivious transfer, and hash functions. This is also the only 

part in the protocol in which the players may extract from 

their view of the protocol information on other databases, 

beyond what is implied by the final output and their own 

input. While such leakage of information renders the 

protocol not perfectly secure, the perimeter of the excess 

information is explicitly bounded in [4] and it is argued 

there that such information leakage is innocuous, whence 

acceptable from a practical point of view. Herein we 

propose an alternative protocol for the secure computation 

of the union of private subsets. The proposed protocol 

improves upon that in [4] in terms of simplicity and 

efficiency as well as privacy. In particular, our protocol 

does not depend on commutative encryption and oblivious 

transfer. While our solution is still not perfectly secure, it 

leaks excess information only to a small number (three) of 

possible coalitions, unlike the protocol of [4] that discloses 

information also to some single players. In addition, we 

claim that the excess information that our protocol may 

leak is less sensitive than the excess information leaked by 

the protocol of [4]. The protocol that we propose here 

computes a parameterized family of functions, which we 

call threshold functions, in which the two extreme cases 

correspond to the problems of computing the union and 

intersection of private subsets. Those are in fact general-

purpose protocols that can be used in other contexts as well. 

Another problem of secure multiparty computation that we 

solve here as part of our discussion is the set inclusion 

problem; namely, the problem where Alice holds a private 

subset of some ground set, and Bob holds an element in the 

ground set, and they wish to determine whether Bob’s 

element is within Alice’s subset, without revealing to either 

of them information about the other party’s input beyond 

the above described inclusion. 

II. RELATED WORK 

In privacy preserving data mining has considered two 

related settings. One is data owner and other is data miner 

are the different two entities, and another, in which the data 

is distributed among several parties who aim to jointly 

perform data mining on the unified corpus of data that they 

hold.  

The first main goal is to protect the data records from 

the data miner. Hence, the data owner aims at anonymizing 

the data prior to its release. The main approach in this 

context is to apply data perturbation .The idea is that the 

perturbed data can be used to infer general trends in the 

data, without revealing original record information. 

In the second setting, the goal is to perform data 

mining while protecting the data records of each of the data 

owners from the other data owners. This is a problem of 

secure multiparty computation. The usual approach here is 

cryptographic rather than probabilistic. 

III. FAST DISTRIBUTED MINING ALGORITHM 

The protocol, as well as ours, is based on the Fast 

Distributed Mining (FDM) algorithm. Which is an 

unsecured distributed version of the Apriori Algorithm. Its 

main idea is that any s-frequent itemset must be also 

locally s frequent in at least one of the sites. Hence, in 

order to find all globally s-frequent itemsets, each player 

reveals his locally s-frequent itemsets and then the players 

check each of them to see if they are s-frequent also 

globally. 

The FDM algorithm proceeds as follows: 

(1) Initialization: It is assumed that the players have 

already jointly calculated Fk−1 s. The goal is to proceed 

and Calculate Fks . 

(2) Candidate Sets Generation: Each player Pm computes 

the set of all (k − 1)-itemsets that are locally frequent in his 

site and also globally frequent; namely, Pm computes the 

set Fk−1,ms∩ Fk−1s . He then applies on that set the 

Apriori algorithm in order to generate the set Bk, ms of 

candidate k-itemsets. 

(3) Local Pruning: For each X ∈ Bk,ms , Pm computes 

suppm(X). He then retains only those itemsets that are 

locally s-frequent. We denote this collection of itemsetsby 

Ck,ms . 

(4) Unifying the candidate itemsets: Each player 

broadcasts his Ck,ms and then all players compute Ck∪ 
s := Mm=1 Ck,ms . 

(5) Computing local supports. All players compute the 

local supports of all itemsets in Ck s . 

(6) Broadcast Mining Results: Each player broadcasts the 

local supports that he computed. From that, everyone can 

compute the global support of every itemset in Cks . 

Finally,Fk s is the subset of Cks that consists of all globally 

sfrequent k-itemsets.In the first iteration, when k = 1, the 

set C1,m s that the mthplayer computes (Steps 2-3) is just 

F1,ms , namely, the set of single items that are s-frequent 

in Dm. The complete FDM algorithm starts by finding all 

single items that are globally s-frequent. It then proceeds to 

find all 2-itemsets that are globally s-frequent, and so forth, 

until it finds the longest globally s-frequent itemsets. If the 

length of such itemsets is K, then in the (K +1)th iteration 

of the FDM it will find no (K + 1)-itemsets that are 

globally s-frequent, in which case it terminates. 

A running example 

 

Let D be a database of N = 18 itemsets over a set of L = 5 

Items, A = {1, 2, 3, 4, 5}. It is partitioned between M = 3 

Players and the corresponding partial databases are: 

D1 = {12, 12345, 124, 1245, 14, 145, 235, 24, 24} 

D2 = {1234, 134, 23, 234, 2345} 

D3 = {1234, 124, 134, 23}. 

For example, D1 includes N1 = 9 transactions, the third of 

Which (in lexicographic order) consists of 3 items — 1, 2 

and 4. Setting s = 1/3, an itemset is s-frequent in D if it is 

supported by at least 6 = sN of its transactions. In this case, 
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F1s = {1, 2, 3, 4} 

F2s = {12, 14, 23, 24, 34} 

F3s = {124} 

F4s = F5s = ∅, and Fs = F1s∪F2s∪F3s. 

For example, the itemset 34 is indeed Globally s-frequent 

since it is contained in 7 transactions of D. However, it is 

locally s-frequent only in D2 and D3. 

In the first round of the FDM algorithm, the three 

players Compute the sets C1,ms of all 1-itemsets that are 

locally Frequent at their partial databases: 

C1^1s = {1, 2, 4, 5} , C1^2s = {1, 2, 3, 4} ,  C1^3s = {1, 2, 

3, 4} . 

Hence, C1^s = {1, 2, 3, 4, 5}. 

Consequently, all 1-itemsets have to be checked for being 

globally frequent; that check Reveals that the subset of 

globally s-frequent 1-itemsets is 

F1^s = {1, 2, 3, 4}. 

In the second round, the candidate itemsets are: 

C2^1,s = {12, 14, 24} C2^2s = {13, 14, 23, 24, 34} 

C2 ^3,s = {12, 13, 14, 23, 24, 34} . 

(Note that 15, 25, 45 are locally s-frequent at D1 but they 

are not included in C2^1s since 5 was already found to be 

globally infrequent.) 

Hence, C2^s = {12, 13, 14, 23, 24, 34}. 

Then, after veryfing global frequency, we are left with 

F2^s ={12, 14, 23, 24, 34}.In the third round, the candidate 

itemsets are:C3^1s = {124} , C3^2s = {234} , C3^3s = 

{124} . 

So, C3^s = {124, 234} and, then, F3^s = {124}. There are 

no more frequent itemsets. 
 

IV. OVERVIEW AND ORGANIZATION OF 

PAPER 

The FDM algorithm violates privacy in two stages: In Step 

4, where the players broadcast the itemsets that are locally 

frequent in their private databases, and in Step 6, where 

they broadcast the sizes of the local supports of candidate 

itemsets. Our improvement is with regard to the secure 

implementation of Step 4, which is the more costly stage of 

the protocol, and the one in which the protocol of leaks 

excess information. In Section 2 we describe secure 

implementation of Step 4.We then describe our alternative 

implementation and proceed to analyze the two 

implementations in terms of privacy and efficiency and 

compare them. We show that our protocol offers better 

privacy and that it is simpler and is significantly more 

efficient in terms of communication rounds, 

communication cost and computational cost. In Sections 3 

and 4 we discuss the implementation of the two remaining 

steps of the distributed protocol: The identification of those 

candidate itemsets that are globally s frequent, and then the 

derivation of all (s, c)-association rules. 

V. DISTRIBUTED DATABASE 

A distributed database is database in which storage devices 

are not all attached to a common processing unit such as 

the CPU, controlled by a distributed database management 

system (together sometimes called a distributed database 

system). It may be stored in multiple computers, located in 

the same physical location; or may be dispersed over a 

network of interconnected computers. Unlike parallel 

systems, in which the processors are tightly coupled and 

constitute a single database system, a distributed database 

system consists of loosely-coupled sites that share no 

physical components. System administrators can distribute 

collections of data (e.g. in a database) across multiple 

physical locations. Two processes ensure that the 

distributed databases remain up-to-date and current: 

replication and duplication. 

1. Replication involves using specialized software that 

looks for changes in the distributive database. Once the 

changes have been identified, the replication process makes 

all the databases look the same. The replication process can 

be complex and time- consuming depending on the size 

and number of the distributed database. This process also 

requires lot of time and computer resources. 

2. Duplication, on the other hand, has less complexity. It 

basically identifies one database as a master and then 

duplicates that database. The duplication process is 

normally done at a set time after hours. This is to ensure 

that each distributed location has the same data. In the 

duplication process, users may change only the master 

database. This ensures that local data will not be 

overwritten. Both replication and duplication can keep the 

data current in all distributive locations. 

 

VI. ASSOCIATION RULE 

In Data mining, association rule is a popular and well 

researched method for discovering interesting relations 

between variables in large databases. Piatetsky-shapiro 

describes analyzing & presenting strong rules discovered in 

databases using different measures of interestingness. 

Based on the concept of strong rules, Agrawal et al 

introduced 

association rules for discovering regularities between 

products in large scale transaction data recorded by point-

of sale (POS) systems in supermarkets For example, the 

rule Found in the sales data of a supermarket would 

indicate that if a customer buys onions and potatoes 

together, he or she is likely to also buy beef. Such 

information can be used as the basis for decisions about 

marketing activities such as, e.g., promotional pricing or 

product placements. In addition to the above example from 

market basket analysis 

 

VII. CONCLUSION 

We proposed a protocol for secure mining of association 

rules in horizontally distributed databases that improves 

significantly upon the current leading protocol [18] in 

terms of privacy and efficiency. One of the main 

ingredients in our proposed protocol is a novel secure 

multi-party protocol for computing the union (or 

intersection) of private subsets that each of the interacting 

players hold. Another ingredient is a protocol that tests the 

inclusion of an element held by one player in a subset held 

by another. Those protocols exploit the fact that the 

underlying problem is of interest only when the number of 

players is greater than two. 
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