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Abstract—An artificial neural network (ANN) model was
developed for the analysis and prediction of the relationship
between cutting and process parameters during high-speed
turning of nickel -based, UDIMET720, alloy. The input
parameters of the ANN model are the cutting parameters: Speed,
feed rate, depth of cut, cutting time and coolant pressure. The
output parameters of the model are seven process parameters
measured during the machining trials, namely tangential force
(cutting force, Fz), axial force ( feed force, Fx), spindle motor
power consumption, machined surface roughness , average flank
wear (VBmax) and nose wear (VC). The model consists of a three
layerd feedforward backpropagation neural network. The
network is trained with pairs of inputs/outputs datasets generated
when machining UDIMET 720 alloy with triple (TiCN/AI203/TiN)
PVD-coated carbide (K 10) inserts with 1SO designation CNMG
120412. A very good performance of the neural network, in terms
of agreement with experimental data, was achieved. The model
can be used for the analysis and prediction of the complex
relationship between cutting conditions and the process
parameters in metal-cutting operations and for the optimization
of the cutting process for efficient and economic production.

I. INTRODUCTION

The aerospace industry employs superalloys for their superior
mechanical and thermal properties (primarily their mechanical
strength that high temperatures). The very same properties
dictating their use inmanufacturing of aerospace components
result in slow cutting speeds and rapid tool wear in comparison
to machining of conventional steels. In general machining of
high temperature alloys presents many difficulties. The higher
yield strengths of these materials induce higher cutting forces
during machining. These higher cutting forces, in conjunction
with their strain-hardening, often induce high cutting
temperatures, which affect tool life and resultant
microstructure.

UDIMET 720 is a nickel-based alloy solid solution
strengthened with tungsten and molybdenum, and precipitation
hardened with titanium and aluminum, which is produced by
vacuum-induction melting, to close chemical composition
tolerances and further refined by vacuum-arc remelting. Ingots
are remelted by consumable arc for optimum control of
homogeneity and microstructure. Carbon, boron, and
zirconium are carefully balanced to optimize grain boundary
precipitation and properties. This alloy exhibits typical nickel-
based alloy characteristics, such as high strength and
metallurgical stability. It has a melting range of 1194-1338° C
and a density of 8082.6 kg/m3, and possesses excellent

mechanical properties at high temperatures. The maximum
useful service temperature for an extended period of time is
believed to be 982° C. This has been demonstrated by impact
strength  retention after long exposures at elevated
temperatures.

UDIMET 720 also shows good oxidation and corrosion
resistance, making it useful in gas turbine blade and disc
applications. Among the applications are blades for aircraft,
marine and land-based gas turbines and rotor discs.
Conventional machining techniques used for iron-based alloys
may be used. This alloy however, has an increased propensity
for work- hardening during machining and has higher strength
and “gumminess” not typical of steels, which make machining
much more difficult. Heavy duty machining equipment and
tooling should be used to minimize chatter or work-hardening
of the alloy.

UDIMET alloy 720 can be machined by conventional
machining processes, but cannot be machined economically on
light machine tools nor machined at the high operating speeds
used for ordinary steel. UDIMET 720 has very low thermal
conductivity (about 20 W/mK for the
temperature up to 600> C as opposed to about S0 W/mK for
steel), which traps the heat at the cutting edge during a
machining process, making the tool life relatively short. In
particular, UDIMET 720 machining conditions are limited by
microstructural ~ deformation.  The  post  processed
microstructure has a direct effect on part life. Machining at
high velocities will result in increased deformation and part
rejection. Cutting speeds have to be very low because of this
reason (Special metals, 2007).

Furthermore, low thermal conductivity and related
localization of temperature at the cutting zone lead to attendant
difficulties in machining and hence efficient temperature
control techniques are needed to improve machinability. Even
though new advanced cutting materials have resulted in higher
cutting speeds, some of these superalloys, such as Titanium
alloys, are still primarily machined by carbide cutting tools due
to their superior compatibility (Rao and Shin, 2002). The high
temperatures occurring during machining of these superalloys
lead to solution and diffusion wear in tool materials such as
Sialon and Cubic Boron Nitride. This limits the cutting speeds
that can be used with these advanced materials (Richards and
Aspinwell, 1989).
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Advances in cutting tool technology have led to the
introduction of coated and uncoated carbide, ceramic,
CBN/PCBN and PCD tools with adequate hot hardness and
toughness to withstand elevated temperatures generated at high
—speed conditions. Also, machining techniques, such as
ramping (or taper turning), high-pressure coolant (HPC)
delivery system, hot machining, cryogenic machining and the
use of self-propelled rotary tooling (SPRT), have been
developed in recent years. A good understanding of the
behavior and the relationship between the work piece
materials, cutting tool materials, cutting conditions and the
process parameters is an essential requirement for the
optimization of the cutting process. In this regard, a significant
number of investigations have been carried out to understand
the complex relationship between the cutting conditions and
the process parameters in high speed machining of nickel-
based, UDIMET 720 alloy from both empirical and theoretical
standpoints. Empirical models relating tool wear and the
components forces as functions of cutting speed and coolant
concentration when machining nickel based, nimonic C-263,
alloy with PVD-coated carbide tools have been reported[4].
Similarly, several experimental and analytical studies have
been conducted on high —speed machining of nickel based,
UDIMET 720, alloy[5-8]. It must be pointed out, however, that
these techniques are both costly and time consuming.
Computer-based models, on the other hand, offer a more
efficient and cost-effective method in modeling the complex
process parameters.

Acrtificial neural networks (ANNSs) are one of the most
powerful computer modeling techniques, based on statistical
approach, currently being used in many fields of engineering
for modeling complex relationships which are difficult to
describe with physical models. ANNs have been extensively
applied in modeling many metal-cutting operations such as
turning, milling and drilling[9-12]. However, this study was
inspired by the very limited or no work on the application of
ANNSs in modeling the relationship between cutting conditions
and the process parameters during high-speed machining of
nickel —based, UDIMET 720,alloy.

II. MODEL DESCRIPTION
When There has been continual increase in research interest
in the applications of ANNs in modeling and monitoring of
machining operations[13,14]. The input/output dataset of the
model is illustrated schematically in Fig.1. The input
parameters of the neural network are the cutting conditions,
namely cutting speed, feed rate, cutting time and the coolant
delivery pressure. The output parameters are seven of the most
important process parameters, namely component forces
(tangential or cutting force, Fz and axial or feed force, Fx),
spindle motor power consumption, machined surface
roughness, and tool wear (average and maximum flank wear as
well as nose wear). The five basic steps used in general
application of neural network adopted in the development of
the model: assembly or collection of data; analysis and pre-
processing of the data; design of the network object; training
and testing of the network; and performing simulation with

trained network and post processing of results.

A. Experimental/collection of input/output dataset

Machining tests were conducted on an 11KW CNC lathe
with a speed range from 18 to 1800 rpm, which provides a
torque of 1411Nm. 200mm diameter and 300mm long cast
solution treated, vacuum inducted melted and electroslag
remelted nickel-based, UDIMET 720, alloy bars were used as
workpiece. The chemical composition and physical properties
of the work piece are given in Tables 1 and 2, respectively.
Before conducting the machining trials, upto 3mkm thickness
of the top surface of each bar was cleaned in order to eliminate
any skin defect that can adversely affect the machining result.
Triple (TiCN/AI203/TiN) PVD-coaed carbide (K 10) inserts
with I1SO designation CNMG 120412412 were used for the
machining trials. The physical properties and Nominal
chemical Composition of the inserts are given in table3.
Cutting conditions, typical of rough turning of nickel based
alloys in the manufacturing industry employed in the
machining trials are shown in Table 4. During the machining
trails, the component forces were measured using a piezo-
electric tri-axial dynamometer (Type 9257B). Signals from the
dynamometer were conditioned through charge amplifiers
(Type 5001) with in built low-pass filters of 680 Hz cut-off
frequency. The RMS values of the signals were sampled at a
rate of 200kHz with a two-channel digital oscilloscope. The
power consumption of the spindle motor was measured with a
multifunction three-phase power meter. The roughness of the
machined surface was measured after each test with a stylus-
type instrument. Readings were taken at three different
locations and the average value was recorded. Tool wear:
average (VB) and maximum (VBmax) flank wear, and nose
wear (vc) were measured with a travelling microscope
connected to a digital readout device at a magnification of x25.
The tool rejection criteria for roughin operation were used in
the machining trials.

TABLEL
Chemical Composition of UDIMET720
Element C Cr Co Mo W Ti Al B Zr Ni
Wt(%) 0.025 18 1475 3 125 5 25 .030 .035 bal
TABLE 2
Physical Properties of UDIMET720
Tensile strength  Yield strength Elongation Reduction of Vickers
ot (MPa) 2y (MPa) €(%) area ¢ (%) Hardness HV
1385 1025 10 119 466
. Coating thickness
Co WwC TaC NbC  Hardness Gan I;;: (um}
(vol®%) (vol%) (vol®%) (vel%) (EIV) (m) ([ ;1
wmr M Sl THeN ATDO3 TN
17.1 81 12 0.6 2000 1.7 4 el 1 03

in accordance with ISO Standared 3685. An insert was rejected
and further machining discontinued when any or a
combination of the following criteria is reached:

* Average flank wear>0.4mm
¢ Maximum flan wear >0.7mm
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* Nose wear>0.5mm
* Surface roughness>6.0um

B. Pre-Processing of input/output data set

Use one space after periods and colons.

The generalization capability of the neural network is
essentially dependent on: (i) the selection of the appropriate
input/output parameters of the system; (ii) the distribution of
the dataset; and (iii) the format of the presentation of the
network. For this model, the input parameters used are the four
main cutting parameters, while the output dataset are seven
process parameters. In total, 20 machining tests were
conducted and a total of 102 input/output dataset pairs were
collected during the machining tests. The experimental design
and the data distribution of the input/output dataset for each
testare given in Table .

Prior to the use of the datasets, principal component analysis
was performed, using the Matlab subroutine prepca, to test the
correlation between the input and output dataset. Result shows
that each of the four selected cutting parameters (input dataset).
Before training the network, the input/output atasets were
normalized within the range of +1, using the Matlab subroutine
premnmx. The normalized value (xi) for each raw input/output
dataset (di) was calculated as
Xi=2/dmax —dmin (di-dmin)-1
where dmax and dmin are the maximum and minimum values of
the raw data.

Table 4
Cutting parameters

Machining conditions
Cutting speed (m/min)
Feed rate (mm/rev)
Depth of cut (mm) 2.0-3.5 (ramping)
Coolant pressure (bar) 110,150, and 203
Coolant concentration (%) 6.0

Cutting geometry

Cutting tool insert

20, 30, 40 and 50
0.25 and 0.30

CNMG 120412

Tool holder MSLNR 252512
Approach angle (°) 40.0

Side rake angle (°) 0.0

Clearence angle (°) 6.0

Back rake angle (°) -5.0

Cutting fluid type
Emulsion oil (alkanolamine salts of the fatty acids and dicyclohexylamine

C. Neural Network design and training

The network architecture or features such as number of
neurons and layers are very important factors that determine
network. For this model, standared multilayer feedforward
backpropagation hierarchical neural networks were designed
with  MATLAB 6.1 Neural Network Toolbox[15]. The
networks consist of three layers: the input, hidden layer, and
output layer. In order to determine the optimal architecture,
four different networks with different number of layers and
neurons in the hidden layer were designed and tested. In
general, the networks have four neurons in the input,
corresponding to each of the four cutting parameters and one
neuron in the output layer, correspondin to each of the process
parameter. Networks with one or two layers and with 10 or 15
in the hidden layer(s) were used as shown in table. For all
networks linear transfer function ‘purelin’ and tangent sigmoid
transfer function ‘tansig’ were used in the output and hidden
layer, respectively. Seven different networks were designed for
each of the process parameters.

The networks were trained with Levenberg-Marquardt
algorithm. This training algorithm was chosen due to its high
accuracy in similar function approximation[3,15]. In order to
improve the generalization of the network, different
‘regularisation’ schemes were used in conjunction with the
Levenberg-Marquardt algorithm. The automatic Bayesian
regularization and the Early stopping regularization were used
(see Table 5).

For training with the Levenberg-Marquardt combined
withBayesian  regularisartion, the input/output dataset,
consisting was divided randomly into two categories: training
dataset, consisting of two thirds of the input/output dataset and
test dataset, which consists of one-third of the data. When the
networks were trained with Levenberg-Marquardt combined
with Early stopping, the input/output dataset was divided in
three sets: training set, one-quarter as test and one-quarted as
validation set.

D. Testing and Performance of the network

The performance capability of each network was examined
based on the correlation coefficient between the network
predictions and the experimental values using the training, test
and entire dataset. The best results, obtained from 10 different
trials using different random initial weights and biases, for
each process parameter are listed in table5. Generally, as
shown in the table, networks with two hidden layers and 10
neurons in each layer, trained with Levenberg-Marquardt
algorithm combined with Bayesian regularization, gave the
best performance of the networks. It can also be seen that the
increase in the number of neurons in the hidden layer from 10
to 15 has no significant improvement on the performance of
the networks. Thus, network having two layers and 10 neurons
in each hidden layer (4-10-10-1), trained with Levenberg-
Marquardt algorithm and Bayesian regularization, was chosen
as the optimum network and used for development of this
model. The performance of the model for prediction of surface
roughness using the training and entire dataset is shown in
fig.2. the correction coefficient of 0.99 was obtained between
the entire dataset and the model predictions. The percentage
error of the model prediction was also calculated as the
percentage difference between the experimental and predicted
value relative to the experimental value. The error distribution
of the model for the prediction of surface roughness using the
entire dataset is shown in fig.3. the error has a uniform
distribution pattern about zero with a mean value and standared
deviation of — 0.87 and 7.16%, respectively. The result shows
that 84% of th entire dataset have the percentage error ranging
between +10%. Acceptable results were also obtained for all
the other process parameters. This demonstrated that the
models have high accuracy for predicting the process
parameters.

I1l. SIMULATION AND RESULTS

A. Effect of cutting conditions on the process parameters

Based on the optimized network parameters, ANN model
was developed to predict each process parameter based on the
cutting conditions, with a high degree of accuracy within the
scope of cutting conditions investigated in the study. This, the
influence of the cutting conditions on the process parameters
can be studied using the model.
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A.1. Effect of cutting speed on the process parameters

Cutting speed is one of the most important cutting
parameters in metal-cutting operations. Its influence on the
process parameters: surface roughness, cutting force, feed
force, power consumption, average flank wear, maximum flank
wear and nose wear over the speed range of 20-50m/min was
examined using the neural network model at constant feed rate
of 0.25mm/rev, coolant pressure of 110 bar and cutting time of
312s. results of the neural network predictions and the
experimental values are shown in Fig. 4 (a)-(g). Fig. 4 (a)
shows that the predicted surface roughness increased
significantly with increasing cutting speed. The deterioration
experienced in the machined surface with increase in cutting
speed can be attributed to the presence of chatter and tool wear
at higher speed conditions. The pattern of the predicted
component forces (cutting and feed force) was similar as
illustrated in Fig. 4(b) and (c ).it can be seen that the cutting
force reduced significantly (Fig. 4(b)), relative to the feed force
(Fig.4(c) ) when the cutting speed increase in cutting speed,
from 20 to 35m/min. Further increase in cutting speed, from 35
to 50 m/min, resulted in rapid increase in both cutting and feed
forces. The effect of cutting speed on component forces is in
two contrasting phenomena. On one hand, as the cutting speed
increase, the tool-chip contact length decrerases and the
temperature at the cutting zone increases, leading to softening
of the workpiece material[16]. There is, therefore a reduction
in the shear strength of the workpiece, hence, the drop in
component forces. On the other hand, as the cutting speed
increase above 30m/min, tool wear increases, consequently
increasing the component forces[17]. These, therefore, suggest
that the optimum cutting speed is 35m/min.
Fig. 4 (d) shows that the predicted power consumption dropped
slightly with increase in cutting speed from 20 to 25m/min and
then increased exponentially with increase in cutting speed
from 25 to 50m/min.The trend can then be explained by the
corresponding reduction and increase in both component forces
and tool wear. In terms of minimum power requirement, the
optimum cutting speed is found to be 25m/min. the predicted
tool wear, as shown in fig. 4(e) — (g), followed a similar
pattern. A partially linear reduction in average flank wear
(Fig.4(e)), maximum flank wear (Fig. 4 (f)) and nose wear
(Fig .4(g)) was obtained with increase in cutting speed from 20
to 30 m/min. No significant difference was observed in both
average flank wear and nose wear unlike gradual increase in
the maximum flank wear. Further increase in cutting speed
above 35m/min resulted to a general increase in all the tool
wear modes, suggesting that the optimum cutting speed at
which minimum process parameters can be obtained is in the
range 25-35 m/min.

A.2. Effect of feed rate on the process parameters

The effect of feed rate on the process parameters are
presented in Fig.5 (a)-(g). Fig. 5(a) shows a reduction in the
surface roughness value when the feed rate increased from 0.24
to 0.28 mm/rev, contrary to expectation. This reduction in nose
wear with increasing feed rate up to 0.27mm/rev (Fig. 5 (g)).
This clearly shows that nose wear has a big influence on the
surface roughness generated. Further increase in feed rate
above 0.28mm/rev gave a rapid increase in the surface
roughness value. This result indicates that the optimum feed

rate is 0.28mm/rev. an increase in feed rate produces a linear
increase in both component forces and the power consumption
(Fig.(b) — (d)). The average flank wear increased with
increased in feed rate up to .28mm/rev, and subsequently
leveled off with further increase (Fig. 5(e)), while the
maximum flank wear increased steadily with increasing feed
rate (Fig.5(f)). On the other hand, nose wear reduced when the
feed rate increased from 0.24 to 0.27mm/rev and increased
with further increase in feed rate (Fig. 5(g)). It can therefore be
concluded that the optimum feed rate, corresponding to the
minimum surface roughness and nose wear, is within the range
of 0.27 and 0.28 mm/rev.

A.3. Effect of coolant pressure on the process parameters

The delivery pressure is considered as one of the most
important factors in a high-pressure assisted jet cooling system.
The reduction in the temperature at the cutting edge,
improvement in tool life and chip breakability achieved with
this system depend to a great extent on the delivery
presuure[18]. The influence of coolant pressure on the process
parameters is shown in Fig. 6(a)-(g). Fig.6(a) shows that the
predicted surface roughness remained constant with increase in
coolant pressure from 110 to 130 bar. It then increased with
increase in coolant pressure from 130 to 170 bar before
dropping rapidly when the pressure increase from 170 to 210
bar. There was a steady reduction in cutting force with increase
in pressure (Fig. 6 (b)) due probably to reduction in the tool-
chip contact length due to the hydraulic wedge created by the
HPC jet at tool-chip interface[19]. A slight increase in feed
force was obtained when the pressure increased from 110 tp
150 bar followed by a rapid reduction when the pressure
increased from 150 to 210 bar (Fig (c)). The power
consumption dropped steadily with increase in the coolant
pressure (Fig (d)), similar to the cutting force. This can also be
attributed to the reduction in both tool-chip contact length. Fig
(6(e)-(f) shows the effect of coolant preesure on tool wear. An
initial increase was observed in both the average and maximum
flank wears with increasing coolant pressure. Further increase
in pressure above 150 bar generally lowered the predicted
flank wear. An initial reduction in nose wear was obtained with
increase in pressure up to 130 bar followed by a steady rise up
to 190 bar after which there was a reduction with further
increase in pressure from 190 to 210 bar (Fig .6(g)).

A.4. Effect of cutting time on the process parameters

The influence of cutting time on the process parameters is
shown in Fig.7(a)- (g). Fig .7(a) shows that increase in cutting
time has no defined influence on the surface finish generated.
Prolonged machining results in steady increase in both
component forces, power consumption, average and maximum
flank wears, and nose wear as illustrated in Fig. 7(b) — (g).

It is important to note that the experimental values for all the
process parameters were very close to the predicted values,
expect for the predictions of the component forces (Fig. 4 (b)
and (c) — 7 (b) and (c) where the differences were high due to
the low correlation coefficient between the measured and the
predicted values from the model, which are 0.6595 and 0.7913
for cutting force and feed force, respectively, while that for
other process parameters are in excess of 0.9 (table 5). This
shows that the model prediction has a high degree of acuuracy.
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IV. CONCLUSION
1. The multilayer network with two hidden layers having 10
‘tangent sigmoid’ neurons trained with Levenberg- Marquardt
algorithm combined with Bayesian regularisaion was found to
be the optimum network for the model developed in this study.
2. A good performance was achieved with the neural model,
with correlation coefficient between the model prediction and
experimental values ranging from 0.6595 for cutting force to
0.9976 for nose wear prediction.
3. The optimum cutting speed at which minimum process
parameters were obtained is in the range of 25 — 35 m/min,
while the optimum feed rate, corresponding to the minimum
surface roughness and nose wear, is within 0.27 and 0.28
mm/rev.
4. A consistent reduction in cutting force was achieved with
increase in coolant pressure due to reduction in tool-chip
contact length as a result of the hydraulic wedge created by the
coolant jet at the tool-chip interface. The effect of coolant
pressure on tool performance is more pronounced on the
maximum flank wear than other wear modes.
5. Prolonged machining results in steady increase in both
component forces, power consumption, average and maximum
flank wear and nose wear

ACKNOWLEDGMENT
One of the authors, D.A.Fadare, is grateful to the John D.
and Catherine T. MacArthur Foundation Grant through the
University of Ibadan, Nigeria for funding the staff
development program during which this study was conducted.

(1]

[2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

13]

[14]

[15]
[16]

[17]

[18]

[19]

REFERENCES
E.O>Ezugwu, Advances in the machining of nickel and titanium base
superalloys, Keynote paper presented at the japan society for presion
Engineering Conference 2004, pp.1-40.
Secrotechnical guide, Turning difficulty — to — cut alloys.
S. Malinov, W. Sha, J.J. Mckeown, Modelling the correlation between
processing parameters and properties in titanium alloys using artificial
neuralnetwork, comput. Mater. Sci.21(2001) 375-394.
E.O.Ezugwu,K.A. Olajire, J. Bonney, Modelling of tool wear based on
component forces, Tribol. Lett. 11(1)(2001).
E.O. Ezugwu, J. Bonney, Effect of high — pressure coolant supply
when machining nickel — base, UDIMET 720, alloy with coated
carbide tools, Proceedings of AMPT 2003, 8-11 july 2003, Dubin,
Ireland, pp.787 -790.
E.O. Ezugwu, J. Bonney, Effect of high — pressure coolant supply
when machining nickel — base, UDIMET 720, alloy with coated
carbide tools, J. Mater. Process. Technol. 153-154 (2004) 1045 -1050.
J. Bonney, High-speed machining of nickel-base, UDIMET 720, alloy
with ceramic and carbide cutting tools using conventional and high-
pressure coolant, PhD Thesis, London South Bank University, 2004.
E.O. Ezugwu, A.R. Machado, I.R. Pashby, J.Wallbank, The effect of
high-pressure coolant supply when machining a heat-resistant nickel-
based superalloy, Lubr.Eng. 47 (9)(1991) 751-757.
E.O. Ezugwu, SJ. Arthur, E.L. Hines, Tool wear prediction using
artificial neural networks, J. Matter. Process. Technol.49 (1995) 255-
264.
T.L. Liu, W.Y. Chen, K.S. Anantharaman, Intelligent detection of drill
wear, Mech. Syst. Signal Process. 12(6) (1998) 863-873.
D.E. Dimla Sr., P.M. Lister, On-line metal cutting tool condition
monitoring. Il: Tool-state classification using multi-layer perceptron
neural networks, Int. J. Mach. Tool Manuf. 40 (2000) 769-781.
D.E. Dimla sr., Application of perceptron neural networks to tool-state
classification in a metal-turning operation, Eng. Appl. Artif. Intell. 12
(1999) 471-477.
B. Sick, On-line and indirect tool wear monitoring in turning with
artificial neural networks: a review of more than a decade of research,
Mech. Syst. Signal Process. 16 (4) (2002) 487-546.
D.E.Dimla Jr., P.M.Lister, N.J. Leighton, Neural network solution to
the tool condition monitoring problem in metal cutting — a critical
review of methods, Int. J.Mach. ToolsManuf.37 (9)(1997) 1219-1241.
H.Demuth, M. Beale, Neural Network Toolbox User’s Guide, Version
4 (Release12), The Mathworks, Inc., 2000.
B. Mills, A.H. Redford, Machinability of Engineering Materials,
Applied Science Publishers, Barking, Uk, 1983.
X.S. Li, I. Low, Cutting forces of ceramic cutting tools in: X.S. Li, I.
Low (Eds.),, Advanced Ceramic Tools forMachining Application — 1,
Key Engineering Materials Vol. 96, Trans Tech Publications,
Aedermannsdorf, Switzerland, 1994, pp.81-136.
C. Richt, Turning Titanium — Developments in Applicatio Technology,
Sanvik Coromant, Sandviken, Sweden, 2003.
M.Mazurkiewicz, Z.Kubala, J. Chow, Metal machining with high
pressure water-jet cooling assistance — a new possibility, J.Eng.
Ind.111 (1989) 7-12.

Volume 6, | ssue 02

Published by, www.ijert.org



