
“Multi Query Optimization Using Heuristic Apporach And Flow

Of Optimizer To Evaluate Cost With The Use Of Greedy

Technique”

 Miss. Isha K. Gayki Prof. P. D. Soni

P.R.Patil College of Engg P.R.Patil College of Engg

& Technology,Amravati. & Technology, Amravati.

Abstract

 Today, it is very common that complex

queries are being greatly used in the real time

database applications. These complex queries

have a lot of common sub-expressions, either

within a single query or across multiple such

queries run as a group or batch. Multi-query

optimization used for common sub-expressions

to reduce evaluation cost. Generally Multi-query

optimization has been viewed as impractical,

because previous algorithms were exhaustive,

and require large search space.

 But we observe that multi-query optimization

using heuristics approach is practical, and it

provides significant benefits. The optimization

implements three cost-based heuristic

algorithms: basic Volcano-SH and Volcano-RU,

which are based on simple modifications applied

to the Volcano algorithm, and a greedy

heuristic. The greedy heuristic approach

incorporates novel optimizations that improve

efficiency of algorithm to optimize multiple

queries. The algorithms are designed so that it

can be easily added to existing optimizers.

1. Introduction
 Complex queries are becoming

commonplace, due to the advancement in tools

that help to analyze information from large data

warehouses. These complex queries often have a

lot of common sub expressions since they make

extensive use of views which are referred

number of times in the query and most of them

are correlated nested queries in which parts of

the inner sub query may not depend on the outer

query variables[13]. The scope for finding

common sub-expressions increases greatly if we

consider a set of queries executed as a batch or

group.

 Analysis of data or reporting often requires a

batch of queries to be executed. A set of related

materialized views also generates related queries

with common sub expressions. Materialized

views are increasingly being supported by

commercial database systems, and are used to

speed up query processing. Data warehouses,

which store large volumes of data, depend on

materialized views for efficient query

processing, and the materialized views as well as

expressions have significant amounts of

common sub expressions. Sharing of common

sub-expressions is also have importance when

the expressions access remote data, and hence it

becomes expensive. Here we address the

problem of optimizing sets of queries which

may have common sub expressions; this

problem is referred to as multi-query

optimization. It is also possible that common sub

expressions are present even within a single

query; the techniques developed are used to deal

with such intra-query common sub

expressions[14].

 Traditional query optimizers are not

beneficial for optimizing queries with common

sub expressions, since they make locally optimal

choices.

 Let us take an example, Where we have seen

that, in SQL, a query could be expressed in

several different ways. Each SQL query can be

translated into a relation-algebra expression in

one of the several ways. The relational algebra

representation of a query specifies only how to

evaluate a query; there are several ways to

evaluate relational algebra expressions. Let us

consider the query for selecting the marks of

student more than 60 columns from student

database.

SELECT marks

FROM student

WHERE marks>60;

This query can be translated into either

of the following relational algebra expressions:-

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

1. σ marks>60 (Π

marks(student))

2. Π marks(σ marks

>60(student))

 Cost estimation in query optimization

 Calculation of cost

 Query processing

2. Cost estimation in query

optimization
 The cost can be evaluated by considering the

properties of hard disk with respect to time.

2.1. Cost parameters
 The three main disk scheduling parameters

are:

 Seek time

 Latency time

 Transfer time

 Seek Time

 Seek time is the time required to move

a read-write head from one track to another.

 Rotational Latency

At the movement when read-write head

is positioned onto the correct cylinder, it waits

for the requested sector to rotate beneath it. This

waiting time is called as rotational latency.

 Transfer Rates

It is a time for data to be read by the disk head,

i.e., time required to move the head across the

particular block of a sector.

 Transfer time = amount of data per track / time

per rotation

2.2. Calculation of cost
 The nested loop algorithm reads one record

from one relation, and passes each record of the

outer relation to the inner relation; also join the

record of the outer relation with suitable records

of the inner relation. The next record from the

outer relation is again read and entire inner

relation is again scanned, and so on. The nested

block algorithm works by reading a block of

records from the outer relation and passing over

each record of the inner relation, joining the

records of the outer relation with those of the

inner relation. If there are B pages in the

memory, B-2 pages are usually allocated to the

outer relation, one to the inner relation, and one

to the result relation. For cost estimation

required parameters are as shown in the table.

Notation Meaning

V1 Number of pages in

relation R1

V2 Number of pages in

relation R2

Vr Number of pages in

result of joining relation R1 and

R2

B Number of pages in

memory for the use in buffers

B1 Number of pages in

memory for relation R1

B2 Number of pages in

memory for relation R2

BR Number of pages in

memory for result

Table 1: Notation to evaluate cost

 The time taken to perform an operation x as

Tx. Table below shows the default values used

to calculate the results

Notation Meaning Values

TC Cost of constructing a

hash table per page in

memory

0.015

TK Cost of moving the

disk head to the page

on disk

0.0243

TJ Cost of joining a page

with a hash table in

memory

0.015

TT Cost of transferring a

page from disk to

memory

0.013

Table 2: Parameter for cost estimation

Cost of transferring a set V1 pages

through buffer of size B1:

 CRead R1 = CI/O(V1,B1)

Cost of creating Hashed Pages from V1

pages:

 CCreate = V1TC

Cost of transferring a ser V2 pages

through buffer of size B2:

 CRead R2 =CI/O(V2,B2)

Cost of Joining each hashed page with

V2 pages

 CJoin = V2TJ

Cost of Writing back the result into the

disk drive:

 CWrite RR = CI/O(VR,BR)
Total Cost of Operation:

 CNB = CRead R1 + CCreate + CRead

R2 + CJoin + CWrite RR

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

3. Query processing
How optimizer works?

 Phases of optimization are implemented in

the execution of a query. Query processing

refers to the range of activities involved in

extracting the data from database. The activities

include transformation of queries in high level

database languages into expressions that can be

used at physical level of the file system, a

variety of query optimizing transformations and

actual evaluation of queries[15].

 The basic steps involved in the query

processing are

1) Parsing and translation

2) Optimization

3) Evaluation

Figure 1: Query processing

4. Operations in Query-

Processing
 Selection

 Join Operation

a) Nested –Loop Join

b) Hash Join

5. Technique: greedy
Algorithm

Procedure GREEDY

Input: Expanded Directed acyclic graph nodes

Output: Set of nodes obtained to form

corresponding best plan

X = NULL

Y = set of equivalence nodes in the DAG

while (Y ≠ NULL)

L1: Pick the node x ∈ Y with the smallest

value for bestplan(Q, {x} ∪ X)

if (bestplan(Q, {x} ∪ X) < bestplan(Q, X))

Y = Y - x; X = X ∪ {x}

else Y = NULL // benefit < 0, so break out of

loop

return X

6. Flow of Optimizer

Figure 2: Flow of optimizer

7. Advantages
7.1. Sharing

The optimization based on that the

nodes materialized forms optimal plan

are subset and shared by other queries.

Therefore, it is essential to initialize Y,

with nodes that are shared by another

query. Called as sharable nodes[15].

7.2. Incrementing Cost Update
The second optimization is based on

there are many calls to bestplan , with

different parameters. Symmetric

difference in the sets passed as

parameters to successive calls to

bestplan is very small – successive calls

take parameters of the form bestplan(Q,

{x} ∪ X), where only x varies.

7.3. Monotonic
The third optimization, which we call

the monotonic avoids having to invoke

bestplan(Q,{x} ∪ X), for every x ∈ Y .

8. Future Work
 The results in this paper form the basis for a

significant amount of future work. The

algorithms or techniques can be extended to deal

with space constraints on materialized results. A

more challenging problem is how to schedule

computations so that temporary storage space

can be reused during computation.

 Another important area of future work lies in

dealing with large sets of queries (large

workloads); the size of the workload can be

reduced by abstracting queries, for instance by

replacing queries that differ in just selection

constants by a parameterized query, invoked

multiple times.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

 Applying multi-query optimization to

incremental update expressions for materialized

views, it also apply to these results to the

problem of materialized view or index selection,

where update costs need to be taken into

account.

9. Conclusion
 There are number of techniques to greatly

speed up the execution time for multiple queries.

Techniques depend upon AND-OR DAG

representation of queries, are thereby can be

easily extended to handle new operators.

Implementation demonstrated that the

algorithms can be added to an existing optimizer

with a reasonably small amount of effort. Multi-

query optimization is practical and gives

significant benefits at a reasonable cost. The

benefits of multi-query optimization were also

demonstrated on a real database system. In

conclusion, we believe we have laid the

groundwork for practical use of multi-query

optimization, and multi-query optimization will

form a critical part of all query optimizers in the

future.

10. References

[1] [CKPS95] Surajit Chaudhuri, Ravi

Krishnamurthy, Spyros Potamianos, and Kyuseok

Shim. Optimizing queries with materialized views. In

Intl. Conf. on Data Engineering, Taipei, Taiwan,

1995.

[2] [CLS93] Ahmet Cosar, Ee-Peng Lim, and Jaideep

Srivastava. Multiple query optimization with depth-

first branch and bound and dynamic query ordering.

In Intl. Conf. on Information and Knowledge

Management (CIKM), 1993.

[3] [CR94] C. M. Chen and N. Roussopolous. The

implementation and performance evaluation of the

ADMS query optimizer: Integrating query result

caching and matching. In Extending Database

Technology (EDBT), Cambridge, UK, March 1994.

[4] [Fin82]S. Finkelstein. Common expression

analysis in database applications. In SIGMOD Intl.

Conf. on Management of Data, pages 235–245,

Orlando,FL, 1982.

[5] [FLMS99] Daniela Florescu, Alon Levy, Ioana

Manolescu, and Dan Suciu. Query optimization in the

presence of limited access patterns. In SIGMOD Intl.

Conf. on Management of Data, 1999.

[6] [Gup97] H. Gupta. Selection of views to

materialize in a data warehouse. In Intl. Conf. on

Database Theory, 1997.

[7] [LQA97] W.L. Labio, D. Quass, and B. Adelberg.

Physical database design for data warehouses. In Intl.

Conf. onData Engineering, 1997.

[8] [LY85] P. A. Larson and H. Z. Yang.

Computing queries from derived relations. In Intl.

Conf. Very Large Databases, pages 259–269,

Stockholm, 1985.

[9] [PGLK97] Arjan Pellenkoft, Cesar A. Galindo-

Legaria, and Martin Kersten. The Complexity of

Transformation-Based Join Enumeration. In Intl.

Conf. Very Large Databases, pages 306–315,

Athens,Greece, 1997.

[10] [PS88]Jooseok Park and Arie Segev. Using

common sub-expressions to optimize multiple

queries. In Proc.IEEE CS Intl.Conf. on Data

Engineering 4, Los Angeles., February 1988.

[11] [RR82] A. Rosenthal and D. Reiner. An

architecture for query optimization. In SIGMOD Intl.

Conf. on Management of Data, Orlando, FL, 1982.

[12] [RR98] Jun Rao and Ken Ross. Reusing

invariants: A new strategy for correlated queries. In

SIGMOD Intl. Conf. on Management of Data, Seattle,

WA, 1998.

[13] [RSR+99] Prasan Roy, Pradeep Shenoy, Krithi

Ramamritham, S. Seshadri, and S. Sudarshan. Don’t

trash your intermediate results, cache ’em. Submitted

for publication, October 1999.

[14] [RSS96] Kenneth Ross, Divesh Srivastava, and

S. Sudarshan. Materialized view maintenance and

integrity constraint checking: Trading space for time.

In SIGMOD Intl. Conf. on Management of Data, May

1996.

[15] [RSSB98] Prasan Roy, S. Seshadri, S.

Sudarshan, and Siddhesh Bhobe. Practical algorithms

for multi query optimization. Technical report, Indian

Institute of Technology, Bombay, October 1998.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

