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Abstract—One of the most basic concepts in humankind’s 

life is the search for an optimal state. As long as the life 

continues, seeking for perfection in decision making of many 

areas is fundamental. The concept of optimization is considered 

as a main goal for a decision maker (DM) to achieve the best 

solution or most favorable set of solutions of one or more given 

criteria. In fact, most of real-world problems involve many 

correlated and often conflicted objectives that should be 

maximized or minimized to have the problem solved; such 

setting creates a harder situation for a DM to define all those 

contradicting objectives in terms of a one single objective 

following single-objective optimization (SOO) approach. To 

overcome this limitation, multi-objective optimization (MOO) 

becomes one of the recent optimization approaches to formulate 

decision making problems in a more realistic manner.  

As the ultimate goal of solving MOO problems is to find the 

optimal set of non-dominated solutions, which is called Pareto-

optimal set of Pareto-optimal solutions, using classical methods 

of exact, heuristics or metaheuristics methods become more 

complicated and cannot guarantee that those optimal solutions 

will be found. Therefore, many methods have been developed to 

facilitate the process of solving MOO problems with respect to 

the role of DM, due to his authority to give further preference 

information concerning the Pareto-optimal solutions. 

To this end, this study introduces a brief definition of MOO 

problem formulation, representation and solution; including 

analytical comparison of most common MOO problem solving 

methods in the literature. It’s concluded that MOO methods 

tree could be classified into four main branches based on DM 

preference articulation: No preference, A-priori, Interactive, 

and A-posteriori preferences articulation of DM. 

Keywords—Multi-objective optimization; No preference; A-

priori; A-posteriori; Interactive; Pareto-Optimal; Evolutionary 

Algorithms.  

I. INTRODUCTION

Multi-objective optimization (MOO), also called many-

objective, multi-criteria, multi-attribute, multi-performance, 

Pareto, or vector optimization, is defined as the procedure for 

optimizing two or more conflicting objectives simultaneously 

subject to certain constraints. Mathematically, MOO problem 

is the problem of finding a vector of decision variables which 

satisfies a number of constraints and optimizes a vector 

function whose elements represent the objective functions 

which are to be either minimized or maximized 

simultaneously. These functions form a mathematical 

description of performance criteria which are usually in 

conflict with each other. Hence, the term “optimize” means 

finding such a solution which would give the values of all the 

objective functions acceptable to the DM. 

II. MULTI-OBJECTIVE OPTIMIZATION PROBLEM

FORMULATION 

The first step in performing a MOO is to formulate the 

problem appropriately. A MOO problem is defined by four 

parts: a set of decision variables, objective functions, bounds 

on the decision variables, and constraints. Since objectives 

can be either minimized or maximized to find a set of optimal 

solutions that satisfy involved constraints. Hence, we state the 

MOO problem in its general form as following: 

Find the design variable vector 

, 

which minimizes/ maximizes the objective functions 

 ,m = 1, 2, …, M 

Subject to 

n number of bound(s) 

 i = 1, 2, …, n 

J number of inequality constraint(s): 
 j= 1, 2, …, J 

K number of equality constraint(s): 

, k= 1, 2, …, K 

Referring to the statement of MOO problem, the objective 

functions or their objective values  where m = 1, 2, 

…, M, form an objective vector , which can be written as: 

Or more conveniently as: = 

. where T indicates the transposition of the 

column vector to the row vector.  

There are two Euclidean spaces are considered in MOO 

problems: The design, decision, state, or search space , 

which is the n-dimensional real coordinate space of the 

design variables in which each coordinate axis corresponds to 

a component of vector x; The objective, solution, or response 

space  which is the M-dimensional real coordinate space 

of the objective functions and formed by the objective 

function values  in which each coordinate axis corresponds 

to a component of vector [1].   
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For each solution  in the first space it gives a certain 

point in the second space, denoted by: 

i.e.

which determines a quality of this solution in terms of the 

objective function values . It’s referred to a ‘solution’ as a 

design variable vector and a ‘point’ as the corresponding 

objective vector 

The solutions satisfying both objective functions’ constraints, 

and variable bounds constitute a feasible decision variable 

space S or Ω ⊂  and it corresponding feasible objective 

space Z or Λ ⊂  . 

III. MULTI-OBJECTIVE OPTIMIZATION PROBLEM

REPRESENTATION 

In MOO, where there is more than one objective, each 

objective has its own fitness landscape, as variations in 

objective values with changes in design variable values are 

likely to be different for different objectives (see Fig.1). For 

many problems, objectives compete with each other, so that 

solutions that improve values of one objective might worsen 

values in another.  Therefore, it is less clear which solutions 

are better than others, as the solution that results in the highest 

peak in the fitness landscape for one objective might result in 

the lowest peak in the fitness landscape for the other objective 

and vice versa. In such cases, the optimality of a solution is 

determined using the concept of dominance [2].   

IV. MULTI-OBJECTIVE OPTIMIZATION PROBLEM SOLUTION

In real life, it’s rarely and ideal to find a single solution that

simultaneously optimizes all objective functions of a MOO

problem. Therefore, the definition of ‘optimality’ has

different meaning in this case. A MOO problem solution is to

find good

compromises or ‘trade-offs’ of conflicting objective functions

in an optimal manner, rather than finding a single solution.

Fig. 1. Illustration of the relationship between (a) the fitness landscape of 

objective 1, (b) the fitness landscape for objective 2 and (c) the Pareto 

frontier 

Fig. 2. Graphical depiction (mapping) of (a) a decision space onto (b) an 

objective space, where both objectives are to minimized 

From this front, a DM (be it a human or an algorithm) can 

finally choose the configurations that, in his opinion, suit 

best. 

Mathematically, the most commonly adopted definition of 

optimality for MOO problems is that originally proposed by 

Francis Ysidro Edgeworth and later generalized by Vilfredo 

Pareto using the term Pareto optimality [3]. Unlike SOO 

problems, where the superiority (optimality) of a solution 

over other solutions is easily determined by comparing their 

objective function values, in MOO problems, the goodness 

(optimality) of a solution is determined by the concept of 

dominance. For a given a set of solutions in the design space, 

where the set of all possible combinations of design variables 

exists, the non-dominated solution set is a set of all solutions 

that are not dominated by any other member of the solution 

set. The non-dominated set of the entire feasible design space 

is called the Pareto-optimal set which represents a complete 

set of Pareto-optimal Solutions. Pareto-optimal solutions are 

trade-off solutions for which any improvement in one 

objective results in worsening of at least one other objective. 

The boundary defined by the set of all points (Pareto-optimal 

points) mapped from the Pareto-optimal set to the feasible 

objective space is called the Pareto-optimal front or Pareto 

frontier. The previous terms will be detailed in the following 

subsections. 

A. Pareto Dominance

The concept of domination is illustrated in Fig. 3. A solution

 is said to dominate the other 

solution  (denoted by 

), if both the following conditions are true: 

 The solution   is no worse than in all objectives

Thus, the solutions are compared based on their

objective function values (or location of the

corresponding points and  on the objective

space).

 The solution  is strictly better than in at least 

one objective.

This definition could be mathematically represented as 

follows: 
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Fig. 3. The concept of domination illustrated in a minimization problem of 

two objective functions 

B. Pareto Optimal Solution

The phrase ‘Pareto-optimal solution’ is taken to mean with

respect to the entire design variable space unless otherwise

specified. In other words,  is called Pareto-optimal

solution, if there exists no feasible vector x which would

improve some criterion without causing a simultaneous

worsening in at least one other objective.

A solution  is a Pareto-optimal solution with respect 

to , if and only if: 

there is no  for which, 

Dominates, 

C. Pareto Optimal Set

Pareto optimal solutions are those solutions within the design

space whose corresponding objective vector components

cannot be all simultaneously improved. These solutions are

also termed non-inferior, admissible, or efficient solutions,

with the entire set represented by . Their corresponding

vectors are termed non-dominated; selecting a vector(s) from

this vector set (the Pareto front set .) implicitly indicates

acceptable Pareto-optimal solution. These solutions may have

no apparent relationship besides their membership in the

Pareto optimal set. They form the set of all solutions whose

associated vectors are nondominated; Pareto optimal

solutions are classified as such based on their evaluated

functional values. Mathematically, for a given MOO problem

, the Pareto-optimal set , is defined as: 

D. Pareto Frontier

Non-dominated vectors of entire Pareto-optimal set are

collectively known as the Pareto-optimal front or Pareto

frontier when they are plotted in the objective space. In

general, it’s not easy to find an analytical expression of the

line or surface that contains these Pareto Frontier points and,

in most cases, it turns out to be impossible.

The normal procedure to generate the Pareto frontier is to

compute many solutions in  and their corresponding points

in Λ. When there’s a sufficient number of these, then it’s

possible to determine the non-dominated points and to 

produce the pareto frontier. 

Mathematically, for a given MOO problem , and Pareto-

optimal set , the Pareto frontier is defined as: 

E. Weak Pareto Optimality

A solution is a weak Pareto-optimal if there is no 

 such that  for . 

F. Strict Pareto Optimality

A solution is strictly Pareto-optimal if there is no 

 such that  for . 

G. Special Solutions and Points

There are some related definitions of special solutions which

are often used in MOO algorithms. The following subsection

provides some discussion about them.

1) Ideal Design Vector & Ideal Objective Vector

For each M conflicting objective functions, there exists one 

different optimal solution. An objective vector constructed 

with these individual optimal objective values constitutes the 

ideal objective vector 

Let  be a vector of design 

variables which optimizes (either minimizes or maximizes) 

the m-th objective function . This vector is called ideal 

solution or ideal design vector. To determine this solution, 

the minimum (or maximum) attainable objective values for 

all objective functions should be found separately. Assuming 

this minimum (or maximum) of each m-th objective function 

could be found as: 

Then, the vector is the ideal 

objective vector for a MOO problem 

In general,  corresponds to a non-existent solution, because 

the minimum solution for each function need not be the same 

solution.  is used as a reference solution that solutions 

closer to it are better. Moreover, many algorithms require the 

knowledge of the lower bound on each objective function to 

normalize objective values in a common range.  

The only way a corresponds to a feasible solution is when 

the minimal solutions to all objective functions are identical. 

In this case, the objectives are not conflicting to each other 

and the minimum solution to any objective function would be 

the only optimal solution to the MOO problem. [4] 

2) Utopian Objective Vector

The ideal objective vector denotes an array of the lower 

bound of all objective functions. This means that for every 

objective function there exists at least one solution in the 

feasible search space sharing an identical value with the 

corresponding element in the ideal solution. Some algorithms 

may require a solution which has an objective value strictly 

better than (and not equal to) that of any solution in the 

design space. For this purpose, the utopian objective vector 

 is defined as follows: 
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A utopian objective vector  has each of its components 

marginally smaller than that of the ideal objective vector, or 

 with  for all i = 1, 2, …, M. 

3) Nadir Objective Vector

Unlike the ideal objective vector which represents the lower 

bound of each objective in the entire feasible search space, 

the nadir objective vector  represents the upper bound of 

each objective in the entire Pareto-optimal set and not in the 

entire search space. A nadir objective vector must not be 

confused with worst objective vectors marked as W in Figure 

found by using the worst feasible function values  in the 

entire search space. 

Although the ideal objective vector is easy to compute 

(except in complex multimodal objective problems), the nadir 

objective vector is difficult to compute in practice. However, 

for well-behaved problems, the nadir objective vector can be 

derived from ideal objective vector by using the payoff table 

method. For two objectives, if 

And 

are coordinates of the minimum solutions of 

respectively, in the objective space, then the nadir vector can 

be estimated as:  

The nadir objective vector may represent an existent or a 

non-existent solution, depending in the convexity and 

continuity of the Pareto-optimal set. In order to normalize 

each objective in the entire range of the Pareto-optimal region, 

the knowledge of nadir and ideal objective vectors can be used 

as follows: 

Fig. 4. Multi-objective optimization methods 

the DM is a person who can give further preference 

information concerning the Pareto optimal solutions., many 

approaches have 

Fig. 5. Multi-objective optimization methods classified based on the 

existence of DM preferences 

V. MULTI-OBJECTIVE OPTIMIZATION METHODS

The ultimate goal of solving a MOO problem is to identify 

Pareto-optimal solutions. To achieve this goal, using exact, 

heuristics or metaheuristic methods become more 

complicated and cannot guarantee that those optimal 

solutions will be found. As the DM is a person who can give 

further preference information concerning the Pareto-optimal 

solutions., many approaches have been developed with 

respect to his role to facilitate the process of solving MOO 

problems. Figure is dividing them into four main categories 

as shown in Fig. 5 [5] [6] [7]. 

A. No-preference Articulation Methods

No articulation of preference information method is used only

when the DM is not available, such as the cases of online

optimization where the tasks that need to be solved quickly in
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a time span between ten milliseconds to a few minutes [8]. 

These methods provide only one solution to get computed.  

An example of these methods is the so-called global criterion 

method that aims to minimize the distance to the ideal 

objective vector.  

Different metrics can be used in this evaluation such as -

metric. The -metric  , , is a norm metric on 

, defined by , where the -norm  is defined 

by . 

Minimize 

where: 

 When , it’s a maximum metric and it becomes a 

non-smooth optimization problem. 

 When , the solution obtained is a Pareto-optimal 

solution.

 When , the solution obtained is a weakly Pareto-

optimal solution. 

B. A-Priori Preference Articulation Method

This approach is based on a prior articulation of preferences.

It requires DM to reach an assent about the relative

importance (weight) of each objective. The preferences of

DM are then used in a technique called scalarization, i.e.

aggregation of multiple objectives, that converts a MOO

problem into a SOO problem which can be solved using a

variety of solution approaches.

However, in many applications, it is difficult for DM to

devise a satisfactory weighting scheme for scalarization,

because some features of a problem are not fully understood

during the early stages of decision making. Moreover, some

objectives may be formulated in complex mathematical forms

that are difficult for non-analysts to understand. Indeed, some

objectives are qualitative like aesthetic, cultural or other

realms that are expensive to get quantified.

Weighted Sum Method (shown in Fig. 6) is considered one of 

this method examples. It’s based on scalarization of a set of 

multiple objectives into a single objective by adding each 

objective pre-multiplied by a DM supplied weight 

. Then, a weight of an objective is chosen 

in proportion to the relative importance of the objective. 

Above, the  are weights given by the DM 

representing the relative importance of the objectives. If 

weight   it means that the DM appreciates 

improvement on objective  more than on objective . 

Fig. 6. Weighted sum method to solve minimization problem of two 

functions 

Minimize: 

Where: 

, 

Subject to: 

n number of bound(s) 

 i = 1, 2, …, n 

J number of inequality constraint(s) 
 j= 1, 2, …, J 

K number of equality constraint(s) 
, k= 1, 2, …, K 

C. Interactive (Prgressive) Preference Articulation Method

This approach is based on an interactive (or progressive)

articulation of preferences, in which the DM’s preferences

are refined and incorporated into the search process. During

each iteration of the process, DM is presented a (typically

small) subset of non-dominated solutions, and based on these

solutions they provide local information about his preferences

for objectives. Then a SOO problem is formulated and

solved. Solutions to this problem are used by DM to improve

his understanding of the problem and to adjust his

preferences, which can be used to form a new problem. This

process repeats until DM is satisfied.

Although these methods can be used to encourage the

participation of DM, there is no guarantee that an acceptable

solution will be reached, and even if such a solution is

identified, it cannot be guaranteed to be Pareto-optimal.

Interactive decision making has become popular during the

past several decades, and a large number of methods have

been developed in the literature. This is partly due to the

more intensive involvement of DM in the process of

searching for alternative solutions. This process can lead to

more satisfactory final decisions (compared to prior

approaches). However, interactive methods are often based

on the generation of a small number of alternatives and they

therefore may overlook important non-dominated solutions.

One of popular examples of this method is satisficing trade-

off analysis method and method of steuer.

D. A-Posteriori Preference Preference Articulation Method

This approach is based on a posterior articulation of

preferences. It does not require the intensive participation of

DM during the process of generating alternatives. Instead, the

application of this approach depends on methods that can be

used to generate a diverse set of Pareto optimal solutions that

are evenly distributed on the Pareto frontier; these solutions

are subsequently presented to DM who make a final decision

about the problem by examining and negotiating about the

merits of alternatives.

The major difficulties to apply this approach are: First, it not

easy to develop solution methods that can effectively

generate the Pareto frontier. Traditionally, prior articulation

methods have been used to generate the Pareto optimal

solutions by systematically adjusting the associated

parameters (e.g., preference weights) in order to yield
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different solutions. The problem with this approach, however, 

is that it may overlook important solutions, especially when 

the Pareto front contains concave, and/or discontinuous 

sections. Second, the existence of a large number of non-

dominated solutions will impose a substantial cognitive 

burden on DM who must somehow select a solution from the 

multitude of alternatives. 

An important advantage of the posterior approach is also 

clear: a full representation of the Pareto front can present the 

true multi-objective structure of the problem, which may lead 

to a better decision. If an intuitive and user-friendly decision 

support tool is available, stakeholders can concentrate on 

examining and negotiating tradeoffs among interesting 

solutions. This approach may also foster a wider participation 

from stakeholders because they may be able to find ‘‘niche’’ 

solutions that are beneficial to their view of a problem and its 

resolution.  

Multi-objective optimization evolutionary algorithms 

(MOEAs) are one of the most used examples of applying a-

posteriori preference articulation. MOEAs are often classified 

into three main groups: aggregation-based, dominance-based 

and performance indicator-based algorithms. Aggregation 

based algorithms decompose MOO problem into a number of 

single-objective sub-problems and subsequently solve them 

simultaneously. One of the commonly used aggregation-

based MOEA algorithms is MOEA/D. 

Dominance-based algorithms are the most common type of 

MOEAs in the literature and are based on the Pareto 

dominance-based evaluation of individuals. A commonly 

used dominance-based MOEAs is NSGA-II. Finally, 

indicator-based algorithms use an indicator function (a 

measure of the area dominated by the Pareto optimal front) to 

gauge the quality of the population in an MOEA.  

Over the past few decades MOEAs have been increasingly 

used in practice due to advantages such as, a set of 

representative Pareto optimal solutions can be obtained in a 

single run, multiple local, discrete, and nonconvex Pareto-

optimal fronts and different types of variables, objective 

functions, and constraints can be easily handled. However, 

they are also equally criticized for their lack of convergence 

proof, being computationally very expensive and the need to 

set a number of algorithm parameters such population size 

etc. 

VI. CONCLUSION

Throughout the brief overview of the methods available in 

the literature of MOO, this research concludes 4 main 

classifications of those methods presented with a brief 

explanation of the method definition, idea, benefits, 

drawbacks, and examples. Table. 1 provides a summary of 

each of the four main classifications. This could provide an 

overview to researchers and practitioners about the field of 

MOO as a whole and thereby promote its utilization among 

the industries.  

TABLE I.  

N
o
 p

re
fe

re
n

ce
 

Definition Methods where the DM is not available 
Idea Compute some PO solution. 

Benefits Fast methods as one PO solution is enough and 
there is no communication needed with the DM. 

Drawbacks Do not take into account which problem is 

solved. 

Example Global criterion method. 

A
-p

r
io

r
i 

M
e
th

o
d

s 

Definition Methods where the DM articulates preferences 
before optimization. 

Idea - Ask first the preferences of the DM, then 

optimize using the preferences.
- Only such PO solutions are produced that are of 

interest to the DM. 
Benefits Computed PO solutions are based on the 

preferences of the DM (no unnecessary 

solutions). 
Drawbacks It may be difficult for the DM to express 

preferences before he has seen any solutions. 

Example Weighted Sum Method. 

In
te

r
a
c
ti

v
e
 (

P
r
o
g
r
e
ss

iv
e
) 

M
e
th

o
d

s 

Definition Methods that allow the DM to guide the search 

by alternating optimization and preference 

articulation iteratively 
Idea - Solution process is iterative:

1. Initialization: compute some PO solution(s).

2. Show PO solution(s) to the DM.

3. Is the DM satisfied? If no, ask the DM to give 
new preferences. Otherwise, stop. A most

preferred solution has been found.

4. Compute new PO solution(s) by taking into 
account new preferences. Go to step 2.

- Solution process ends when the DM is satisfied 
with the PO solution obtained.

Benefits - Only such solutions are computed that are of 

interest to the DM. 

- DM is able to steer the solution process with 
his/her preferences.

- DM can learn about the interdependences 

between the conflicting objectives through the 
solutions obtained based on the preferences

which helps adjusting the preferences.
Drawbacks - DM has to invest a lot of time in the solution 

process.

- High influence of the DM on the process is 

needed. 
- If computing PO solutions takes time, DM does 

not necessarily remember what happened in the 

early phases. 

Example Satisficing trade-off analysis method. 

A
-p

o
st

e
r
io

ri
 M

e
th

o
d

s 

Definition Methods where the DM articulates preferences 
after optimization. 

Idea - Compute different PO solutions, then DM 

selects the most preferred one.
- Approximation of the PO set (or part of it) is 

provided. 
Benefits - Well suited for problems with 2 objectives since 

the PO solutions can be easily visualized for the 

DM. 

- Understanding of the whole PO set.
Drawbacks - Approximating the PO set often time 

consuming. 

- DM has to choose the most preferred solution 
among large number of solutions.

- Visualization of the solutions for high number 

of objectives. 
Example MOEAs. 
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