
Multiparty Protocol for Mining of Association

Rules in Horizontally Partitioned Database

Satish R1, Soundarya R2, Vidya N3

1-3Departmet of Computer Science and Engineering,

 RajaRajeswari College of Engineering,

Bangalore, India.

Janaki K4

4Asst. Professor, Department of Computer Science and Engineering,

RajaRajeswari College of Engineering,

Bangalore, India.

Abstract—In this paper, propose a protocol for secure mining

of association rules in horizontally distributed databases. The

current leading protocol is K and C protocol. This protocol is

based on the Fast Distributed Mining(FDM) algorithm which

is an unsecured version. We want to release aggregate

information about the data, without leaking individual's

information.The main ingredients in this protocol are two

novel secure multi-party algorithms, first one computes the

union of private subsets that each of the interacting players

hold, and second tests the inclusion of an element held by one

player in a subset held by another. This protocol offers

enhanced privacy with respect to the other one.

Keywords— Privacy Preserving Data Mining; Frequent

Itemsets; Association Rules.

I. INTRODUCTION

Data mining is a power new technology has emerged as a

means of identifying patterns and trends from large

quantities of data and it is also a process of digging through

and analyzing enormous sets of data and then extracting the

meaning of the data. Data mining and data warehousing go

hand-in-hand: most tools operate by gathering all data into

a central site, then running an algorithm against that data

present in the central site. However, for privacy concerns

can prevent building a centralized warehouse – data may be

distributed among several customers, none of which are

allowed to transfer their data to another site.

This concept addresses the problem of computing

association rules within such a scenario. We assume

homogeneous databases where all sites have the same

schema, but each site has information on different entities.

The main goal is to produce association rules that hold

globally, while reducing the information shared about each

site.

The problem is that insurance companies will be

concerned about sharing this data. Not only must the

privacy of patient records be maintained, but insurers will

be unwilling to release rules pertaining only to them.

Imagine a rule indicating a high rate of complications with

a particular medical procedure. If this rule doesn’t hold

globally, the insurer would like to know this – they can

then try to pinpoint the problem with their policies and

improve patient care. If the fact that the insurer’s data

supports this rule is revealed, the insurer could be exposed

to significant public relations or liability problems. This

potential risk could exceed their own perception of the

benefit of participating in the CDC study.

We study here the problem of secure mining of

association rules in horizontally distributed databases. In

that setting, there are several players that hold

homogeneous databases, i.e., databases that share the same

schema but hold information on different entities. The goal

is to find all association rules with support at least s and

confidence at least c, for some given minimal support size s

and confidence level c, that hold in the unified database,

while reducing the information disclosed about the private

databases held by those players. The information that we

would like to protect in this context is not only individual

transactions in the different databases, but also information

should available globally such as what association rules are

supported and used locally in each of those databases. That

goal defines a problem of secure multi-party computation.

In such problems, there are M players that hold private

inputs, x1, , xM, and they wish to securely compute y

= f(x1 ,. . . , xM) for some public function f. If trusted third

party is used, the players could give their inputs and he

would perform the function evaluation and send to them

the resulting output. If the trusted third party is not used, it

is needed to devise a protocol that the players can run on

their own in order to get the required output y. Such a

protocol is considered perfectly secure if no player can

learn from his view of the protocol more than what he

would have learnt in the idealized setting where the

computation is carried out by a trusted third party. In our

problem, the inputs are the partial databases, and the

required output is the list of association rules that hold in

the unified database with support and confidence no

smaller than the given thresholds s and c, respectively. As

the above mentioned generic solutions rely upon a

description of the function f as a Boolean circuit, they can

be applied only to small inputs and functions which are

realizable by simple circuits. In more complex settings,

such as ours, other methods are required for carrying out

this computation. In such cases, some relaxations of the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

1

notion of perfect security might be inevitable when looking

for practical protocols, provided that the excess

information is deemed benign. Kantarcioglu and Clifton

studied that problem in [4] and devised a protocol for its

solution. The main part of the protocol is a sub-protocol for

the secure computation of the union of private subsets that

are held by the different players. That is the most costly

part of the protocol and its implementation relies upon

cryptographic primitives such as commutative encryption,

oblivious transfer, and hash functions. This is also the only

part in the protocol in which the players may extract from

their view of the protocol information on other databases,

beyond what is implied by the final output and their own

input. While such leakage of information renders the

protocol not perfectly secure, the perimeter of the excess

information is explicitly bounded in [4] and it is argued

there that such information leakage is innocuous, whence

acceptable from a practical point of view. Herein we

propose an alternative protocol for the secure computation

of the union of private subsets. The proposed protocol

improves upon that in [4] in terms of simplicity and

efficiency as well as privacy. In particular, our protocol

does not depend on commutative encryption and oblivious

transfer. While our solution is still not perfectly secure, it

leaks excess information only to a small number (three) of

possible coalitions, unlike the protocol of [4] that discloses

information also to some single players. In addition, we

claim that the excess information that our protocol may

leak is less sensitive than the excess information leaked by

the protocol of [4]. The protocol that we propose here

computes a parameterized family of functions, which we

call threshold functions, in which the two extreme cases

correspond to the problems of computing the union and

intersection of private subsets. Those are in fact general-

purpose protocols that can be used in other contexts as well.

Another problem of secure multiparty computation that we

solve here as part of our discussion is the set inclusion

problem; namely, the problem where Alice holds a private

subset of some ground set, and Bob holds an element in the

ground set, and they wish to determine whether Bob’s

element is within Alice’s subset, without revealing to either

of them information about the other party’s input beyond

the above described inclusion.

II. RELATED WORK

In privacy preserving data mining has considered two

related settings. One is data owner and other is data miner

are the different two entities, and another, in which the data

is distributed among several parties who aim to jointly

perform data mining on the unified corpus of data that they

hold.

The first main goal is to protect the data records from

the data miner. Hence, the data owner aims at anonymizing

the data prior to its release. The main approach in this

context is to apply data perturbation .The idea is that the

perturbed data can be used to infer general trends in the

data, without revealing original record information.

In the second setting, the goal is to perform data

mining while protecting the data records of each of the data

owners from the other data owners. This is a problem of

secure multiparty computation. The usual approach here is

cryptographic rather than probabilistic.

III. FAST DISTRIBUTED MINING ALGORITHM

The protocol, as well as ours, is based on the Fast

Distributed Mining (FDM) algorithm. Which is an

unsecured distributed version of the Apriori Algorithm. Its

main idea is that any s-frequent itemset must be also

locally s frequent in at least one of the sites. Hence, in

order to find all globally s-frequent itemsets, each player

reveals his locally s-frequent itemsets and then the players

check each of them to see if they are s-frequent also

globally.

The FDM algorithm proceeds as follows:

(1) Initialization: It is assumed that the players have

already jointly calculated Fk−1 s. The goal is to proceed

and Calculate Fks .

(2) Candidate Sets Generation: Each player Pm computes

the set of all (k − 1)-itemsets that are locally frequent in his

site and also globally frequent; namely, Pm computes the

set Fk−1,ms∩ Fk−1s . He then applies on that set the

Apriori algorithm in order to generate the set Bk, ms of

candidate k-itemsets.

(3) Local Pruning: For each X ∈ Bk,ms , Pm computes

suppm(X). He then retains only those itemsets that are

locally s-frequent. We denote this collection of itemsetsby

Ck,ms .

(4) Unifying the candidate itemsets: Each player

broadcasts his Ck,ms and then all players compute Ck∪
s := Mm=1 Ck,ms .

(5) Computing local supports. All players compute the

local supports of all itemsets in Ck s .

(6) Broadcast Mining Results: Each player broadcasts the

local supports that he computed. From that, everyone can

compute the global support of every itemset in Cks .

Finally,Fk s is the subset of Cks that consists of all globally

sfrequent k-itemsets.In the first iteration, when k = 1, the

set C1,m s that the mthplayer computes (Steps 2-3) is just

F1,ms , namely, the set of single items that are s-frequent

in Dm. The complete FDM algorithm starts by finding all

single items that are globally s-frequent. It then proceeds to

find all 2-itemsets that are globally s-frequent, and so forth,

until it finds the longest globally s-frequent itemsets. If the

length of such itemsets is K, then in the (K +1)th iteration

of the FDM it will find no (K + 1)-itemsets that are

globally s-frequent, in which case it terminates.

A running example

Let D be a database of N = 18 itemsets over a set of L = 5

Items, A = {1, 2, 3, 4, 5}. It is partitioned between M = 3

Players and the corresponding partial databases are:

D1 = {12, 12345, 124, 1245, 14, 145, 235, 24, 24}

D2 = {1234, 134, 23, 234, 2345}

D3 = {1234, 124, 134, 23}.

For example, D1 includes N1 = 9 transactions, the third of

Which (in lexicographic order) consists of 3 items — 1, 2

and 4. Setting s = 1/3, an itemset is s-frequent in D if it is

supported by at least 6 = sN of its transactions. In this case,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

2

F1s = {1, 2, 3, 4}

F2s = {12, 14, 23, 24, 34}

F3s = {124}

F4s = F5s = ∅, and Fs = F1s∪F2s∪F3s.

For example, the itemset 34 is indeed Globally s-frequent

since it is contained in 7 transactions of D. However, it is

locally s-frequent only in D2 and D3.

In the first round of the FDM algorithm, the three

players Compute the sets C1,ms of all 1-itemsets that are

locally Frequent at their partial databases:

C1^1s = {1, 2, 4, 5} , C1^2s = {1, 2, 3, 4} , C1^3s = {1, 2,

3, 4} .

Hence, C1^s = {1, 2, 3, 4, 5}.

Consequently, all 1-itemsets have to be checked for being

globally frequent; that check Reveals that the subset of

globally s-frequent 1-itemsets is

F1^s = {1, 2, 3, 4}.

In the second round, the candidate itemsets are:

C2^1,s = {12, 14, 24} C2^2s = {13, 14, 23, 24, 34}

C2 ^3,s = {12, 13, 14, 23, 24, 34} .

(Note that 15, 25, 45 are locally s-frequent at D1 but they

are not included in C2^1s since 5 was already found to be

globally infrequent.)

Hence, C2^s = {12, 13, 14, 23, 24, 34}.

Then, after veryfing global frequency, we are left with

F2^s ={12, 14, 23, 24, 34}.In the third round, the candidate

itemsets are:C3^1s = {124} , C3^2s = {234} , C3^3s =

{124} .

So, C3^s = {124, 234} and, then, F3^s = {124}. There are

no more frequent itemsets.

IV. OVERVIEW AND ORGANIZATION OF

PAPER

The FDM algorithm violates privacy in two stages: In Step

4, where the players broadcast the itemsets that are locally

frequent in their private databases, and in Step 6, where

they broadcast the sizes of the local supports of candidate

itemsets. Our improvement is with regard to the secure

implementation of Step 4, which is the more costly stage of

the protocol, and the one in which the protocol of leaks

excess information. In Section 2 we describe secure

implementation of Step 4.We then describe our alternative

implementation and proceed to analyze the two

implementations in terms of privacy and efficiency and

compare them. We show that our protocol offers better

privacy and that it is simpler and is significantly more

efficient in terms of communication rounds,

communication cost and computational cost. In Sections 3

and 4 we discuss the implementation of the two remaining

steps of the distributed protocol: The identification of those

candidate itemsets that are globally s frequent, and then the

derivation of all (s, c)-association rules.

V. DISTRIBUTED DATABASE

A distributed database is database in which storage devices

are not all attached to a common processing unit such as

the CPU, controlled by a distributed database management

system (together sometimes called a distributed database

system). It may be stored in multiple computers, located in

the same physical location; or may be dispersed over a

network of interconnected computers. Unlike parallel

systems, in which the processors are tightly coupled and

constitute a single database system, a distributed database

system consists of loosely-coupled sites that share no

physical components. System administrators can distribute

collections of data (e.g. in a database) across multiple

physical locations. Two processes ensure that the

distributed databases remain up-to-date and current:

replication and duplication.

1. Replication involves using specialized software that

looks for changes in the distributive database. Once the

changes have been identified, the replication process makes

all the databases look the same. The replication process can

be complex and time- consuming depending on the size

and number of the distributed database. This process also

requires lot of time and computer resources.

2. Duplication, on the other hand, has less complexity. It

basically identifies one database as a master and then

duplicates that database. The duplication process is

normally done at a set time after hours. This is to ensure

that each distributed location has the same data. In the

duplication process, users may change only the master

database. This ensures that local data will not be

overwritten. Both replication and duplication can keep the

data current in all distributive locations.

VI. ASSOCIATION RULE

In Data mining, association rule is a popular and well

researched method for discovering interesting relations

between variables in large databases. Piatetsky-shapiro

describes analyzing & presenting strong rules discovered in

databases using different measures of interestingness.

Based on the concept of strong rules, Agrawal et al

introduced

association rules for discovering regularities between

products in large scale transaction data recorded by point-

of sale (POS) systems in supermarkets For example, the

rule Found in the sales data of a supermarket would

indicate that if a customer buys onions and potatoes

together, he or she is likely to also buy beef. Such

information can be used as the basis for decisions about

marketing activities such as, e.g., promotional pricing or

product placements. In addition to the above example from

market basket analysis

VII. CONCLUSION

We proposed a protocol for secure mining of association

rules in horizontally distributed databases that improves

significantly upon the current leading protocol [18] in

terms of privacy and efficiency. One of the main

ingredients in our proposed protocol is a novel secure

multi-party protocol for computing the union (or

intersection) of private subsets that each of the interacting

players hold. Another ingredient is a protocol that tests the

inclusion of an element held by one player in a subset held

by another. Those protocols exploit the fact that the

underlying problem is of interest only when the number of

players is greater than two.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

3

REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules in large databases. In VLDB, pages 487–499, 1994.

[2] R. Agrawal and R. Srikant. Privacy-preserving data mining. In

SIGMOD Conference, pages 439–450, 2000.
[3] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP - A system for

secure multi-party computation. In CCS, pages 257–266, 2008.

[4] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed
mining of association rules on horizontally partitioned data. IEEE

Transactions on Knowledge and Data Engineering, 16:1026–1037,

2004.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

4

