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Abstract 

  Today, it is very common that complex 

queries are being greatly used in the real time 

database applications. These complex queries 

have a lot of common sub-expressions, either 

within a single query or across multiple such 

queries run as a group or batch. Multi-query 

optimization used for common sub-expressions 

to reduce evaluation cost. Generally Multi-query 

optimization has been viewed as impractical, 

because previous algorithms were exhaustive, 

and require large search space. 

 But we observe that multi-query optimization 

using heuristics approach is practical, and it 

provides significant benefits. The optimization 

implements three cost-based heuristic 

algorithms: basic Volcano-SH and Volcano-RU, 

which are based on simple modifications applied 

to the Volcano algorithm, and a greedy 

heuristic. The greedy heuristic approach 

incorporates novel optimizations that improve 

efficiency of algorithm to optimize multiple 

queries. The algorithms are designed so that it 

can be easily added to existing optimizers.  

 

 

1.  Introduction 
 Complex queries are becoming 

commonplace, due to the advancement in tools 

that help to analyze information from large data 

warehouses. These complex queries often have a 

lot of common sub expressions since they make 

extensive use of views which are referred 

number of times in the query and most of  them 

are correlated nested queries in which parts of 

the inner sub query may not depend on the outer 

query variables[13]. The scope for finding 

common sub-expressions increases greatly if we 

consider a set of queries executed as a batch or 

group.  

 Analysis of data or reporting often requires a 

batch of queries to be executed. A set of related 

materialized views also generates related queries 

with common sub expressions. Materialized 

views are increasingly being supported by 

commercial database systems, and are used to 

speed up query processing. Data warehouses, 

which store large volumes of data, depend on 

materialized views for efficient query 

processing, and the materialized views as well as 

expressions have significant amounts of 

common sub expressions. Sharing of common 

sub-expressions is also have importance when 

the expressions access remote data, and hence it 

becomes expensive. Here we address the 

problem of optimizing sets of queries which 

may have common sub expressions; this 

problem is referred to as multi-query 

optimization. It is also possible that common sub 

expressions are present even within a single 

query; the techniques developed are used to deal 

with such intra-query common sub 

expressions[14]. 

 Traditional query optimizers are not 

beneficial for optimizing queries with common 

sub expressions, since they make locally optimal 

choices. 

 Let us take an example, Where we have seen 

that, in SQL, a query could be expressed in 

several different ways. Each SQL query can be 

translated into a relation-algebra expression in 

one of the several ways. The relational algebra 

representation of a query specifies only how to 

evaluate a query; there are several ways to 

evaluate relational algebra expressions. Let us 

consider the query for selecting the marks of 

student more than 60 columns from student 

database. 

 

SELECT marks 

FROM student 

WHERE marks>60; 

This query can be translated into either 

of the following relational algebra expressions:- 
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1. σ marks>60 (Π 

marks(student)) 

2. Π marks(σ marks 

>60(student)) 

 Cost estimation in query optimization 

 Calculation of cost 

 Query processing 

 

2. Cost estimation in query 

optimization 
 The cost can be evaluated by considering the 

properties of hard disk with respect to time. 

 

2.1.   Cost parameters 
 The three main disk scheduling parameters 

are: 

 Seek time 

 Latency time 

 Transfer time 

 Seek Time  

 Seek time is the time required to move 

a read-write head from one track to another. 

 Rotational Latency 

At the movement when read-write head 

is positioned onto the correct cylinder, it waits 

for the requested sector to rotate beneath it. This 

waiting time is called as rotational latency.  

 Transfer Rates 

It is a time for data to be read by the disk head, 

i.e., time required to move the head across the 

particular block of a sector. 

 Transfer time = amount of data per track / time 

per rotation 

 

2.2.  Calculation of cost 
 The nested loop algorithm reads one record 

from one relation, and passes each record of the 

outer relation to the inner relation; also join the 

record of the outer relation with suitable records 

of the inner relation. The next record from the 

outer relation is again read and entire inner 

relation is again scanned, and so on. The nested 

block algorithm works by reading a block of 

records from the outer relation and passing over 

each record of the inner relation, joining the 

records of the outer relation with those of the 

inner relation. If there are B pages in the 

memory, B-2 pages are usually allocated to the 

outer relation, one to the inner relation, and one 

to the result relation. For cost estimation 

required parameters are as shown in the table. 

 

 

 

Notation Meaning  

V1 Number of pages in 

relation R1 

V2 Number of pages in 

relation R2 

Vr Number of pages in 

result of joining relation R1 and 

R2 

B Number of pages in 

memory for the use in buffers 

B1 Number of pages in 

memory for relation R1 

B2 Number of pages in 

memory for relation R2 

BR Number of pages in 

memory for result 

Table 1: Notation to evaluate cost 

 The time taken to perform an operation x as 

Tx. Table below shows the default values used 

to calculate the results  

Notation Meaning  Values 

TC Cost of constructing a 

hash table per page in 

memory 

0.015 

TK Cost of moving the 

disk head to the page 

on disk 

0.0243 

TJ Cost of joining a page 

with a hash table in 

memory 

0.015 

TT Cost of transferring a 

page from disk to 

memory 

0.013 

Table 2: Parameter for cost estimation 

Cost of transferring a set V1 pages 

through buffer of size B1: 

 CRead R1 = CI/O(V1,B1) 

Cost of creating Hashed Pages from V1 

pages: 

 CCreate = V1TC 

Cost of transferring a ser V2 pages 

through buffer of size B2: 

 CRead R2 =CI/O(V2,B2) 

Cost of Joining each hashed page with 

V2 pages 

 CJoin = V2TJ 

Cost of Writing back the result into the 

disk drive: 

 CWrite RR = CI/O(VR,BR) 
Total Cost of Operation: 

 CNB = CRead R1 + CCreate  + CRead 

R2 + CJoin  + CWrite RR 
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3. Query processing 
How optimizer works? 

 Phases of optimization are implemented in 

the execution of a query. Query processing 

refers to the range of activities involved in 

extracting the data from database. The activities 

include transformation of queries in high level 

database languages into expressions that can be 

used at physical level of the file system, a 

variety of query optimizing transformations and 

actual evaluation of queries[15]. 

 The basic steps involved in the query 

processing are 

1) Parsing and translation 

2) Optimization 

3) Evaluation  

 

Figure 1: Query processing 

4.   Operations in Query-

Processing 
 Selection 

 Join Operation 

a) Nested –Loop Join 

b) Hash Join 

5.   Technique: greedy 
Algorithm 

Procedure GREEDY 

Input: Expanded Directed acyclic graph nodes 

Output: Set of nodes obtained to form 

corresponding best plan 

X = NULL 

Y = set of equivalence nodes in the DAG 

while (Y ≠ NULL) 

L1:  Pick the node x ∈ Y with the smallest 

value for bestplan(Q, {x} ∪ X) 

if (bestplan(Q, {x} ∪ X) < bestplan(Q, X) ) 

Y = Y - x; X = X ∪ {x} 

else Y = NULL // benefit < 0, so break out of 

loop  

return X 

6.  Flow of Optimizer 

 

 
Figure 2: Flow of optimizer 

7.   Advantages 
7.1. Sharing 

The optimization based on that the 

nodes materialized forms optimal plan 

are subset and shared by other queries. 

Therefore, it is essential to initialize Y, 

with nodes that are shared by another 

query. Called as sharable nodes[15].  

7.2. Incrementing Cost Update 
The second optimization is based on 

there are many calls to bestplan , with 

different parameters. Symmetric 

difference in the sets passed as 

parameters to successive calls to 

bestplan is very small – successive calls 

take parameters of the form bestplan(Q, 

{x} ∪ X), where only x varies.  

7.3.  Monotonic 
The third optimization, which we call 

the monotonic avoids having to invoke 

bestplan(Q,{x} ∪ X), for every x ∈ Y . 

 

8. Future Work 
 The results in this paper form the basis for a 

significant amount of future work. The 

algorithms or techniques can be extended to deal 

with space constraints on materialized results. A 

more challenging problem is how to schedule 

computations so that temporary storage space 

can be reused during computation. 

 Another important area of future work lies in 

dealing with large sets of queries (large 

workloads); the size of the workload can be 

reduced by abstracting queries, for instance by 

replacing queries that differ in just selection 

constants by a parameterized query, invoked 

multiple times.  
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 Applying multi-query optimization to 

incremental update expressions for materialized 

views, it also  apply to these results to the 

problem of materialized view or index selection, 

where update costs need to be taken into 

account. 

 

9.  Conclusion 
 There are number of techniques to greatly 

speed up the execution time for multiple queries.  

Techniques depend upon AND-OR DAG 

representation of queries, are thereby can be 

easily extended to handle new operators. 

Implementation demonstrated that the 

algorithms can be added to an existing optimizer 

with a reasonably small amount of effort. Multi-

query optimization is practical and gives 

significant benefits at a reasonable cost. The 

benefits of multi-query optimization were also 

demonstrated on a real database system. In 

conclusion, we believe we have laid the 

groundwork for practical use of multi-query 

optimization, and multi-query optimization will 

form a critical part of all query optimizers in the 

future. 
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