
Multilingual Text Classification

Prof. Praveen Dhyani

Executive Director
Banasthali Vidyapith

Jaipur, India

Sonam Mittal

Computer Science Dept.

B K Birla Institute of Engineering & Technology

Pilani, Rajasthan, India

Abstract - Identifying the language used for a document will

typically be the first step to most of the Natural Language

Processing tasks. Among the wide variety of language

identification methods discussed in the literature, the ones

employing the Canvar and Trenkle (1994) approach to text

categorization based on character n-gram frequencies have been

particularly successful. Multilingual Text Classification using N-

gram techniques seems to have produced very interesting results

in the field of text categorization not only for the languages like

English and French but equally good for more difficult to

classify languages like Spanish, Italian, German and Russian.

Keywords— Multilingual Text, N-gram, tf-idf, frequency,

similarity, classification, prediction, classifier

1. INTRODUCTION

Automated text categorization is a supervised learning task,

defined as assigning category labels to new documents based

on the likelihood suggested by a set of labeled documents.

Classifying the language of the documents requires several

essential steps like preprocessing the text to obtain terms,

identifying important terms and a classifier (in this case

Naïve-Bayes classifier is used) [2].

Language classification is an important task for today’s

World Wide Web where an increasing number of documents

are in languages other than English. Language classification

finds use in area like search engine indexing, text mining,

spam filtering and other applications that apply language

specific algorithms. Such classification is a key step in

processing a large document streams and is a data intensive

task [3].

2. METHODOLOGY

The proposed system is able to predict the language of an

incoming document. The languages taken for this system are

English, Spanish, and Italian taken from [4]. The system is

first trained (with 20% corpus) and is then tested for 80% of

the corpus. The efficiency of the system comes out to be

99%. The documents are in XML file format. The motive

behind choosing Spanish and Italian was their extreme

closeness in words and hence it makes the classification task

even more challenging. The whole task of classification

consists of four phases:

 Document Preprocessing

 TF-IDF Analysis

 Training the Model

 Testing the Model

First we will see each of these phases in terms of the

functions performed and then we will present the approach to

execute the code.

2.1 Document Preprocessing

Preprocessing of the document is a key step in almost every

kind of document classification system whether it be content

based classification, topic based classification or syntactic

type of classification. Preprocessing of the documents to get

rid of the stop-words itself makes the later steps easier and

more efficient. In this phase, we use regular expressions to

remove the noise, which is special symbols, single characters,

numbers from 0 to 9, special characters, backslashes, and

multiple white spaces and tabs.

2.2 TF-IDF (Term Frequency – Inverse Document

Frequency) Analyser

In this phase, the document level profiles (the term for each

document and their frequency) are used to calculate the TF-

IDF value for identified terms. The TF-IDF value represents

how important a term is to a document in a collection or

corpus (Wikipedia). It can be considered as a weighting

factor for the terms in a document with respect to other terms

of the same document. TF-IDF is the product of two

statistics, term frequency and the inverse document

frequency. Term frequency is defined as the number of times

the term appears in the document. In order to have the

normalized document frequency, we use

The inverse document frequency is a measure of whether the

term is common or rare across all the documents. It is

obtained by:

Finally, the tf-idf is calculated by:

TF-IDF = tf × idf

The result of this phase is present in the sub folder TFIDF

Analyser results under the Profiles folder. The value of TF-

IDF is used as a classifier.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030032

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

99

Based on the TF-IDF values of the term, we select a

set of say 25 terms with highest frequency (or TF-IDF value)

for each category. These are also called the keywords for the

category. This collection of the highest frequency terms with

their tf-idf values is called dictionary for each category. It is

used in the phase of testing where the category of the test

document is predicted.

2.3 Training the Model

20% of the collection is used for training the model. The

corpus used for training is stored in the folder called training

set with a sub folder for each category. For each of the

documents used for training, the given XML is fetched and

generate its profile explained in the previous two sections

(pre-processing, tf-idf).

 A file called probabilitymap.csv is generated having

three rows (one for each category) and the number of

columns is the product of number of categories and number

of keywords (if 25 keywords are given, there will be 25*3

columns in the csv file). The calculation of the probabilities is

explained in the next section. In the probabilitymap.csv, each

cell denotes the probability of the keyword to belong to the

particular category (category is extracted from the row

number 0: It, 1: En, 2:Es). This file is used in the testing

phase for predicting the value of the target document.

2.4 Testing or Predicting

In order to predict the category of the test file, the first step is

to pre-process it in the same way as training documents were

done to remove noise and create its document level profile.

For each term of the test document, first we see if it exists in

the three dictionaries of the categories. If it exists then we

calculate the possibility of it to belong to one of the category.

The probability of each term of the test file to belong to one

of the language categories is given as follows: (Bayes Rule)

Pr(Term) in the corpus is static. Once we obtain the

probability of each term, we can calculate the probability of

the whole document to belong to each category. Let w1,

w2,…wn be the probability of n terms in the test document.

Then the probability of the whole document is nothing but the

log of the product of all these individual probabilities.

 The result of this phase is shown on the console. The

test document should be in XML format and should contain

the actual language category of the document. The test file

name should be of the form es.xml, en.xml, it.xml. These

types of file names will help us to compare their original

language category to the predicted one.

2.5 Basic Architecture

Fig 1: Architecture of Language Classification System

3. ORGANIZATION AND EXECUTION OF THE

PROGRAM

3.1 Organization

The code for this multilingual classifier is organized into 4

different files (just as the phases described in the previous

section). The file preprocessing.py is responsible for the pre-

processing part of the program. It has modules or functions

for removing noise, calculating n-grams (if value of n>0) and

to generate the document level profile as explained in the

preprocessing section. The file TFIDF analyzer does the part

for calculating the TF-IDF values for the pre-processed files.

It has modules to count the terms and their respective

frequencies. Training.py reads the files from each category

sub-folder (en, es, it) under the parent folder called Training

set. It calls the modules from the folder Testing set. The

format of test-file names are already described in the previous

section.

Set the value of N, size

and choice in Main.py

Preprocessing.py, remove

noise, Generate document

level profiles and category

profiles

TFIDF_Analyzer.py,

Calculate TFIDF values,

Generate Keywords and

Dictionary

Training.py, Calculates the

probability map, train the

model by reading training

files

Testing.py, Uses the

trained model to predict

the language category to

test documents using

Naïve Bayes Classifier.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030032

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

100

3.2 Execution

The given program can be run in two modes:

 Normal Mode: In this mode, there is only one fixed value

for N-grams (the variable N) and size of keywords

dictionary (size) which is to be initialized in the Main.py.

This mode can be selected by setting the value of

variable choice to 0.

 Mega Run Mode: When choice variable is set to 1, the

code runs in mega run mode. In this mode, there is a list

of N-gram values and a list of sizes for the dictionary i.e.

the code executes with various different configurations

and hence is very time consuming (with the given values,

it takes 10 hours to complete).

 System Requirements : Linux (Ubuntu 13.04 is used)

 Packages: numpy, pyngram

 The documents should be tested/predicted are to be

placed in the folder Testing Set, should be XML files,

should have two initial characters of the original

language category just before the .XML part of the file

name. Some examples of test files are: hello es.xml,

irtest it.xml etc.

3.3 Observations

The efficiency of the system is 65% when no n-gram is

applied and the size of keywords is 25. With 4 n-grams the

efficiency increases to 96% with the same size of keywords.

10 fold cross validation can give better results. Logically, the

larger the size of keyword list better is the efficiency. Value

of n in n-grams can significantly change the performance of

the system but as per the observations, 3 and 4 are the best

values to be considered.

REFERENCES
1. N Gram Based Text Categorization – William B. Canvar, John

M. Trenkle, 1994.

2. Is Naïve Bayes a Good Classifier for Document Classification

– S.L. Ting, W.H. Ip, Albert H.C. Tsang, International Journal

of Software Engineering & Its Applications, Vol. 5 No. 3, July

2011.

3. Multilingual Text Categorization using character N gram –

Suzuki M., Yamagishi N. , Yi Ching Tsai, Hirasawa S., Soft

Computing in Industrial Applications, 2008.

4. http://optima.jrc.it/Acquis/JRC-Acquis 3.0/corpus/

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030032

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

101

