
Multi Cycle Implementation Scheme for 8 bit

Microprocessor by VHDL

Sharmin Abdullah, Nusrat Sharmin, Nafisha Alam

Department of Electrical & Electronic Engineering

Ahsanullah University of Science & Technology

Dhaka, Bangladesh

Abstract— Computers and computer systems play a significant

role in the modern world. The central component of these

computers and computer systems is the microprocessor. The

applications of digital designs are present in designing

microprocessors. This paper presents the implementation of the

design of a Multi Cycle Central Processing Unit (CPU) in Very

High Speed Integrated Circuits (VHSIC) Hardware Description

Language or commonly known as VHDL. The implementation

was carried out to understand the development of processor

hardware as the design and customization of the processors

which has become a mainstream task in the development of

complex Systems-on-Chip.

Keywords—ALU, Instruction fetch, Instruction decode,

Execution, Control, ALU controller, Data memory, VHDL

implementation.

I. INTRODUCTION
 A microprocessor is an integrated circuit on a tiny silicon

chip that contains thousands or millions of tiny on/off

switches, known as transistors. It is designed to perform

arithmetic and logic operations that make use of data on the

chip and data in RAM (Random Access Memory) [1]. It

computes instructions depending on how fast the processor is

designed and if the processor's clock crystal (think of the

clock crystal as a metronome). The faster (in MHz or GHz)

the processor and its clock crystal are the better. Processors

currently come in 8, 16, 32 and 64 bit versions. This paper

presents the design of an eight bit multi cycle microprocessor

by VHDL which can describe the behavior and structure of

electronic systems, but is particularly suited as a language to

describe the structure and behavior of digital electronic

hardware designs, such as ASICs and FPGAs as well as

conventional digital circuits. Processor´s speed can be

improved by using multi cycle implementations.

 In the first section starting from a simple implementation

scheme of a MIPS (Million Instruction Per Second) subset

the basic hardware of the microcontroller´s data path and its

control is developed step by step and implemented in VHDL.

Test benches will verify the correct implementation of the

arithmetic logical instructions (add, sub, and, or and slt), the

memory-reference instructions (load word and store word)

and the branch instructions (beq and jump). Processor’ speed

can be improved by using multi cycle implementation. Then,

instructions are allowed to take different numbers of clock

cycles and functional units can be shared within the execution

of single instructions. Multi cycle implementation also called

multi clock cycle implementation [2].

Fig. 1. High level view of multi cycle Data path [3].

 In order to enhance the performance and to get very fast

processors another implementation technique called

pipelining is introduced. Multiple instructions are overlapped

in execution so that some stages are working in parallel.

Fig. 2.

Pipelined Version of the Data path

[4].

Vol. 3 Issue 7, July - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS070933

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1783

II. DESIGN TASK

A. Data path

A data path is a collection of functional units, such as
arithmetic logic units or multipliers that perform data
processing operations. It is a central part of many central
processing units (CPUs) along with the control unit, which
largely regulates interaction between the data path and the
data itself, usually stored in registers or main memory.

B. Register transfer level models implemented in pure vhdl

 The key advantage of VHDL, when used for systems

design, is that it allows the behavior of the required system to

be described (modeled) and verified (simulated) before

synthesis tools translate the design into real hardware (gates

and wires). A VHDL project is portable. Being created once,

a calculation block can be used in many other projects.

C. Synthesis tool: ALTERA QUARTUSII

 The Quartus II development software provides a

comprehensive environment for system-on-a-programmable-

chip (SOPC) design. It provides a complete design

environment for FPGA designs.

Design entry uses schematics, block and Verylog HDL.

Design analysis and synthesis, fitting, assembling, timing

analysis, simulation.

D. Block diagram of first hierarchy levels

A Quartus II Block Diagram File can be used as part of a

hierarchical design. That is, it can be represented as a

component in a higher-level design.

Fig. 3. Block diagram of ALU.

Fig. 4. Block diagram of INSTRUCTION FETCH.

Fig. 5.

Block Diagram of INSTRUCTION DECODE

Fig. 6. Block diagram of EXECUTION UNIT

Fig. 7. Block diagram of CONTROL UNIT

Fig. 8. Block diagram of DATA MEMORY.

Vol. 3 Issue 7, July - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS070933

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1784

Fig. 9.

Block diagram of ALU CONTROLLER

III.

MULTI CYCLE IMPLEMENTATION

 The Multi cycle implementation uses several registers to

temporarily hold the output of the previous clock cycle.

These include an Instruction register, Memory data register,

ALU Output register, etc. The Multi cycle machine breaks

simple instructions down into a series of steps. These steps

are:

A.

Instruction fetch step

 During the instruction fetch step the Multi cycle processor

fetches instructions from the memory and computes the

address of the next instruction by incrementing the program

counter (PC).

B.

Instruction decode and Register fetch step

 During the second step, the Instruction decode and register

fetch step, we decode the instruction to figure out what type it

is: memory access, R-type, I-type, branch.

C.

Execution, memory address computation, or branch

completion step

 During the third step, the Execution, memory address

computation, or branch completion step functions in different

ways depending on what type of instruction the processor is

executing. This third step is the last step for branch and jump

instructions. It is the step where the next PC address is

computed and stored.

D.

Memory access or R-type instruction completion step

 The fourth step only takes place in load word, store word,

R-type, and I-type instructions. This step is when the load and

store word instructions access the memory and use

an

arithmetic-logical instruction to write its result.

 Values are either loaded from memory and stored into the

memory data register, or loaded from a register and stored

back into the memory. This fourth step is the last step for R-

type and I-type instructions. For R and I type instructions this

is the step where the result from the ALU computation is

stored back into the destination register

[5].

E.

Memory

read completion step

 Only load instructions need the fifth step to finish up. This

is the memory read completion step. In a load instruction the

value of the memory data register is stored back into the

register file.

TABLE I. How ALU Control bits are set and different function codes for
the R type Instruction.

Instruction

Opcode

ALU

Op

Instruct

ion

operati

on

Function

Field

Desired

ALU

action

ALU

control

Input

LW

000

Load

word

XXXXX

X

add

010

SW

000

Store

word

XXXXX

X

add

010

Branch

equal

001

Branch

equal

XXXXX

X

subtract

110

R-type

010

Add

1000000

add

010

R-type

010

subtract

100010

subtract

110

R-type

010

AND

100100

and

000

R-type

010

OR

100101

or

001

 These different steps are all controlled by the controller of

the multi cycle CPU. The controller is a finite state machine

that works with the Opcode to walk the rest of the

components through all the different steps, or states. The

controller controls when each register is allowed to write and

controls which operation the ALU is performing.

 The multi cycle data path requires some additional

requirements to support branches and jumps.

With the jump

and branch instructions there are three possible sources for

the value to be written into the PC.The output of ALU which

has the value PC+4 during instruction fetch would be stored

directly into the PC.

The address of the branch target after

 computation is stored in the ALU Out register. The lower 26

bits of the IR shifted left by two and concatenated with the

upper four bits of the incremented PC which is the source

when the instruction is jump.

 Two separate control signals are used in this

implementation: PC Write which causes an unconditional

write of the PC and PC Write Cond which causes a write of

the PC if the branch condition is true.

 The control lines are attached to the control unit and the

control and data path elements needed to effect changes to the

PC. To select the source of new PC value, multiplexer is

used. Gates are used to combine the PC Write signals and

control signals from PC Source, PC Write and PC Write

Cond. The PC Write Cond signal is used to decide whether a

conditional branch should be taken. This supports for jumps

also. The complete multi cycle data path and control unit

Vol. 3 Issue 7, July - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS070933

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1785

including the additional control signals and multiplexor for

implementing the PC updating are shown.

Fig. 10.

The complete data path for

the multi cycle implementation together with the necessary control lines

[6].

 The first method we use to specify the multi cycle control is

a finite state machine. A finite state machine is a sequential

logic function consisting of a set of inputs and outputs, a next

state function that maps the current state and the inputs to a

new state and an output function that maps the current state

and possibly the inputs to a set of asserted outputs.

 The figure which is shown below represents a complete

specification of the control for MIPS subset with two types of

exception.

 The labels on the arcs are conditions that are tested to

determine which state is the next state. When the next state is

unconditional, no label is given Here states 10 and 11 are the

states that generate the appropriate control for exceptions.

The branch out of state is labeled 1 indicates the next state

when the input does not match the output of any of lw, sw,

zero(R-type), j or beq. The branch out of state labeled 7 over

flow indicates the action to be taken when the ALU signals

are overflow.

Fig. 11.

The finite state machine with the addition to handle exception detection

[7].

Vol. 3 Issue 7, July - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS070933

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1786

Fig. 12. Complete RISC Microprocessor using Blocks.

IV. CONCLUSION

 The design was tested and simulated, no error was

encountered. The project is ready to implement further. The

idea of this project was to create a microprocessor as a

building block in VHDL that later easily can be included in a

larger design. It will be useful in systems where a problem is

easy to solve in software but hard to solve with control logic.

A state machine dedicated to the function can of course

replace the microprocessor and associated software.

However, at a high level of complexity it is easier to

implement the function in software. After going through all

the hard work and facing problems, this project managed to

complete its objectives that are to study different Multiplier

and learn the Power and Time trade off among them so that

we can design.

ACKNOWLEDGMENT

 The authors thank the respective supervisor Prof. Dr.

Satyen Biswas of Ahsanullah University of Science &

Technology for the continuous support of the study and

research and especially they dedicate their acknowledgment

of gratitude toward their beloved and respective parents.

REFERENCES

[1] http://www.belarus.net/Intel/MUSEUM/micropr.htm

[2] https://www.cs.duke.edu/courses/spring01/cps104/lectures/2up-
lecture15.pdf

[3] https://www.cs.drexel.edu/~jjohnson/2012-
13/fall/cs281/lectures/pdf/cs281_lec16.pdf

[4] Computer Organization and Design - The Hardware/Software Interface,
Third Edition, David A. Patterson, John L. Hennessy

[5] https://www.cs.duke.edu/courses/spring01/cps104/lectures/2up-
lecture15.pdf

[6] Computer Organization and Design - The Hardware/Software Interface,
Third Edition, David A. Patterson, John L. Hennessy

[7] http://faculty.washington.edu/lcrum/Archives/TCSS372AF08/MIPS_A
rch2.ppt

[8] Altera Corporation www.altera.com

[9] The VHDL Cookbook-Peter J. Ashenden

[10] http://www.eecg.toronto.edu/~moshovos/ECE243-07/l20-

multicycle.html

[11] http://www.pitt.edu/~kmram/CoE0147/lectures/multicycle1.pdf

Vol. 3 Issue 7, July - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS070933

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1787

