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Abstract-The aim of this paper is to design a karatsuba
multiplier that reduces the area consumed by modifying
the algorithms Montgomery ladder and Itoh-tsujii
algorithm. Here a theoretical model to approximate the
delay of different characteristic two primitives used in an
elliptic curve scalar multiplier architecture (ECSMA)
implemented on k input lookup table (LUT)-based field-
programmable gate arrays. Approximations are used to
determine the delay of the critical paths in the ECSMA.
This is then used to theoretically estimate the optimal
number of pipeline stages and the ideal placement of each
stage in the ECSMA. This paper illustrates suitable
scheduling for performing point addition and doubling in a
pipelined data path of the ECSMA. Finally, detailed
analyses,supported with experimental results, are provided
to design the fastest scalar multiplier over generic curves.
Experimental results for GF(2163) show that, when. the
ECSMA is suitably pipelined,the scalar multiplication can
be performed in only 13.90 ns on a Xilinx Virtex V.

Keywords-ECSMA, Karatsuba multiplier,
ladder,Itoh-tsujii algorithm
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| INTRODUCTION

The rapid advances in information technology
in the past few decades have led to intensive research on
information  security. Many technologies and
cryptographical systems have been developed, all to
secure information and protect it from unauthorized
invaders. Public-key cryptography has been widely
studied and used since 1975 when Rivest, Shamir, and
Adleman invented RSA public key cryptography. This
system heavily depends on integer factorization problem
(IFP) using big key bits such as 1024 bits and 2048 bits.
Later on Deffie-Hellman in developed the public key
exchange algorithm using the discrete logarithm
problem (DLP). EIGamal also used DLP in encryption
and digital signature scheme. In 1985, Koblitz and
Miller independently used EC in cryptography using
elliptic curves discrete logarithm problem (ECDLP). In
recent years, researchers have given more attention to
develop the proposed ECC algorithms and improve their

Jagatheswari.S?
Student,Dept. Of ECE
Sathyabama University
Chennai, Tamilnadu,India

Mrs.P.Kavipriya®

Assistant professor,Dept.Of ECE
Sathyabama University,
Chennai, Tamilnadu,India
ecekavipriya@gmail.com

efficiency. Improving the efficiency of scalar
multiplication in EC is one of the main interests of many
researchers in the field of cryptology.

The techniques proposed so far use different
methods for representing the scalar k, which clearly
shows different levels of computation speed and
security. Binary representation is extended to signed
binary representation, and its Non-Adjacent Form
(NAF) algorithm . Other well-known techniques such as
the window methods and the Montgomery method have
brought about much improvement in terms of the
efficiency of EC arithmetic. When doubling one point P
to obtain 2P = R as a new point on E, extra field
squaring over prime fields is required, but it is the same
cost as in point adding if the curve has been defined
over the binary fields. Adding two points P and Q on the
same elliptic curve E, requires solving three equations,
that involving one field inversion, one field squaring,
and two field multiplications, which are costly
operations in EC implementation. Some other operations
involved in adding two points are addition, subtraction,
and multiplication of small integers, which are in most
cases neglectible operations. The proposed algorithms
offers many different formulas for finding point
multiplication from the given point P. One can use
many doublings 2(...(2(2P))) with one or more extra
point additions. The reverse operation also lead to find
points such as P from (2P), which is called point
halving.

Elliptic curve cryptography is rapidly
becoming the standard for public-key ciphers because of
the large amount of security provided per key bit.
Several accreditation bodies have migrated to ECC for
their public-key cryptographic requirements. To match
the speed requirements for real-time applications,
hardware acceleration of ECC is a necessity. Field-
programmable gate arrays Forman ideal platform for
hardware implementations of security algorithms such
as ECC. However, because FPGAs are resource-
constrained, there are many challenges in developing
designs to ensure better resource utilization, keeping the
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critical delay minimal. In this paper, we present the
design of a high-speed ECC processor for binary fields
on FPGA platforms. This paper proposes an efficient
implementation of the field multiplier, which is the most
important primitive in ECC. The elliptic curve scalar
multiplier architecture presented uses a pipelined bit-
parallel Karatsuba multiplier, with the objective of
improving the utilization of the FPGA’s lookup tables.
For the inversion, another important field primitive, the
Itoh-Tsujii algorithm, is designed to use optimal
exponentiation circuits specific to the LUT size of the
underlying FPGA platform. These field primitives are
combined to realize the elliptic curve scalar multiplier.
In the next part, this paper explores opportunities for
pipelining the design for high-speed.

1 KARATSUBA MULTIPLIER

Basically Karatsuba stated that if we have to
multiply two n-digit numbers x and y, this can be done
with the following operations, assuming that B is the
base of and m<n.

First both numbers x and y can be represented as x1,x2
and y1,y2 with the following formula.

x=xX1*BM+x2 ; y=yl*B"m+y2 (1)

Obviously now xy will become as the following
product.

Xy=(x1* B m + x2)(yl * B"m +y2) =>

a=x1*yl ;

b=x1*y2+x2*yl;

c=x2*y2 e (2)

Finally xy will become:

Xy=a*B"2m+b*B"m+c

However a, b and ¢ can be computed at least
with four multiplication, which isn’t a big optimization.
That is why Karatsuba came up with the brilliant idea to
calculate b with the following formula:

b=(x1+x2)(yl+y2)-a-c ——
3)

That make use of only three multiplications to get xy.
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Let’s see this formula by example.

47 x 78

X =47

X=4*10+7

x1=4

x2=7

y=78

y=7*10+8

yl=7

y2=8

a=x1l*yl=4*7=28

C=X2*y2=7*8=56

b=(x1+x2)(yl+y2)-a-c=11*15-28 -
56

Now the thing is that 11 * 15 it’s again a
multiplication between 2-digit humbers,but fortunately
we can apply the same rules two them. This makes the
algorithm of Karatsuba a perfect example of the “divide
and conquer” algorithm.

A.Efficiency analysis:

Karatsuba's basic step works for any
base B and any m, but the recursive algorithm is most
efficient whenmis equal ton/2, rounded up. In
particular, ifnis 2% for some integerk, and the
recursion stops only whennis 1, then the number of
single-digit multiplications is 3%, which is n® where ¢ =
log,3.

Since one can extend any inputs with zero
digits until their length is a power of two, it follows that
the number of elementary multiplications, for any n, is
at most 31°9," < 3'°9,%

Since the additions, subtractions, and digit
shifts (multiplications by powers of B) in Karatsuba's
basic step take time proportional ton, their cost
becomes negligible asnincreases. More precisely,
if t(n) denotes the total number of elementary operations
that the algorithm performs when multiplying two n-
digit numbers, then

t(n)=3t([n2]) + cn +d ----(4)

for some constants ¢ and d. For this recurrence relation,
the master theorem gives the asymptotic bound t(n) = ©
(nlogz3)-

It follows that, for sufficiently large n,
Karatsuba's algorithm will perform fewer shifts and
single-digit additions than longhand multiplication, even
though its basic step uses more additions and shifts than
the straightforward formula. For small values of n,
however, the extra shift and add operations may make it
run slower than the longhand method. The point of
positive return depends on the computer platform and
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context. As a rule of thumb, Karatsuba is usually faster
when the multiplicands are longer than 320-640 bits.

11 IMPLEMENTATION
PRIMITIVES

OF FIELD

In polynomial basis representation of binary
fields, addition is performed by bitwise EXCLUSIVE
OR operation. For fixed irreducible polynomials,
squaring circuits can be hardwired, thus making
squaring operations easy. Operations such as
multiplications and inversions are complex and should
be implemented efficiently. This section describes the
implementation of the field multiplication and inversion
units in the ECSMA.

A.Field multiplication

Multiplication in binary fields involves a
polynomial multiplication followed by a modular
reduction. For high-speed implementations, bit-parallel
multipliers are preferred to serial and word-parallel
multipliers. Several algorithms for bit parallel field
multiplication are available in the literature. The
ECSMA in this paper uses a Karatsuba multiplier
because of its sub quadratic complexity. It is shown in
fig 3.1.
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Fig :3.1: Block diagram of recursive Karatsuba Vi PIPELINING THE ECSMA

multiplier

v PARAMETRIC KARATSUBA INTEGER
MULTIPLIER

The key to our Montgomery multiplier design
is the recursive Karatsuba algorithm. This allows us to
compute modular multiplication with a complexity
approaching. Our design uses multiple-precision

arithmetic techniques so that the critical path delay is
independent of the multiplier’s bit-width. Unless stated
otherwise, we assume we are multiplying two 2k-bit
unsigned integers and the limb-widths of all components
are w. The number of limbs in a 2k-bit word. We use
either a coarse-grained carry-save technique or a
pipelined multiple-precision technique in all of our
adders and subtracters. The critical path of the circuit
primarily depends upon the limb-width.

\Y PROCESSOR ORGANIZATION

In this section, we describe the construction of
the ECSMA, which uses the left-to-right double and add
algorithm with binary signed digit representation of the
scalar Algorithm 1. The scalar s is the input to the
processor and the output is the scalar product sP. Point
arithmetic is done in the LD projective coordinate
system. At every clock cycle, the register bank feeds the
arithmetic unit through six buses. At the end of the clock
cycle, the results of the computation are stored in the
registers through buses CO, C1, C2, and Qout. Control
signals are generated at every clock depending on the
state of the machine and key digit. This section
elaborates the working of the ECSMA shown in Fig 5.1

E}.!’.i ARITHMET ICUNIT

The ECSMA discussed in the previous section
suffers from low operating frequency because of the
long combinational paths. The operating frequency can
be increased by splitting the critical paths using the
pipeline strategy. Data dependencies present in the point
arithmetic steps may introduce bubbles in the pipeline,
resulting in an increase in the clock cycle requirement.
The number of bubbles during execution is likely to
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increase with the number of pipeline stages. Thus, with
the increase in pipeline stages, though the delay reduces,
the clock cycle requirement increases. Therefore
designing a pipeline would require a balance between
clock cycle requirement and critical delay. This section
first identifies the critical paths in the ECSMA and then
theoretically estimates the best pipeline strategy for the
design.

Vil ALGORITHMS

A.ltoh-Tsujii algorithm

The Itoh-Tsujii inversion algorithm is used to
invert elements in a finite field. It was introduced in
1988 and first used over GF(2™) using the normal basis
representation of elements, however the algorithm is
generic and can be used for other bases, such as the
polynomial basis. It can also be used in any finite field,
GF(p").

The algorithm is as follows:

Input: A € GF(p™

Output: A-1

r—@"-D/(p-1
compute A" in GF(p™)
compute A"= A" A
compute (A" in GF(p)
compute A = (AN - A"
return A

AN AN

This algorithm is fast because steps 3 and 5
both involve operations in the subfield GF(p). Similarly,
if a small value of p is used a lookup table can be used
for inversion in step 4. The majority of time spent in this
algorithm is in step 2, the first exponentiation. This is
one reason why this algorithm is well-suited for the
normal basis, since squaring and exponentiation are
relatively easy in that basis.

B .Montgomery ladder

Points on an elliptic curve E, defined over a
finite field GF (q), along with a special point called
infinity, and a group operation known as point additio n,
form a commutative finite group. If P is a point on the
curve E, and k is a positive integer computing(egn 5)

()

is called scalar multiplication. The result of scalar
multiplication is another point Q on the curve E. It is
normally expressed as Q = kP . If E is an elliptic curve

kP=P+P+P+---+P
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defined over  GF (q), the number of points in E(GF
(q)) is called the order of E over GF (q), denoted by
#E(GF (q)). For cryptographic applications #E(GF (q))
= rh where r is prime and h is a small integer and P and
Q have order r. Scalars such as k are random integers
where 1 < k < r — 1. Since r = q, the binary
representation of k = ki2' has n bits where n=
m = [log, q]. Scalar multiplication is the most dominant
computation part of elliptic curve cryptography.

Algorithm A shows the Montgomery scalar
multiplication scheme for non-supersingular elliptic
curves over binary fields as it was introduced . In this
algorithm Madd(Xy,Z1,X5,X,), Mdouble(X(,Z;) and
Mxy(X1,Z1,X,,X5) are functions for point addition, point
doubling and conversion of projective coordinates to
affine coordinates.

C. Point multiplication technique

Point Multiplication is the basic computation
primitive of elliptic curve cryptography. The definition
of corresponding operations depends on a particular
field, but they always amount to combinations of
arithmetic operation.
kP=P+P+P+..-+P ----(6)
Where P is a point on an elliptic curve E and k is an
integer in a range 1< k < order (P). Accordingly, the
elliptic curve point multiplication means that the point P
is‘added to itself k times. The order of the point P is n0
if and only if P multiplied with nO results in the point at
infinity.

D. Elliptic curve point addition & doubling

Point addition:

To add two distinct points P and Q on an elliptic curve.
Point doubling:

The point-doubling operation amounts to squaring
operations of any binary number.

E..Finite field arithmetic

A field F (finite field) is equipped with two
operations, addition and multiplication. Subtraction of
field elements is defined in terms of addition.
VI RESULTS AND DISCUSSIONS

The simulation results of Karatsuba Multiplier

is shown below. The result in figure 8.1 and figure 8.2
shows the area utilized in the existing system.
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Figure 8.6 shows
summary of proposed system. Figure 8.7 shows the
detailed analysis of the proposed system.

Fig 8.5 Internal Schematic of ks233

the device utilization
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Fig 3.8 Simulation results of Montgomery Ladder
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Fig 8.9 Simulation Results of Karatsuba Multiplier

Table 8.1 shows the comparison of existing and
proposed system.

TABLE 8.1 COMPARISON TABLE OF EXISTING AND
MODIFIED MULTIPLIER

LOGIC NUMBER OF SLICE | NUMBER OF FULLY | NUMBER OF

UTILIZATIO | LUTs UTILISED  LUT-FF | BONDED 10Bs
N PARS

USED AVAILABLE [USED  AVAILABLE | USED |AVAILABLE
EXISTING | 19336 | 20480 0 15334 699|360
SYSTEM
MODIFIED |4682 | 20480 0 |4682 467 |30
SYSTEM

IX CONCLUSION
Fig8.7 Detailed analysis of proposed system

The simulation results of Montgomery ladder is This proposed elliptic curve scalar multiplier
shown in the figure 8.8 and karatsuba multiplier is used for high-speed and area-constrained applications.
shown in the figure 8.9. The implementation uses a novel pipelined bit-parallel

Karatsuba multiplier that has sub quadratic complexity.
A theoretical model was used to analyze delay of critical
paths in the ECSMA and to obtain optimal pipelining.
Efficient choice of scalar multiplication algorithm,
optimized field primitives, balanced pipeline stages, and
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enhanced scheduling of point arithmetic resulted in a
high-speed architecture with a significantly small area.

In future the power analysis can be done by
using tools like TSpice and it can be reduced.
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