
Modified Modular Exponentiation for a Faster

Implementation of RSA algorithm on FPGA

 M.R. GAUTHAMA RAMAN Dr. S. Kaja Mohideen

 Dept. of Electronics and Communication Engineering Prof & Dean (ECS)

 B.S. Abdur Rahaman University, India Dept. of Electronics and Communication Engineering

 gauthamaraman_mr@yahoo.com B.S. Abdur Rahaman University, India

 dean_secs@bsauniv.ac.in

Abstract - RSA algorithm is a well known, commonly used public

key cryptography for the secured data communication. In this

paper RSA cryptosystem is used to achieve the secured

communication between the multiple FPGAs using RS 232 link.

Currently FPGAs are used for the implementing the various

embedded applications since it provides the chance for the

reconfiguration and also for the change in resources used. The

Verilog modelling of this RSA algorithm uses the repeated

addition and subtractions for the faster implementation and uses

the less area in the FPGA. First encryption and decryption is

done on a single FPGA system and later it is extended to two

where each running the separate encryption and decryption

algorithm.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) were first

introduced almost two and a half decades ago. Since then they

have seen a rapid growth and have become a popular

implementation media for digital circuits. The advancement in

process technology has greatly enhanced the logic capacity of
FPGAs and has in turn made them a viable implementation

alternative for larger and complex designs. Further,

programmable nature of their logic and routing resources has a

dramatic effect on the quality of final device’s area, speed, and

power consumption. Now a days the application of the FPGAs

are extended to embedded fields and various research works

are been carried out which uses the FPGA as a basic platform

of the embedded systems. If we consider the field of the data

communication, providing the data security is the major

challenge. Currently various researches focus on the

development of new hardware security modules which provide

the trusted communication and also concentrates of the power
consumption and also the processing speed. Among the

existing, RSA algorithm is been chosen since it has major

advantage in the parallel computing as compared with the AES.

II. RSA ALGORITHM

RSA Algorithm was developed at MIT by Ron Rivest,

Adi Shamir, and Len Adleman during the year of 1977. It is a

public key cryptographic type in which two different and

related keys used for the encryption and decryption process.

The task of the RSA algorithm is to compute the reminder of

the exponential term. The encryption of the plain text(M) to

the cipher text (C) is obtained by

 C=Me mod n

The plain text (M) is been again obtained by

 M=Cd mod n

The Steps involved in RSA Algorithm is

 Choose p,q (both should be a prime number & p,q are

not same)

 Compute n = p * q

 Compute φ(n) = (p - 1) * (q - 1)

 Choose e such that 1 < e < φ(n) and e and φ(n) are

coprime.

 Compute a value for d such that (d * e) % φ(n) = 1.

 Public key is (e, n)

 Private key is (d, n)

 The encryption process C=Me mod n

 The decryption process M=Cd mod n

III. BASIC OPERATION

 In order to implement the RSA Algorithm for the large

integer values, we must concentrate on the calculation of the

reminder value for the exponential function both in case of

encryption and decryption. The first rule of modular

exponentiation is that we do not compute C = Me (mod n) by

first exponentiating Me and then performing a division to

obtain the remainder C = (Me) % n. The temporary results
must be reduced modulo n at each step of the exponentiation.

This is because the space requirement of the binary number

Me is enormous. Assuming, M and e have 256 bits each, we

need bits in order to store Me.

log2(M
e) =e.log2(M)≈2^256.256 = 2^264 ≈10^80

This number is approximately equal to the number of

particles in the universe. we have no way of storing it. In order

to compute the bit capacity of all computers in the world, we

can make a generous assumption that there are 512 million

90

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

computers, each of which has 512 MBytes of memory. Thus,

the total number of bits available would be which is only

enough to store Me when M and e are 55 bits.

512 . 2^20 . 512 . 2^20 .8 = 2^61≈ 10^18

Let us find, How many modular multiplications are

needed to compute Me mod n. A naive way of computing C =

Me (mod n) is to start with C = M(mod n) and keep performing

the modular multiplication operations C = C . M (mod n)

until C = Me (mod n) is obtained.

The naive method requires e - 1 modular multiplications to

compute C = Me (mod n), which would be prohibitive for

large e. For example, if we need to compute M^15 (mod n),

this method computes all powers of M until 15:

M → M2 → M3 → M4 → M5 → M6 → M7 →..........→M15

which requires 14 multiplications. However, not all powers

of M need to be computed in order to obtain M15. Here is a

faster method of computing M15

M → M2 → M3 → M6 → M7 → M14 → M15

which requires 6 multiplications. The method by which

M15 is computed is not specific for certain exponents; it can be

used to compute Me for any e. The algorithm is called the

square and multiply method. By using this the entire operation

can be performed faster and simpler.

The proposed algorithm is the modified form of RSA

Algorithm with handles the exponent terms and also the mod

function in a most efficient way.

In this algorithm bits of e are scanned two at a time, the

possible digit values are (00) = 0, (01) = 1, (10) = 2, and (11)

= 3. The multiplication step (Step 4b) may require the values

M0, M1, M2, and M3. Thus, we need to perform some pre-

processing to obtain M2 and M3. As an example, let e = 250

and partition the bits of e in groups of two bits as

e = 250 = 11 11 10 10

Here, we have s = 4 (the number of groups s = k=r = 8=2 =

4). During the pre-processing step, we compute:

BITS w M
w

00 0 1

01 1 M

10 2 M.M = M2

11 3 M2.M=M3

The method then assigns C = MF3 = M3 (mod n), and

proceeds to compute M250 (mod n) as follows:

i Fi Step 4a Step 4b

2 11 (M
3
)

4
=M

12
M

12
.M

3
=M

15

1 10 (M
3
)

4
=M

12
 M

12
.M

3
=M

15

0 10 (M
3
)

4
=M

12
 M

12
.M

3
=M

15

The number of modular multiplications required by this

method for computing M^250 (mod n) is found as 2 + 6 + 3 =

11.

A. Steps for Encryption:

 STEP 1: Decompose e

 STEP 2: C=(M^Fs-1) mod n

 STEP 3: for i=s-2 to 0

 C=C^2r mod n

 if Fi!=0 then C=C*(M^Fi)mod n

 return C

B. Steps for Decryption:

STEP 1: Decompose d

STEP 2: M=(C^Fs-1) mod n

STEP 3: for i=s-2 to 0

 M=M^2r mod n

 if Fi!=0 then M=M*(C^Fi)mod n

 return M

III. ARCHITECTURE DESIGN

A. Xilinx Platform Studio:

The Xilinx Platform Studio (XPS) is the development

environment or GUI used for designing the hardware portion

of your embedded processor system.

B. Embedded Development Kit :

Xilinx Embedded Development Kit (EDK) is an

integrated software tool suite for developing embedded

systems with Xilinx Micro Blaze and PowerPC CPUs. EDK

includes a variety of tools and applications to assist the

designer to develop an embedded system right from the

hardware creation to final implementation of the system on an

FPGA. System design consists of the creation of the hardware

and software components of the embedded processor system

and the creation of a verification component is optional. A

typical embedded system design project involves: hardware

platform creation, hardware platform verification (simulation),

91

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

software platform creation, software application creation, and

software verification. Base System Builder is the wizard that

is used to automatically generate a hardware platform

according to the user specifications that is defied by the MHS

(Microprocessor Hardware Specification) file. The MHS file

defines the system architecture, peripherals and embedded

processors]. The Platform Generation tool creates the

hardware platform using the MHS file as input. The software

platform is defied by MSS (Microprocessor Software

Specification) file which defines driver and library

customization parameters for peripherals, processor

customization parameters, standard 110 devices, interrupt

handler routines, and other software related routines. The MSS

file is an input to the Library Generator tool for customization

of drivers, libraries and interrupts handlers.

Fig. 1.1 FPGA Architecture

The creation of the verification platform is optional and is

based on the hardware platform. The MHS file is taken as an

input by the Simgen tool to create simulation files for a
specific simulator. Three types of simulation models can be

generated by the Simgen tool: behavioural, structural and

timing models. Some other useful tools available in EDK are

Platform Studio which provides the GUI for creating the MHS

and MSS files. Create / Import IP Wizard which allows the

creation of the designer's own peripheral and import them into

EDK projects. Platform Generator customizes and generates

the processor system in the form of hardware net lists.

 Library Generator tool configures libraries, device drivers,

file systems and interrupt handlers for embedded processor

system. Bit stream Initialize tool initializes the instruction

memory of processors on the FPGA. The Architecture of

FPGA is shown in the Fig 1.1. GNU Compiler tools are used

for compiling and linking application executables for each

processor in the system . There are two options available for

debugging the application created using EDK namely: Xilinx
Microprocessor Debug (XMD) for debugging the application

software using a Microprocessor Debug Module (MDM) in

the embedded processor system, and Software Debugger that

invokes the software debugger corresponding to the compiler

being used for the processor.

C. Software Development Kit:

Xilinx Platform Studio Software Development Kit (SDK)

is an integrated development environment, complimentary to

XPS, that is used for C/C++ embedded software application

creation and verification. SDK is built on the Eclipse

opensource framework. Soft Development Kit (SDK) is a suite

of tools that enables you to design a software application for

selected Soft IP Cores in the Xilinx Embedded Development

Kit (EDK).The software application can be written in a "C or

C++" then the complete embedded processor system for user

application will be completed, else debug & download the bit
file into FPGA. Then FPGA behaves like processor

implemented on it in a Xilinx Field Programmable Gate Array

(FPGA) device.

D. Serial Communication:

The system that is used for establishing the serial

communication between the multiple FPGA systems is UART

(Universal Asynchronous Receiver Transmitter). The Block

diagram of UART is shown in Fig 1.2. Here "BRG" stands for
"Baud Rate Generator" which controls the speed of the data

communication in RS232 channel. Both receiver and sender

side must work in the same band ratio otherwise data will be

lost. BRG control the received data store initially at received

FIFO and the transmit Data FIFO transfer the data through the

transmitter Module (TX Module).

Fig. 1.2 Universal asynchronous receiver transmitter systems

V. RESULTS

 The public key is chosen to be (n=3233, e=17) and

private key is chosen to be (n=3233d=2753). The data that has

to be transferred is 123. The encrypted value of the data is

855. This encryption process is done using the public key

similarly 855 is decrypted to 123 using private key. The
simulation results for both encryption and decryption is shown

in Fig.1.3 and Fig.1.4

92

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

1.3 Simulation result for encryption

1.4 Simulation result for decryption

A. Comparison with Existing Work:

Since the proposed algorithm uses less number of

multiplications, the process speed is high as compared with

the existing systems and from the table 1.1, we can find that

this architecture uses less number of slices used compared

with existing system.

Resource Used

Proposed

System

Existing

System

4 Input LUT’s 1403 2871

Table 1.1 Comparison between proposed and existing system

VI. CONCLUSION

 A new architecture is been proposed in this paper

which uses less number of modular multiplication so that high

speed of data encryption and decryption is been achieved

compared with the existing system. This way of approach can

also be implemented in difference cryptographic algorithm

which provides the higher level of security in the data

transmission.

REFERENCES

[1]Rourab Paull,Sangeet Saha,Suman Sau,Amlan Chakrabarti. Real time

communication between multiple FPGA systems in multitasking environment

using RTOS . Processding of the International Conference on Devices,

Circuits and Systems (ICDCS), 2012 ISBN:978-1-4577-1545-7

[2]Zutter J. And Martin Klein, Acceleration of RSA Cryptographic

Operations using FPGA Technology. Proceeding of the 20th International

Workshop, Database and Expert Systems Application, 2009. DEXA '09 ISSN

: 1529-4188

[3] Garg R. And Vig, R. An Efficient Montgomery Multiplication

Algorithm and RSA Cryptographic Processor. Proceeding of the Conference

on Computational Intelligence and Multimedia Applications, 2007.

International Conference on (Volume:2) ISBN: 0-7695-3050-8

[4]A Mazzeo, L. Romano, G. P. Saggese and N. Mazzocca. 2003.

FPGABased Implementation of a Serial RSA Processor. Design. Proceedings

of the conference on Design, Automation and Test in Europe - Volume I.

ISBN:O- 7695- 1870-2.

[5] Montgomery Algorithm for Modular Multiplication Professor Dr. D.

J. Guan ,August 25, 2003.

[6] C. D. Walter. August 1999. Montgomery's Multiplication Technique:

How to Make It Smaller and Faster. Cryptographic Hardware and Embedded.

 [7] Cryptography & Network Security By Behrouz AForouzan.

93

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

