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Abstract - Identifying the language used for a document will 

typically be the first step to most of the Natural Language 

Processing tasks. Among the wide variety of language 

identification methods discussed in the literature, the ones 

employing the Canvar and Trenkle (1994) approach to text 

categorization based on character n-gram frequencies have been 

particularly successful. Multilingual Text Classification using N-

gram techniques seems to have produced very interesting results 

in the field of text categorization not only for the languages like 

English and French but equally good for more difficult to 

classify languages like Spanish, Italian, German and Russian.  
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1. INTRODUCTION 

Automated text categorization is a supervised learning task, 

defined as assigning category labels to new documents based 

on the likelihood suggested by a set of labeled documents. 

Classifying the language of the documents requires several 

essential steps like preprocessing the text to obtain terms, 

identifying important terms and a classifier (in this case 

Naïve-Bayes classifier is used) [2]. 

 

Language classification is an important task for today’s 

World Wide Web where an increasing number of documents 

are in languages other than English. Language classification 

finds use in area like search engine indexing, text mining, 

spam filtering and other applications that apply language 

specific algorithms. Such classification is a key step in 

processing a large document streams and is a data intensive 

task [3]. 

2. METHODOLOGY 

The proposed system is able to predict the language of an 

incoming document. The languages taken for this system are 

English, Spanish, and Italian taken from [4]. The system is 

first trained (with 20% corpus) and is then tested for 80% of 

the corpus. The efficiency of the system comes out to be 

99%. The documents are in XML file format. The motive 

behind choosing Spanish and Italian was their extreme 

closeness in words and hence it makes the classification task 

even more challenging. The whole task of classification 

consists of four phases: 

 

 Document Preprocessing 

 TF-IDF Analysis 

 Training the Model 

 Testing the Model 

 

First we will see each of these phases in terms of the 

functions performed and then we will present the approach to 

execute the code. 
 

2.1 Document Preprocessing 

Preprocessing of the document is a key step in almost every 

kind of document classification system whether it be content 

based classification, topic based classification or syntactic 

type of classification. Preprocessing of the documents to get 

rid of the stop-words itself makes the later steps easier and 

more efficient. In this phase, we use regular expressions to 

remove the noise, which is special symbols, single characters, 

numbers from 0 to 9, special characters, backslashes, and 

multiple white spaces and tabs.  

 

2.2 TF-IDF (Term Frequency – Inverse Document 

Frequency ) Analyser 

In this phase, the document level profiles (the term for each 

document and their frequency) are used to calculate the TF-

IDF value for identified terms. The TF-IDF value represents 

how important a term is to a document in a collection or 

corpus (Wikipedia). It can be considered as a weighting 

factor for the terms in a document with respect to other terms 

of the same document. TF-IDF is the product of two 

statistics, term frequency and the inverse document 

frequency. Term frequency is defined as the number of times 

the term appears in the document. In order to have the 

normalized document frequency, we use 

 

 
The inverse document frequency is a measure of whether the 

term is common or rare across all the documents. It is 

obtained by: 

 

 
 

Finally, the tf-idf is calculated by: 

TF-IDF = tf × idf 

The result of this phase is present in the sub folder TFIDF 

Analyser results under the Profiles folder. The value of TF-

IDF is used as a classifier. 
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Based on the TF-IDF values of the term, we select a 

set of say 25 terms with highest frequency (or TF-IDF value) 

for each category. These are also called the keywords for the 

category. This collection of the highest frequency terms with 

their tf-idf values is called dictionary for each category. It is 

used in the phase of testing where the category of the test 

document is predicted. 

 

2.3 Training the Model 

20% of the collection is used for training the model. The 

corpus used for training is stored in the folder called training 

set with a sub folder for each category.  For each of the 

documents used for training, the given XML is fetched and 

generate its profile explained in the previous two sections 

(pre-processing, tf-idf). 

  

 A file called probabilitymap.csv is generated having 

three rows (one for each category) and the number of 

columns is the product of number of categories and number 

of keywords (if 25 keywords are given, there will be 25*3 

columns in the csv file). The calculation of the probabilities is 

explained in the next section. In the probabilitymap.csv, each 

cell denotes the probability of the keyword to belong to the 

particular category (category is extracted from the row 

number 0: It, 1: En, 2:Es). This file is used in the testing 

phase for predicting the value of the target document. 

 

2.4 Testing or Predicting 

In order to predict the category of the test file, the first step is 

to pre-process it in the same way as training documents were 

done to remove noise and create its document level profile. 

For each term of the test document, first we see if it exists in 

the three dictionaries of the categories. If it exists then we 

calculate the possibility of it to belong to one of the category. 

The probability of each term of the test file to belong to one 

of the language categories is given as follows: (Bayes Rule) 

 

 
Pr(Term) in the corpus is static. Once we obtain the 

probability of each term, we can calculate the probability of 

the whole document to belong to each category. Let w1, 

w2,…wn be the probability of n terms in the test document. 

Then the probability of the whole document is nothing but the 

log of the product of all these individual probabilities. 

  

 The result of this phase is shown on the console. The 

test document should be in XML format and should contain 

the actual language category of the document. The test file 

name should be of the form es.xml, en.xml, it.xml. These 

types of file names will help us to compare their original 

language category to the predicted one. 

 

 

 

 

 

 

2.5 Basic Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 1: Architecture of Language Classification System 

 

3. ORGANIZATION AND EXECUTION OF THE 

PROGRAM 

 

3.1 Organization 

The code for this multilingual classifier is organized into 4 

different files (just as the phases described in the previous 

section). The file preprocessing.py is responsible for the pre-

processing part of the program. It has modules or functions 

for removing noise, calculating n-grams (if value of n>0) and 

to generate the document level profile as explained in the 

preprocessing section. The file TFIDF analyzer does the part 

for calculating the TF-IDF values for the pre-processed files. 

It has modules to count the terms and their respective 

frequencies. Training.py reads the files from each category 

sub-folder (en, es, it) under the parent folder called Training 

set. It calls the modules from the folder Testing set. The 

format of test-file names are already described in the previous 

section. 

 

 

 

 

 

 

 

 

Set the value of N, size 

and choice in Main.py 

Preprocessing.py, remove 

noise, Generate document 

level profiles and category 

profiles 

TFIDF_Analyzer.py, 

Calculate TFIDF values, 

Generate Keywords and 

Dictionary 

Training.py, Calculates the 

probability map, train the 

model by reading training 

files 

Testing.py, Uses the 

trained model to predict 

the language category to 

test documents using 

Naïve Bayes Classifier. 
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3.2 Execution 

The given program can be run in two modes: 

 

 Normal Mode: In this mode, there is only one fixed value 

for N-grams (the variable N) and size of keywords 

dictionary (size) which is to be initialized in the Main.py. 

This mode can be selected by setting the value of 

variable choice to 0. 

 Mega Run Mode: When choice variable is set to 1, the 

code runs in mega run mode. In this mode, there is a list 

of N-gram values and a list of sizes for the dictionary i.e. 

the code executes with various different configurations 

and hence is very time consuming (with the given values, 

it takes 10 hours to complete).  

 System Requirements : Linux (Ubuntu 13.04 is used) 

 Packages: numpy, pyngram 

 The documents should be tested/predicted are to be 

placed in the folder Testing Set, should be XML files, 

should have two initial characters of the original 

language category just before the .XML part of the file 

name. Some examples of test files are: hello es.xml, 

irtest it.xml etc. 

 

3.3 Observations 

The efficiency of the system is 65% when no n-gram is 

applied and the size of keywords is 25. With 4 n-grams the 

efficiency increases to 96% with the same size of keywords. 

10 fold cross validation can give better results. Logically, the 

larger the size of keyword list better is the efficiency. Value 

of n in n-grams can significantly change the performance of 

the system but as per the observations, 3 and 4 are the best 

values to be considered. 
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