
Module Based Implementation Of Partial Reconfiguration In

FPGA For Counters

Mahendra Dhadwe
1
Arvind Choubey

2

1,2
Electronics & Communication, National Institute of Technology, Jamshedpur, India

Abstract

Module-based partial reconfiguration of FPGAs

play important role, it provides possibility for

runtime flexibility. It enables hardware tasks to

swap in and out the design without interruption of

the entire system. This resultin increase in speed

and functionality of FPGA based system. This

paper presents flow of partial reconfiguration and

implementation of reconfigurable modules using

Planahead software on Xilinx virtex-

6(XC6VLX240TFF1156-1).Planahead software

specifically designs for partial reconfiguration as it

has advance floorplanningcapability.This paper

reduces power consumption and size by using

generated partial bit file of various counters used

such as ring counter, up-counter, and decade

counter

1. Introduction

Field programmable gate arrays (FPGAs) are quickly

becoming the usual targeted technology for many

development efforts.FPGAs are programmable logic

devices which allow the implementation of digital

systems. They provide an array of logic cells that can

be configured to perform a given functionality by

means of a configuration bit-stream. Many of FPGA

systems can only be statically configured. Static

reconfiguration means to completely configure the

device before system execution. If a new

reconfiguration is required, then it is necessary to

stop system execution and reconfigure the device it

over again. Some FPGAs allow performing partial

reconfiguration, where a reduced bitstream

reconfigures only a given subset of internal

components. Dynamic Partial Reconfiguration

(DPR) allows the part of device be modified while

the rest of the device (or system) continues to operate

and unaffected bythe reprogramming.

In particular, two important benefits can be

achieved by exploiting partial dynamic

reconfiguration on reconfigurable hardware: (i) the

reconfigurable area can be exploited more efficiently

with respect to a static design; (ii) some portion of

the application must change over time and react to

changes in its environment.

In electronics circuit for different type of program

require counter so many times. Counter is one of the

main building block in various program and affect

the timing access and power consumption. So

implement partial reconfiguration for various counter

sharply reduce thepower consumption and area and

timing to perform. The counter such as ring counter,

up-counter, and decade counter used to perform

partial reconfiguration[1].

2. Partial Reconfiguration

Xilinx has proposed many methods to dynamic

partial reconfiguration. There are two main styles of

dynamic partial reconfiguration: difference-based

and module-based.

A. Difference-Based partial reconfiguration

This method of partial reconfiguration is

accomplished by making a small change to a design,

and then by generating a bitstream based on only the

differences in the two designs. It is especially useful

in case of changing Look-Up Table (LUT) equations

or dedicated memory blocks content. The partial

bitstream contains only information about

differences between the current design structure (that

resides in the FPGA) and the new content of an

FPGA. Switching the configuration of module from

one implementation to another is very quick, as the

bitstream differences can be extremely smaller than

the entire device bitstream[2].

In complex designs, it is difficult to find the

component you want to modify. So this methodis not

suitable for large-scale complex systems.

226

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

B. Module-Based partial reconfiguration

This method is based on modular design flow. This

feature allows a team of engineers to work

independently on different modules of a design and

merge them into one FPGA design. The complete

design can be divided into modules and each of these

may be independent. If all modules are independent,

i.e. no common I/O except clocks then there is no

need to use any bus macro for inter-module

communication. The bus macro provides a fixed

“bus” of inter-design communication. However, for

modules that do communicate with each other, a

special bus macro allows signals to cross over a

partial reconfiguration boundary. The HDL code

should ensure that any reconfigurable module signal

that is used to communicate with another module

does so only by first passing through a bus macro.

Without this special consideration, inter-module

communication would not be feasible as it is

impossible to guarantee routing between modules.

Module-based partial reconfiguration requires

performing a set of specific guidelines during the

stage of design specification. For each reconfigurable

module of the design, a separate bitstream is created.

Such a bitstream is used to perform the partial

reconfiguration of an FPGA.

Fig1. partial reconfiguration

A module-based DPR system with two partial

reconfiguration regions (i.e. PRR_A and PRR_B)

and many partial reconfiguration modules (i.e.

PRM_A1, PRM_ A2,…,PRM_An, PRM_B1,

PRM_B2,…, PRM_Bn) is show in fig1.

Static module is the design remains in operation

during the partial reconfiguration process. Partial

reconfiguration module (PRM) is the design module

that can be swapped in and out of the device on the

fly, multiple PRMs can be defined for a specific

region. Partial reconfiguration region (PRR) is the

part of the FPGA that is set aside for partial

reconfigurable modules. More than one PRR can be

set on the chip[3],[4].

3. Implementation Using Planahead [5]

The Xilinx partial reconfiguration design flow is

managed by the PlanAhead application included in

the Xilinx IDE. This is the tool that allows you to

define the physical placement of the static and PR

regions on your target FPGA. The netlists generated

using synthesis tool ISE (13.2) in the previous

sections must be imported into a PlanAhead

project and used to implement the design

for the targeted FPGA

A. Implementation flow

Step1: start with the HDL description of the

design. Synthesize the static part and reconfigurable

modules usingxilinx 13.1(ISE) synthesize tool

Step2: placing and routing (PAR) and mapping.

Step 3: creating aplanahead project. (a) Specify

synthesized (EDIF or NGC) netlist.(b) Set PR project

Step4: Set the location of the static netlists.

(a)specify the top netlist file.(b) specify the UCF

file. Step5: select the targeting device i.e. virtex6,

familyXC6VLX240T.

B.Floor planning Partial Reconfigurable

Partition:

Step1: create netlist design

Step2: set the partition, (a) set the partition is

reconfigurable (b) add reconfigurable module as

black box without netlist. Step3: assign pblock mode,

drawa rectangle on FPGA die.

C. Adding Reconfigurable Instances to the

Partial

Reconfiguration Partition:

Step1: Add up counter as reconfigurable

module.

Step2: Again ring counter as reconfigurable module.

Step3: Again decade counter as reconfigurable

module.

Create Design Instances for Implementation:

 Step1: In the Design Run window, click on Create

New Run

227

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

D. Implement Designs:

Step1: Right-click „config_1‟ in the „Design Runs‟

pane and

select „Make Active‟. Step2:Right-click „config_1‟

and select „Launch Runs‟.

Step3: When the implementation completes, select

generate bitstream, shown in fig2.

fig2. Implementation complete

E. Generating Bitstream

Step1: Right-click„config_1‟and select „Generate

Bitstreams‟.

4.Result

TABLE I

Bitstream name Type size

config_1.bit Full

bitstream

9017KB

config_1_reconfig_counter_counter

_partial.bit

Partial

bitstream

139 KB

config_1_reconfig_decade_decade

_partial.bit

Partial

bitstream

116 KB

config_1_reconfig_ring_ring_partia

l.bit

Partial

bitstream

116 KB

As shown result of bit size in table1,partial

reconfiguration utilizes a smaller bitstream than a

full bitstream for the FPGA. The size of the

bitstream is directly proportional to the number of

resources being configured,The direct benefit is less

space needed for storing the necessary configurations

for operation.As reconfiguration times are highly

dependent on the size and organization of the PRRs,

an additional benefit is that the reconfiguration time

is shorter.

5. Conclusion

In this paper, we have illustrated the clear advantage

of module- based partial reconfiguration. The

advantages of module based partial reconfiguration

are show by implementing various counters.

REFERENCES

[1]Ian Kuon, Russell Tessier, and Jonathan Rose,FPGA

Architecture: Surveyand Challenges,Boston –Delft ,now

Publishers Inc. 2008

[2]Wang Lie,WuFeng-yan,“Dynamic Partial

Reconfiguration on Cognitive Radio Platform”, 978-1-

4244-4738-1/09,IEEE

[3]R.V. Kshirsagar and S. Sharma, “difference based

partial reconfiguration”,IJAET ,ISSN: 2231-1963,

[4]Xilinx,Inc.XAPP290:”Two Flows for Partial

Reconfiguration: Module Based or Difference Based “

available:http :/ / www. xilinx. Com/

[5]PlanAhead User Guide, (UG632), available:

http://www.xilinx.com/support/documentation/sw_manual

s/xilinx13_2/PlanAhead_UserGuide.pdf/

228

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

