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Abstract-The aim of this paper is to design a karatsuba 

multiplier that reduces the area consumed by modifying 

the algorithms Montgomery ladder and Itoh-tsujii 

algorithm. Here  a theoretical model to approximate the 

delay of different characteristic two primitives used in an 

elliptic curve scalar multiplier architecture (ECSMA) 

implemented on k input lookup table (LUT)-based field-

programmable gate arrays. Approximations are used to 

determine the delay of the critical paths in the ECSMA. 

This is then used to theoretically estimate the optimal 

number of pipeline stages and the ideal placement of each 

stage in the ECSMA. This paper illustrates suitable 

scheduling for performing point addition and doubling in a 

pipelined data path of the ECSMA. Finally, detailed 

analyses,supported with experimental results, are provided 

to design the fastest scalar multiplier over generic curves. 

Experimental results for GF(2163) show that, when the 

ECSMA is suitably pipelined,the scalar multiplication can 

be performed in only 13.90 ns on a Xilinx Virtex V.  

 
Keywords-ECSMA, Karatsuba multiplier, Montgomery 

ladder,Itoh-tsujii algorithm 

 

I INTRODUCTION 

 

 

The rapid advances in information technology 

in the past few decades have led to intensive research on 

information security. Many technologies and 

cryptographical systems have been developed, all to 

secure information and protect it from unauthorized 

invaders. Public-key cryptography has been widely 

studied and used since 1975 when Rivest, Shamir, and 

Adleman invented RSA public key cryptography. This 

system heavily depends on integer factorization problem 

(IFP) using big key bits such as 1024 bits and 2048 bits. 

Later on Deffie-Hellman in developed the public key 

exchange algorithm using the discrete logarithm 

problem (DLP). ElGamal also used DLP in encryption 

and digital signature scheme. In 1985, Koblitz and 

Miller independently used EC in cryptography using 

elliptic curves discrete logarithm problem (ECDLP). In 

recent years, researchers have given more attention to 

develop the proposed ECC algorithms and improve their 

efficiency. Improving the efficiency of scalar 

multiplication in EC is one of the main interests of many 

researchers in the field of cryptology. 

 

The techniques proposed so far use different 

methods for representing the scalar k, which clearly 

shows different levels of computation speed and 

security. Binary representation is extended to signed 

binary representation, and its Non-Adjacent Form 

(NAF) algorithm . Other well-known techniques such as 

the window methods and the Montgomery method have 

brought about much improvement in terms of the 

efficiency of EC arithmetic. When doubling one point P 

to obtain 2P = R as a new point on E, extra field 

squaring over prime fields is required, but it is the same 

cost as in point adding if the curve has been defined 

over the binary fields. Adding two points P and Q on the 

same elliptic curve E, requires solving three equations, 

that involving one field inversion, one field squaring, 

and two field multiplications, which are costly 

operations in EC implementation. Some other operations 

involved in adding two points are addition, subtraction, 

and multiplication of small integers, which are in most 

cases neglectible operations. The proposed algorithms 

offers many different formulas for finding point 

multiplication from the given point P. One can use 

many doublings 2(...(2(2P))) with one or more extra 

point additions. The reverse operation also lead to find 

points such as P from (2P), which is called point 

halving. 

 

Elliptic curve cryptography is rapidly 

becoming the standard for public-key ciphers because of 

the large amount of security provided per key bit. 

Several accreditation bodies have migrated to ECC for 

their public-key cryptographic requirements. To match 

the speed requirements for real-time applications, 

hardware acceleration of ECC is a necessity. Field-

programmable gate arrays Forman ideal platform for 

hardware implementations of security algorithms such 

as ECC. However, because FPGAs are resource-

constrained, there are many challenges in developing 

designs to ensure better resource utilization, keeping the 

408

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings



2 
 

critical delay minimal. In this paper, we present the 

design of a high-speed ECC processor for binary fields 

on FPGA platforms. This paper proposes an efficient 

implementation of the field multiplier, which is the most 

important primitive in ECC. The elliptic curve scalar 

multiplier architecture presented uses a pipelined bit-

parallel Karatsuba multiplier, with the objective of 

improving the utilization of the FPGA’s lookup tables. 

For the inversion, another important field primitive, the 

Itoh–Tsujii algorithm, is designed to use optimal 

exponentiation circuits specific to the LUT size of the 

underlying FPGA platform. These field primitives are 

combined to realize the elliptic curve scalar multiplier. 

In the next part, this paper explores opportunities for 

pipelining the design for high-speed. 

 

II KARATSUBA MULTIPLIER 

 

Basically Karatsuba stated that if we have to 

multiply two n-digit numbers x and y, this can be done 

with the following operations, assuming that B is the 

base of and m < n. 

First both numbers x and y can be represented as x1,x2 

and y1,y2 with the following formula. 

x=x1 * B^m + x2  ;    y= y1 * B^m + y2         ----(1) 

Obviously now xy will become as the following 

product. 

Xy=(x1 * B^m + x2)(y1 * B^m +y2) => 

a= x1 * y1  ;               

 b = x1 * y2 + x2 * y1 ; 

  c = x2 * y2                                                   -----(2) 

Finally xy will become: 

xy = a * B^2m + b * B^m + c 

However a, b and c can be computed at least 

with four multiplication, which isn’t a big optimization. 

That is why Karatsuba came up with the brilliant idea to 

calculate b with the following formula: 

b = (x1 + x2)(y1 + y2) - a – c                     ----

(3) 

That make use of only three multiplications to get xy. 

Let’s see this formula by example. 

 47 x 78 

 x = 47 

 x = 4 * 10 + 7 

 x1 = 4 

 x2 = 7 

 y = 78 

 y = 7 * 10 + 8 

 y1 = 7 

 y2 = 8 

 a = x1 * y1 = 4 * 7 = 28 

 c = x2 * y2 = 7 * 8 = 56 

b = (x1 + x2)(y1 + y2) - a - c = 11 * 15 - 28 - 

56 

Now the thing is that 11 * 15 it’s again a 

multiplication between 2-digit numbers,but fortunately 

we can apply the same rules two them. This makes the 

algorithm of Karatsuba a perfect example of the “divide 

and conquer” algorithm. 

A.Efficiency analysis: 

 

Karatsuba's basic step works for any 

base B and any m, but the recursive algorithm is most 

efficient when m is equal to n/2, rounded up. In 

particular, if n is 2
k
, for some integer k, and the 

recursion stops only when n is 1, then the number of 

single-digit multiplications is 3
k
, which is n

c
 where c = 

log23. 

Since one can extend any inputs with zero 

digits until their length is a power of two, it follows that 

the number of elementary multiplications, for any n, is 

at most 3
[log

2
n]

 ≤ 3n
log

2
3. 

Since the additions, subtractions, and digit 

shifts (multiplications by powers of B) in Karatsuba's 

basic step take time proportional to n, their cost 

becomes negligible as n increases. More precisely, 

if t(n) denotes the total number of elementary operations 

that the algorithm performs when multiplying two n-

digit numbers, then 

t(n)=3t([n2]) + cn +d                            ----(4) 

for some constants c and d. For this recurrence relation, 

the master theorem gives the asymptotic bound t(n) = ʘ 

(n
log

2
3
). 

It follows that, for sufficiently large n, 

Karatsuba's algorithm will perform fewer shifts and 

single-digit additions than longhand multiplication, even 

though its basic step uses more additions and shifts than 

the straightforward formula. For small values of n, 

however, the extra shift and add operations may make it 

run slower than the longhand method. The point of 

positive return depends on the computer platform and 
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context. As a rule of thumb, Karatsuba is usually faster 

when the multiplicands are longer than 320–640 bits.  

 

III IMPLEMENTATION OF FIELD 

PRIMITIVES 

 

In polynomial basis representation of binary 

fields, addition is performed by bitwise EXCLUSIVE 

OR operation. For fixed irreducible polynomials, 

squaring circuits can be hardwired, thus making 

squaring operations easy. Operations such as 

multiplications and inversions are complex and should 

be implemented efficiently. This section describes the 

implementation of the field multiplication and inversion 

units in the ECSMA. 

 

A.Field multiplication 

 

Multiplication in binary fields involves a 

polynomial multiplication followed by a modular 

reduction. For high-speed implementations, bit-parallel 

multipliers are preferred to serial and word-parallel 

multipliers. Several algorithms for bit parallel field 

multiplication are available in the literature. The 

ECSMA in this paper uses a Karatsuba multiplier 

because of its sub quadratic complexity. It is shown in 

fig 3.1. 

                                   

 

Fig :3.1:  Block diagram of recursive Karatsuba 

multiplier 

IV PARAMETRIC KARATSUBA INTEGER 

MULTIPLIER 

 

The key to our Montgomery multiplier design 

is the recursive Karatsuba algorithm. This allows us to 

compute modular multiplication with a complexity 

approaching. Our design uses multiple-precision 

arithmetic techniques so that the critical path delay is 

independent of the multiplier’s bit-width. Unless stated 

otherwise, we assume we are multiplying two 2k-bit 

unsigned integers and the limb-widths of all components 

are w. The number of limbs in a 2k-bit word. We use 

either a coarse-grained carry-save technique or a 

pipelined multiple-precision technique in all of our 

adders and subtracters. The critical path of the circuit 

primarily depends upon the limb-width. 

V  PROCESSOR ORGANIZATION 

 

In this section, we describe the construction of 

the ECSMA, which uses the left-to-right double and add 

algorithm with binary signed digit representation of the 

scalar Algorithm 1. The scalar s is the input to the 

processor and the output is the scalar product sP. Point 

arithmetic is done in the LD projective coordinate 

system. At every clock cycle, the register bank feeds the 

arithmetic unit through six buses. At the end of the clock 

cycle, the results of the computation are stored in the 

registers through buses C0, C1, C2, and Qout. Control 

signals are generated at every clock depending on the 

state of the machine and key digit. This section 

elaborates the working of the ECSMA shown in Fig 5.1 

                          

 

Fig 5.1: ECSMA 

VI PIPELINING THE ECSMA 

 

The ECSMA discussed in the previous section 

suffers from low operating frequency because of the 

long combinational paths. The operating frequency can 

be increased by splitting the critical paths using the 

pipeline strategy. Data dependencies present in the point 

arithmetic steps may introduce bubbles in the pipeline, 

resulting in an increase in the clock cycle requirement. 

The number of bubbles during execution is likely to 
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increase with the number of pipeline stages. Thus, with 

the increase in pipeline stages, though the delay reduces, 

the clock cycle requirement increases. Therefore 

designing a pipeline would require a balance between 

clock cycle requirement and critical delay. This section 

first identifies the critical paths in the ECSMA and then 

theoretically estimates the best pipeline strategy for the 

design. 

 

VII ALGORITHMS 

 

A.Itoh-Tsujii algorithm 

The Itoh-Tsujii inversion algorithm is used to 

invert elements in a finite field. It was introduced in 

1988 and first used over GF(2
m
) using the normal basis 

representation of elements, however the algorithm is 

generic and can be used for other bases, such as the 

polynomial basis. It can also be used in any finite field, 

GF(p
m
). 

The algorithm is as follows: 

Input: A ∈ GF(p
m)

 
Output: A−1

  

1. r ← (p
m
 − 1)/(p − 1) 

2. compute A
r − 1

 in GF(p
m
) 

3. compute A
r
 = A

r − 1
 · A 

4. compute (A
r
)

−1
 in GF(p) 

5. compute A
−1

 = (A
r
)

−1
 · A

r −1
 

6. return A
−1

 

This algorithm is fast because steps 3 and 5 

both involve operations in the subfield GF(p). Similarly, 

if a small value of p is used a lookup table can be used 

for inversion in step 4. The majority of time spent in this 

algorithm is in step 2, the first exponentiation. This is 

one reason why this algorithm is well-suited for the 

normal basis, since squaring and exponentiation are 

relatively easy in that basis. 

 

B  .Montgomery ladder 

Points on an elliptic curve E, defined over a 

finite field GF (q), along with a special point called 

infinity, and a group operation known as point additio n, 

form a commutative finite group. If P is a point on the 

curve E, and k is a positive integer computing(eqn 5) 

 

kP = P + P + P + · · · + P                                        ----(5) 

 

is called scalar multiplication. The result of scalar 

multiplication is another point Q on the curve E. It is 

normally expressed as Q  =  kP . If E  is an elliptic curve 

defined over     GF (q), the number of points in E(GF 

(q)) is called the order of E over GF (q), denoted by 

#E(GF (q)). For cryptographic applications #E(GF (q)) 

= rh where r is prime and h is a small integer and P  and 

Q have order r. Scalars such as k are random integers 

where 1 < k < r − 1. Since r ≈ q, the binary 

representation of k = ki2
i
  has n bits where       n ≈ 

m = ⌈log2 q⌉. Scalar multiplication is the most dominant 

computation part of elliptic curve cryptography. 

 

Algorithm A  shows the Montgomery  scalar 

multiplication scheme for non-supersingular elliptic 

curves over binary fields as it was introduced . In this 

algorithm Madd(X1,Z1,X2,X2), Mdouble(X1,Z1) and 

Mxy(X1,Z1,X2,X2) are functions for point addition, point 

doubling and conversion of projective coordinates to 

affine coordinates. 

 

C. Point multiplication technique 

  

Point Multiplication is the basic computation 

primitive of elliptic curve cryptography. The definition 

of corresponding operations depends on a particular 

field, but they always amount to combinations of 

arithmetic operation. 

kP = P + P + P + · · · + P                                        ----(6) 

Where P is a point on an elliptic curve E and k is an 

integer in a range 1≤ k < order (P). Accordingly, the 

elliptic curve point multiplication means that the point P 

is added to itself k times. The order of the point P is n0 

if and only if P multiplied with n0 results in the point at 

infinity. 

 

 D. Elliptic curve point addition & doubling 

 

Point addition: 

To add two distinct points P and Q on an elliptic curve. 

Point doubling: 

The point-doubling operation amounts to squaring 

operations of any binary number.  

 

 

E..Finite field arithmetic 

 

A field F (finite field) is equipped with two 

operations, addition and multiplication. Subtraction of 

field elements is defined in terms of addition. 

 

 

VIII RESULTS AND DISCUSSIONS 

 

The simulation results of Karatsuba Multiplier 

is shown below. The result in figure 8.1 and figure 8.2 

shows the area utilized in the existing system. 

411

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings



5 
 

 
 

Fig 8.1 Device Utilization summary of existing 

system 

 

 

 

 
 

 
 

Fig 8.2 Simulation results of existing system 

 

Figure 8.3 shows the top level module 

implementation (RTL Schematic) of the Multiplier.   

 

 
Fig 8.3 RTL Schematic of multiplier 

 

 
Fig 8.4 Internal RTL Schematic of Multiplier 

 

 
 

Fig 8.5 Internal Schematic of ks233 

 

Figure 8.6 shows the device utilization 

summary of proposed system. Figure 8.7 shows the 

detailed analysis of the proposed system.  
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Fig 8.6 Device Utilization summary of proposed system 

 

 

 
 

 
 

Fig8.7 Detailed analysis of proposed system 

 

The simulation results of Montgomery ladder is 

shown in the figure 8.8  and karatsuba multiplier is 

shown in the figure 8.9. 

 

 
 

Fig 3.8 Simulation results of Montgomery Ladder 

 

 
 

Fig 8.9 Simulation Results of Karatsuba Multiplier 

 

Table 8.1 shows the comparison of existing and 

proposed system. 

 

 
TABLE 8.1 COMPARISON TABLE OF EXISTING AND 

MODIFIED MULTIPLIER 

 
 

IX CONCLUSION 

 

This proposed elliptic curve scalar multiplier 

used for high-speed and area-constrained applications. 

The implementation uses a novel pipelined bit-parallel 

Karatsuba multiplier that has sub quadratic complexity. 

A theoretical model was used to analyze delay of critical 

paths in the ECSMA and to obtain optimal pipelining. 

Efficient choice of scalar multiplication algorithm, 

optimized field primitives, balanced pipeline stages, and 
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enhanced scheduling of point arithmetic resulted in a 

high-speed architecture with a significantly small area. 

In future the power analysis can be done by 

using tools like TSpice and it can be reduced.  
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