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Abstract—An artificial neural network (ANN) model was 

developed for the analysis and prediction of the relationship 

between cutting and process parameters during high-speed 

turning of nickel –based, UDIMET720, alloy. The input 

parameters of the ANN model are the cutting parameters: Speed, 

feed rate, depth of cut, cutting time and coolant pressure. The 

output parameters of the model are seven process parameters 

measured during the machining trials, namely tangential force 

(cutting force, Fz), axial force ( feed force, Fx), spindle motor 

power consumption, machined surface roughness , average flank 

wear (VBmax) and nose wear (VC). The model consists of a three 

layerd feedforward backpropagation neural network. The 

network is trained with pairs of inputs/outputs datasets generated 

when machining UDIMET 720 alloy with triple (TiCN/Al2o3/TiN) 

PVD-coated carbide (K 10) inserts with ISO designation CNMG 

120412. A very good performance of the neural network, in terms 

of agreement with experimental data, was achieved. The model 

can be used for the analysis and prediction of the complex 

relationship between cutting conditions and the process 

parameters in metal-cutting operations and for the optimization 

of the cutting process for efficient and economic production.  

 

I. INTRODUCTION 

The aerospace industry employs superalloys for their superior 

mechanical and thermal properties (primarily their mechanical 

strength that high temperatures). The very same properties 

dictating their use inmanufacturing of aerospace components 

result in slow cutting speeds and rapid tool wear in comparison 

to machining of conventional steels. In general machining of 

high temperature alloys presents many difficulties. The higher 

yield strengths of these materials induce higher cutting forces 

during machining. These higher cutting forces, in conjunction 

with their strain-hardening, often induce high cutting 

temperatures, which affect tool life and resultant 

microstructure.  

 UDIMET 720 is a nickel-based alloy solid solution 

strengthened with tungsten and molybdenum, and precipitation 

hardened with titanium and aluminum, which is produced by 

vacuum-induction melting, to close chemical composition 

tolerances and further refined by vacuum-arc remelting. Ingots 

are remelted by consumable arc for optimum control of 

homogeneity and microstructure. Carbon, boron, and 

zirconium are carefully balanced to optimize grain boundary 

precipitation and properties. This alloy exhibits typical nickel-

based alloy characteristics, such as high strength and 

metallurgical stability. It has a melting range of 1194–1338º C 

and a density of 8082.6 kg/m³, and possesses excellent 

mechanical properties at high temperatures. The maximum 

useful service temperature for an extended period of time is 

believed to be 982º C. This has been demonstrated by impact 

strength retention after long exposures at elevated 

temperatures. 

      UDIMET 720 also shows good oxidation and corrosion 

resistance, making it useful in gas turbine blade and disc 

applications. Among the applications are blades for aircraft, 

marine and land-based gas turbines and rotor discs. 

Conventional machining techniques used for iron-based alloys 

may be used. This alloy however, has an increased propensity 

for work- hardening during machining and has higher strength 

and “gumminess” not typical of steels, which make machining 

much more difficult. Heavy duty machining equipment and 

tooling should be used to minimize chatter or work-hardening 

of the alloy. 

      UDIMET alloy 720 can be machined by conventional 

machining processes, but cannot be machined economically on 

light machine tools nor machined at the high operating speeds 

used for ordinary steel. UDIMET 720 has very low thermal 

conductivity (about 20 W/mK for the 

temperature up to 600◦ C as opposed to about 50 W/mK for 

steel), which traps the heat at the cutting edge during a 

machining process, making the tool life relatively short. In 

particular, UDIMET 720 machining conditions are limited by 

microstructural deformation. The post processed 

microstructure has a direct effect on part life. Machining at 

high velocities will result in increased deformation and part 

rejection. Cutting speeds have to be very low because of this 

reason (Special metals, 2007). 

           Furthermore, low thermal conductivity and related 

localization of temperature at the cutting zone lead to attendant 

difficulties in machining and hence efficient temperature 

control techniques are needed to improve machinability. Even 

though new advanced cutting materials have resulted in higher 

cutting speeds, some of these superalloys, such as Titanium 

alloys, are still primarily machined by carbide cutting tools due 

to their superior compatibility (Rao and Shin, 2002). The high 

temperatures occurring during machining of these superalloys 

lead to solution and diffusion wear in tool materials such as 

Sialon and Cubic Boron Nitride. This limits the cutting speeds 

that can be used with these advanced materials (Richards and 

Aspinwell, 1989). 
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 Advances in cutting tool technology have led to the 

introduction of coated and uncoated carbide, ceramic, 

CBN/PCBN and PCD tools with adequate hot hardness and 

toughness to withstand elevated temperatures generated at high 

–speed conditions. Also, machining techniques, such as 

ramping (or taper turning), high-pressure coolant (HPC) 

delivery system, hot machining, cryogenic machining and the 

use of self-propelled rotary tooling (SPRT), have been 

developed in recent years. A good understanding of the 

behavior and the relationship between the work piece 

materials, cutting tool materials, cutting conditions and the 

process parameters is an essential requirement for the 

optimization of the cutting process. In this regard, a significant 

number of investigations have been carried out to understand 

the complex relationship between the cutting conditions and 

the process parameters in high speed machining of nickel-

based, UDIMET 720 alloy from both empirical and theoretical 

standpoints. Empirical models relating tool wear and the 

components forces as functions of cutting speed and coolant 

concentration when machining nickel based, nimonic C-263, 

alloy with PVD-coated carbide tools have been reported[4]. 

Similarly, several experimental and analytical studies have 

been conducted on high –speed machining of nickel based, 

UDIMET 720, alloy[5-8]. It must be pointed out, however, that 

these techniques are both costly and time consuming. 

Computer-based models, on the other hand, offer a more 

efficient and cost-effective method in modeling the complex 

process parameters. 

 Artificial neural networks (ANNs) are one of the most 

powerful computer modeling techniques, based on statistical 

approach, currently being used in many fields of engineering 

for modeling complex relationships which are difficult to 

describe with physical models. ANNs have been extensively 

applied in modeling many metal-cutting operations such as 

turning, milling and drilling[9-12]. However, this study was 

inspired by the very limited or no work on the application of 

ANNs in modeling the relationship between cutting conditions 

and the process parameters during high-speed machining of 

nickel –based, UDIMET 720,alloy. 

 

II. MODEL DESCRIPTION 

When There has been continual increase in research interest 

in the applications of ANNs in modeling and monitoring of 

machining operations[13,14]. The input/output dataset of the 

model is illustrated schematically in Fig.1. The input 

parameters of the neural network are the cutting conditions, 

namely cutting speed, feed rate, cutting time and the coolant 

delivery pressure. The output parameters are seven of the most 

important process parameters, namely component forces 

(tangential or cutting force, Fz and axial or feed force, Fx), 

spindle motor power consumption, machined surface 

roughness, and tool wear (average and maximum flank wear as 

well as nose wear). The five basic steps used in general 

application of neural network adopted in the development of 

the model: assembly or collection of data; analysis and pre-

processing of the data; design of the network object; training 

and testing of the network; and performing simulation with 

trained network and post processing of results. 

A. Experimental/collection of input/output dataset 

Machining tests were conducted on an 11KW CNC lathe 

with a speed range from 18 to 1800 rpm, which provides a 

torque of 1411Nm. 200mm diameter and 300mm long cast 

solution treated, vacuum inducted melted and electroslag 

remelted nickel-based, UDIMET 720, alloy bars were used as 

workpiece. The chemical composition and physical properties 

of the work piece are given in Tables 1 and 2, respectively. 

Before conducting the machining trials, upto 3mkm thickness 

of the top surface of each bar was cleaned in order to eliminate 

any skin defect that can adversely affect  the machining result. 

Triple (TiCN/Al2o3/TiN) PVD-coaed carbide (K 10) inserts 

with ISO designation CNMG 120412412 were used for the 

machining trials. The physical properties and Nominal 

chemical Composition of the inserts are given in table3. 

Cutting conditions, typical of rough turning of nickel based 

alloys in the manufacturing industry employed in the 

machining trials are shown in Table 4. During the machining 

trails, the component forces were measured using a piezo-

electric tri-axial dynamometer (Type 9257B). Signals from the 

dynamometer were conditioned through charge amplifiers 

(Type 5001) with in built low-pass  filters of 680 Hz cut-off 

frequency. The RMS values of the signals were sampled at a 

rate of 200kHz with a two-channel digital oscilloscope. The 

power consumption of the spindle  motor was measured with  a 

multifunction three-phase power meter. The roughness of the 

machined surface was measured after each test with a stylus-

type instrument. Readings were taken at three different 

locations and the average value was recorded. Tool wear: 

average (VB) and maximum (VBmax) flank wear, and nose 

wear (vc) were measured with a travelling microscope 

connected to a digital readout device at a magnification of x25. 

The tool rejection criteria for roughin operation were used in 

the machining trials. 
TABLE1 

Chemical Composition of UDIMET720 

Element C Cr Co Mo W Ti Al B Zr Ni 

Wt(%) 0.025 18 14.75 3 1.25 5 2.5 .030 .035 bal 

 

TABLE 2 

Physical Properties of UDIMET720 

Tensile strength 

στ (MPa) 

Yield strength 

Σy (MPa) 

Elongation 

Є(%) 

Reduction of 

area φ (%) 

Vickers 

Hardness HV 

1385 1025 10 11.9 466 

 

 

in accordance with ISO Standared 3685. An insert was rejected 

and further machining  discontinued when any or a 

combination of the following criteria is reached: 

 

 

• Average flank wear≥0.4mm 

• Maximum flan wear ≥0.7mm 
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• Nose wear≥0.5mm 

• Surface roughness≥6.0µm 

B. Pre-Processing of input/output data set 

Use one space after periods and colons.  

The generalization capability of the neural network is 

essentially dependent on: (i) the selection of the appropriate 

input/output parameters of the system; (ii) the distribution of 

the dataset; and (iii) the format of the presentation of the 

network. For this model, the input parameters used are the four 

main cutting parameters, while the output dataset are seven 

process parameters. In total, 20 machining tests were 

conducted and a total of 102 input/output dataset pairs were 

collected  during the machining tests. The experimental design 

and the data distribution of the input/output dataset for each 

testare given in Table . 

Prior to the use of the datasets, principal component analysis 

was performed, using the Matlab subroutine prepca, to test the 

correlation between the input and output dataset. Result shows 

that each of the four selected cutting parameters (input dataset). 

Before training the network, the input/output atasets were 

normalized within the range of ±1, using the Matlab subroutine 

premnmx. The normalized value (xi) for each raw input/output 

dataset (di)  was calculated as 

Xi=2/dmax –dmin (di-dmin)-1 

where dmax and dmin are the maximum and minimum values of 

the raw data. 
Table 4 

Cutting parameters 

   Machining conditions  

Cutting speed (m/min)                         20, 30, 40 and 50 
        Feed rate (mm/rev)                         0.25 and 0.30 

      Depth of cut (mm)                         2.0-3.5 (ramping) 

      Coolant pressure (bar)                         110,150, and 203 
     Coolant concentration (%)                         6.0 

Cutting geometry  

     Cutting tool insert                        CNMG 120412 
     Tool holder                        MSLNR 252512 

     Approach angle (°)                        40.0 

     Side rake angle  (°)                        0.0 
    Clearence angle  (°)                        6.0 

    Back rake angle  (°)                       -5.0 

Cutting fluid type  
Emulsion oil (alkanolamine salts of the fatty acids and dicyclohexylamine 

C. Neural Network design and training 

The network architecture or features such as number of 

neurons and layers are very important factors that determine 

network. For this model, standared multilayer feedforward 

backpropagation hierarchical neural networks were designed 

with MATLAB 6.1 Neural Network Toolbox[15]. The 

networks consist of three layers: the input, hidden layer, and 

output layer. In order to determine the optimal architecture, 

four different networks with different number of layers and 

neurons in the hidden layer were designed and tested. In 

general, the networks have four neurons in the input, 

corresponding to each of the four cutting parameters and one 

neuron in the output layer, correspondin to each of the process 

parameter. Networks with one or two layers and with 10 or 15 

in the hidden layer(s) were used as shown in table. For all 

networks linear transfer function ‘purelin’ and tangent sigmoid 

transfer function ‘tansig’ were used in the output and hidden 

layer, respectively. Seven different networks were designed for 

each of the process parameters. 

The networks were trained with Levenberg-Marquardt 

algorithm. This training algorithm was chosen due to its high 

accuracy in similar function approximation[3,15]. In order to 

improve the generalization of the network, different 

‘regularisation’ schemes were used in conjunction with the 

Levenberg-Marquardt algorithm. The automatic Bayesian 

regularization and the Early stopping regularization were used 

(see Table 5). 

For training with the Levenberg-Marquardt combined 

withBayesian regularisartion, the input/output dataset, 

consisting was divided randomly into two categories: training 

dataset, consisting of two thirds of the input/output dataset and 

test dataset, which consists of one-third of the data. When the 

networks were trained with Levenberg-Marquardt combined 

with Early stopping, the input/output dataset was divided in 

three sets: training set, one-quarter as test and one-quarted as 

validation set. 

D. Testing and Performance of the network 

 The performance capability of each network was examined 

based on the correlation coefficient between the network 

predictions and the experimental values using the training, test 

and entire dataset. The best results, obtained from 10 different 

trials using different random initial weights and biases, for 

each process parameter are listed in table5. Generally, as 

shown in the table, networks with two hidden layers and 10 

neurons in each layer, trained with Levenberg-Marquardt 

algorithm combined with Bayesian regularization, gave the 

best performance of the networks. It can also be seen that the 

increase in the number of neurons in the hidden layer from 10 

to 15 has no significant improvement on the performance of 

the networks. Thus, network having two layers and 10 neurons 

in each hidden layer (4-10-10-1), trained with Levenberg-

Marquardt algorithm and Bayesian regularization, was chosen 

as the optimum network and used for development of this 

model. The performance of the model for prediction of surface 

roughness using the training and entire dataset is shown in 

fig.2. the correction coefficient of 0.99 was obtained between 

the entire  dataset and the model  predictions. The percentage 

error of the model prediction was also calculated as the 

percentage difference between the experimental and predicted 

value relative to the experimental value. The error distribution 

of the model  for the prediction of surface roughness using the 

entire dataset is shown in fig.3. the error has a uniform 

distribution pattern about zero with a mean value and standared 

deviation of – 0.87 and 7.16%, respectively. The result shows 

that 84% of th entire dataset have the percentage error ranging 

between ±10%. Acceptable results were also obtained for all 

the other process parameters. This demonstrated that the 

models have high accuracy for predicting the process 

parameters. 

III. SIMULATION AND RESULTS 

A. Effect of cutting conditions on the process parameters 

Based on the optimized network parameters, ANN model 

was developed to predict each process parameter based on the 

cutting conditions, with a high degree of accuracy within the 

scope of cutting conditions investigated in the study. This, the 

influence of the cutting conditions on the process parameters 

can be studied using the model. 
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A.1. Effect of cutting speed on the process parameters 

 Cutting speed is one of the most important cutting 

parameters in metal-cutting  operations. Its influence on the 

process parameters: surface roughness, cutting force, feed 

force, power consumption, average flank wear, maximum flank 

wear  and nose wear over the speed range of 20-50m/min was 

examined using the neural network model at constant feed rate 

of 0.25mm/rev, coolant pressure of 110 bar and cutting time of 

312s. results of the neural network predictions and the 

experimental values are shown in Fig. 4 (a)-(g). Fig. 4 (a) 

shows that the predicted surface roughness increased 

significantly with increasing cutting speed. The deterioration 

experienced in the machined surface with increase in cutting 

speed can be attributed to the  presence of chatter and tool wear 

at higher speed conditions. The pattern of the predicted 

component forces (cutting and feed force) was similar as 

illustrated in Fig. 4(b) and (c ).it can be seen that the cutting 

force reduced significantly (Fig. 4(b)), relative to the feed force 

(Fig.4(c) ) when the cutting speed increase in cutting speed, 

from 20 to 35m/min. Further increase in cutting speed, from 35 

to 50 m/min, resulted in rapid increase in both cutting and feed 

forces. The effect of cutting speed on component forces is in 

two contrasting phenomena. On one hand, as the cutting speed 

increase, the tool-chip contact length decrerases and the 

temperature at the cutting zone increases, leading to softening 

of the workpiece material[16]. There is, therefore a reduction 

in the shear strength of the workpiece, hence, the drop in 

component forces. On the other hand, as the cutting speed 

increase above 30m/min, tool wear increases, consequently 

increasing the component forces[17]. These, therefore, suggest 

that the optimum cutting speed is 35m/min. 

Fig. 4 (d) shows that the predicted power consumption dropped 

slightly with increase in cutting speed from 20 to 25m/min and 

then increased exponentially with increase in cutting speed 

from 25 to 50m/min.The trend can then be explained by the 

corresponding reduction and increase in both component forces 

and tool wear. In terms of minimum power requirement, the 

optimum cutting speed is found to be 25m/min. the predicted 

tool wear, as shown in fig. 4(e) – (g), followed a similar 

pattern. A partially linear reduction in average flank wear 

(Fig.4(e)), maximum flank wear (Fig. 4 (f)) and nose wear  

(Fig .4(g)) was obtained with increase in cutting speed from 20 

to 30 m/min. No significant difference was observed in both 

average flank wear and nose wear unlike gradual increase in 

the maximum flank wear. Further increase in cutting speed 

above 35m/min resulted to a general increase in all the tool 

wear modes, suggesting that the optimum cutting speed at 

which minimum process parameters can be obtained is in the 

range 25-35 m/min.   

 

A.2. Effect of feed rate on the process parameters 

The effect of feed rate on the process parameters are 

presented in Fig.5 (a)-(g). Fig. 5(a) shows a reduction in the 

surface roughness value when the feed rate increased from 0.24 

to 0.28 mm/rev, contrary to expectation. This reduction in nose 

wear with increasing feed rate up to 0.27mm/rev (Fig. 5 (g)). 

This clearly shows that nose wear has a big influence on the 

surface roughness generated. Further increase in feed rate 

above 0.28mm/rev gave a rapid increase in the surface 

roughness value. This result indicates that the optimum feed 

rate is 0.28mm/rev. an increase in feed rate produces a linear 

increase in both component forces and the power consumption 

(Fig.(b) – (d)). The average flank wear increased with 

increased in feed rate up to .28mm/rev, and subsequently 

leveled off with further increase (Fig. 5(e)), while the 

maximum flank wear increased steadily with increasing feed 

rate (Fig.5(f)). On the other hand, nose wear reduced when the 

feed rate increased from 0.24 to 0.27mm/rev and increased 

with further increase in feed rate (Fig. 5(g)). It can therefore be 

concluded that the optimum feed rate, corresponding to the 

minimum surface roughness and nose wear, is within the range 

of 0.27 and 0.28 mm/rev. 

 

A.3. Effect of coolant pressure on the process parameters 

 The delivery pressure is considered as one of the most 

important factors in a high-pressure assisted jet cooling system. 

The reduction in the temperature at the cutting edge, 

improvement in tool life and chip breakability achieved with 

this system depend to a great extent on the delivery 

presuure[18]. The influence of coolant pressure on the process 

parameters is shown in Fig. 6(a)-(g). Fig.6(a) shows that the 

predicted surface roughness remained constant with increase in 

coolant pressure from 110 to 130 bar. It then increased with 

increase in coolant pressure from 130 to 170 bar before 

dropping rapidly when the pressure increase from 170 to 210 

bar. There was a steady reduction in cutting force with increase 

in pressure (Fig. 6 (b)) due probably to reduction in the tool-

chip contact length due to the hydraulic wedge created by the 

HPC jet at tool-chip interface[19]. A slight increase in feed 

force was obtained when the pressure increased from 110 tp 

150 bar followed by a rapid reduction when the pressure 

increased from 150 to 210 bar (Fig (c)). The power 

consumption dropped  steadily with increase in the coolant 

pressure (Fig (d)), similar to the cutting force. This can also be 

attributed to the reduction in both tool-chip contact length. Fig 

(6(e)-(f) shows the effect of coolant preesure on tool wear. An 

initial increase was observed in both the average and maximum 

flank wears with increasing coolant pressure. Further increase 

in pressure above 150 bar generally lowered the predicted 

flank wear. An initial reduction in nose wear was obtained with  

increase in pressure up to 130 bar followed by a steady rise up 

to 190 bar after which there was a reduction with further 

increase in pressure from 190 to 210 bar (Fig .6(g)). 

 

A.4. Effect of cutting time on the process parameters 

 The influence of cutting time on the process parameters is 

shown in Fig.7(a)- (g). Fig .7(a) shows that increase in cutting 

time has no defined influence on the surface finish generated. 

Prolonged machining results in steady increase in both 

component forces, power consumption, average and maximum 

flank wears, and nose wear as illustrated in Fig. 7(b) – (g). 

It is important to note that the experimental values for all the 

process parameters were very close to the predicted values, 

expect for the predictions of the component forces (Fig. 4 (b) 

and (c) – 7 (b) and (c) where the differences were high due to 

the low correlation coefficient between the measured and the 

predicted values from the model, which are 0.6595 and 0.7913 

for cutting force and feed force, respectively, while that for 

other process parameters are in excess of 0.9 (table 5). This 

shows that the model prediction has a  high degree of acuuracy. 
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IV. CONCLUSION 

1. The multilayer network with two hidden layers having 10 

‘tangent sigmoid’ neurons trained with Levenberg- Marquardt 

algorithm combined with Bayesian regularisaion was found to 

be the optimum network for the model developed in this study. 

2. A good performance was achieved with the neural model, 

with correlation coefficient between the model prediction and 

experimental values ranging from 0.6595 for cutting force to 

0.9976 for nose wear prediction. 

3. The optimum cutting speed at which minimum process 

parameters were obtained is in the range of 25 – 35 m/min, 

while the optimum feed rate, corresponding to the minimum 

surface roughness and nose wear, is within 0.27 and 0.28 

mm/rev. 

4. A consistent reduction in cutting force was achieved with 

increase in coolant pressure due to reduction in tool-chip 

contact length as a result of the hydraulic wedge created by the 

coolant jet at the tool-chip interface. The effect of coolant 

pressure on tool performance is more pronounced on the 

maximum flank wear than other wear modes. 

5. Prolonged machining results in steady increase in both 

component forces, power consumption, average and maximum 

flank wear and nose wear 
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