
CAN and FlexRay

Communication Controllers

[1] Pramod B [2]Mrs.Veena H S

 PG Student, BIT Associate Professor, Department of ECE

Bengaluru, BIT,Bengaluru

Abstract—The Controller area network completely addressed

the requirements of the automotive networking until the last

decade. However with advancement in the automotive

electronics puts requirement of a deterministic and fault

tolerant communication systems. Flexray was introduced to

address this issue. But Flexray is costly compared to the CAN.

Flexray is not seen as the complete replacement for CAN. The

current automotives use a mix of communication protocols.

There is an occasional need for data exchange between these

two protocols for which gateways are required. But gateways

are costly. Communication controllers are the core of the data

link layer and required for a connection to these networks. In

gateway implementations, usually a host that is connected to

the two networks does the data conversion in application .

Here, a model is proposed at system level for integrating these

controllers for achieving host independent interprotocol

communication, without the use of gateways and no

intervention from the application. An open core IP for CAN

CC is used as reference, and for Flexray CC, a simple model,

mostly serving as a black box is built taking NXP’s MFR4310

as reference.

Keywords—Controller area network, Flexray, Communication

controller, Gateways, Controller architecture, Very Large Scale

Integration (VLSI), Communication protocol

 I. INTRODUCTION

The introduction of electronics in automobile

industry was primarily aimed at increasing the efficiency of

engines. Hence the term Engine control unit was

introduced. With advancement of electronics for other

purposes in automobiles, it was changed to more generic

term as Electronic control units. As the functionalities were

added the increased complexity could not be handled by

one system and hence they were split into a distributed

network of systems. However these units still needed to

exchange the data between themselves. In the beginning,

independent ECUs were sufficient to perform electronic

functions. Earlier systems used a point to point

communication for data exchange, as they needed to co-

ordinate their functionality every signal was allocated a

specific channel. However as the number of these systems,

wiring required for these connections became also grew

and became a major challenge for further additions of

electronics. Robert Bosch came up with the solution in

1986 that revolutionized the automotive electronics

industry and the Controller Area Network still dominates

the vehicular networking domain. CAN is a serial

communication protocol employing a single bus. The CAN

protocol specification describes the Data Link Layer that

includes Medium Access Control, Logical Link Control.

CAN reduced wiring and space requirements Though new

ECU designs are pushing the limits of CAN

communication protocol, and new advanced protocols,

such as, Flexray etc are set to make a change, there is no

replacement of CAN protocol in the automotive domain for

the foreseeable future due to the low cost of

implementation, tried and tested operation of CAN

protocol in all these years. The usage of CAN has been

extended to home and industrial automation, avionics etc.

However the complexity of electronics has not stalled and

it has become feasible to integrate more and more functions

into the system. Examples of these are the X by wire

systems. These kinds of applications bring new set of

problems and safety risks that cannot be handled by the age

old CAN network. CAN network is inherently

asynchronous and hence not deterministic in nature. This

non-determinism can cause problems in safety critical

applications and hence a time triggered access to the

communication channel is required which offers more

determinism. The FlexRay was developed to address these

issues by the FlexRay consortium. However being a new

and costly technology, it is facing its own set of challenges

to completely be adopted. Modern vehicles have different

protocols operating in different regions of the vehicle

depending on requirements. When the exchange of data is

required between any two protocols, gateways are used.

Existing solution for interprotocol data exchange is use of

gateways. Gateways use software for processing the data

from one network and transmit on other network. This

means the gateway operation is handled in the software

rather than the hardware. There are already many

automotive MCUs incorporating number of both Flexray

and CAN network interfaces, though they are handled as

separate peripherals. One approach for eliminating the

gateways would be to have a node that is connected to both

the networks process the information and place it on the

other network. But these add to the software complexity

and to the processing overheads. This may not always be

feasible since an ECU would be dedicated to a function in

the network and adding software to handle the data not

required by that function will have to account for the effect

on that node’s requirements. For example the node may

have its own deadlines which cannot be interrupted by the

data transfer requests. It is also observed that very little

amount of data need to transferred from one protocol to

another(Ex: Steering angle data present on Flexray is

needed in airbag ECU connected to CAN network for

recording crash data.), since these are networked within

their own group of functions such as power train, body etc.

Modeling Integration of

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060461
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

1034

II. GATEWAY IN LITERATURE

A gateway is a device used to provide communication

between networks. This can be between networks using the

same protocol, or between networks running on different

protocols. The differences in the CAN and Flexray protocol

can be found in the fundamental operating principle. CAN

is an asynchronous, event driven, protocol with upto

1MBps of data rate [1]. Flexray is synchronous,

deterministic, time driven protocol supporting upto

10MBps of data rate [2][3][4]. Hence any gateway system

can theoretically achieve a maximum data transfer rate

limited by the CAN protocol bandwidth. A CAN to Flexray

gateway that is described in the literature uses a framework

for gateway design. It is implemented on a microprocessor.

The implemented system obtains data from a FlexRay node

via the FlexRay bus and translates the data to the CAN

protocol. The gateway consists of a standard processor,

internal memory and the relevant communication

controllers designed at the service level where the networks

communicate by directly mapping the services of one

protocol to the other. For each decoded message frame it

receives, the gateway has to issue the corresponding

message frame to the service at the other side for coding

and retransmission to the receiving network. Once the

message arrives to the message buffer the CPU then takes

the information from the message buffer and stores it on its

on-board memory [6]. The above implementation uses

software to do the data processing. The main advantage

observed was that any signal from one network can be

mapped to any other signal in other network. This

flexibility comes at the cost of software service dedicated

to the above task in a dedicated Control unit. It is inferred

that there will be no strict requirement of mapping a signal

of one network to the one in the other network at the

gateway level. Rather the system can be designed such a

way that receiving nodes interested in such data can extract

it into its application data, thereby moving the

configuration requirement away from the gateway to

specific nodes that needs this data. Although, today’s

vehicular networking uses a communication matrix of

different protocols for different functionalities, the data

exchange between these protocols does not require

dedicated transfers but an occasional

interruption[7][8][14].

IV. PROPOSED MODEL

The proposed model tries to integrate both Flexray and

CAN communication controllers. It also aims to explore

the optimization gains, and the cost of integration. It does

not focus on the design of these controllers itself, since in

most system designs, it is preferred to use already available

IPs ,which are proven and verified, and most systems have

already individual protocol controllers within them. The

objective here is to reduce the interface between the host

and controllers, and offload the inter-protocol data transfer

from the host, thus eliminating the need for separate

gateways. It should be noted here that the proposed model

assumes separate stand alone chips for communication

controllers. However this model is still applicable in terms

of hardware implementation of the data conversion. A

simple algorithm is used for transferring data from message

of one protocol to the message of another protocol

according to some pre-configured rules.

A. Methodology

 The architectures of different communication controllers

of both the protocol were analyzed. A reference models

were chosen for both the types. The behavior of the

controllers was modeled at a higher abstraction and with

lowest configuration options in order to simplify the model.

Any communication with the host has to go through the

interface management block. Specific requests for data

transfer from the host are automatically routed to

corresponding block. The algorithm for inter protocol data

conversion is kept simple, assuming there is no

requirement of mapping a signal of one network to other

signal/Message of other network.

Fig.1. The top module

Only the basic configuration before the communication

start is required from the host during initialization phase. A

top down approach is followed.

B. Dual controller blocks

Three clock domains are identified as CAN block, Flexray

block and third domain belonging to the top module with

data conversion tables, few registers and message buffers.

There are 5 blocks in the top module. CAN and FlexRay

core, Interface management, Clock and reset control and

registers.

i) Interface management block: The interface management

block handles the routing of address, data and the bus

signals to respective cores.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060461
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

1035

Fig.2. Interface selection block

 CAN uses 8 bit address, while Flexray use 12 bit address,

although the memory mapped registers are addressed only

upto 0x4FE utilizing only 11 bits. The internal 6Kbytes of

FIFO and message buffers are accessed using dedicated

index, size or field registers. The extra 1 bit at the top

module can be used for recognizing Flexray and CAN

address space. If the FlexRay address space is to be scaled,

then one more address bit can be added to the top module

in order to separate CAN and Flexray register accesses.

The 11th bit is used for recognizing between the top module

registers and CAN registers when the A12 bit is set. Hence

when Flexray registers are to be configured, proper

addresses are latched to FlexRay module directly. This is

identified by 0 values in the 12th address position. When

CAN registers are to be accessed, the A12 bit is set while

A11 bit is reset, and address is made available at lower 8

bits of the address port. The remaining pins are ignored.

While accessing the registers of the top module, A12 and

A11 bits are set and lower 8 bits of address is used. When

the CAN address space is accessed, the interface

management block routes the lower 8 bit of top address

pins to address port of CAN module. The bus signals, write

enable, chip select and read enable are also routed to the

corresponding pins in the CAN module. This happens in a

similar way for other modules.

Fig.3. Address spaces of different modules

The address and data port of non selected modules are left

floating whereas the bus signals are tied low except for

FlexRay module which are active low signals.

Fig.4. Interface management block test inputs and outputs

ii)Clock and reset control: Has the control for slecting

clock for different modules, clockpout pin assignment, and

reset generation for top module. The software resets of

CAN and flexray module can be accessed by their

corresponding address space. This block serves to isolate

all the clock related controls of the top module.

iii)Interrupt management: The interrupt line from CAN and

Flexray blocks are multiplexed and fed to host. To

differentiate between the source, a register is added which

has flags inicating the interrupt source as CAN or Flexray.

Also the gateway operation events can be enabled for

interrupt generation and is indicated by the interrupt

control and status registers in this block.

iv)Register bank: It has the registers that are part of the top

module. It is served by the clock domain of G_clock.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060461
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

1036

Fig.5. Clock and reset generation block

4.3 Algorithm for data conversion: CAN to Flexray

Eight number of Message receive buffer is implemented

for gateway operation. There may be cases where a CAN

message has only 2 bytes of data to be transmitted. Or there

may be data that is more than 8 bytes and is split into

multiple messages by the Application in one of the CAN

node.

Fig.6. Sample messages in the CAN gateway buffer

Fig.7. CAN Data packing in FlexRay slot

In order to transmit as many message data as possible in

one configured slot, many messages are appended to be

accommodated in the configured payload length of the slot.

Each ids may also be mapped to a different slot. Also the

message may be either transmitted in static or dynamic

segment. The frame format for both static and dynamic

frame is same. In order to identify the number of messages,

Extra information is added in the Payload of the message.

The first byte of the message indicates the number of CAN

messages of unique ids that are present in the payload.

Then each message follows. No particular ordering of

message id is followed and order is event based. Next for

each message, 3 bytes are used to indicate standard or

extended, message id and the data length of the message in

the written order. If there were multiple messages of same

Id from CAN network, they are all appended and the data

length information reflects the total number of bytes in the

message. The first bit of the message information indicates

whether it is a standard or extended id message. For

standard id messages, the full id is sent after the IDE bit.

For extended id messages only the most significant 15 bits

are sent At the best case of 1Mbps the CAN can generate

about 64KBps of actual data, i.e 64KB for every one

second. In Flexray at the worst case data rate of 2.5Mbps,

if a utilization of 46% is assumed, the data throughput will

be 143kBps. Hence the Flexray Network can take away the

data faster than the CAN network can produce during

normal scenarios. Hence having large number of CAN

receive buffers is a waste of resources. The throughput of

the gateway operation also depends on the number of slots

used and total number of slots configured in the

communication cycle. A table mapping the CAN message

ids, data to be transmitted, whether to append the data to

already arrived message of same id or to write it into

message buffer directly, and the message buffer to be

which the message has to be transmitted to is

implemented. There are 8 table entries, each having a size

of 3 bytes. The format of the entry varies according to 29

bit or 11 bit ID CAN message. The first byte always

represents the MSB 8 bits of either 11 bit or 29 bit ID

(Only total MSB 18 bit considered in entries). The first 3

bits of next byte contains LSB 3 bits of 11 bit ID or bits

[21:19] of 29 bit ID. The next 3 bits are ignored for 11 bit

identifier and is bits [18:16] of 29 bit ID. The next two bits

contain Start byte position/2 of the 11 bit ID to start

extraction and bits [15:14] for 29 bit ID. It should be noted

that only even position is considered for extraction for both

Start and End byte positions. If the DLC of the CAN frame

is less than configured bytes to be extracted or is odd,

additional bytes are padded. The first two bits of the 3rd

byte are the End byte position for the 11 bit ID and bits

[13:12] for 29 bit identifier. For 29 bit IDs, always all the

data available is extracted and sent. The next bit specifies

whether to append data available from multiple messages

into a single pack and sent with the ID in the configured

slot. The Enable bit follows next. Only if it is set, the entry

will be considered for transmission into the Flexray

network. The slot information, length etc are not

configured in this table. Only the Message buffer to where

this data is to be copied is configured in the table.

Remaining information such as slot assignment, cycle

counter, static or dynamic segment assignment (taken care

while assigning the slot or frame id since the first dynamic

segment frame id is last static segment frame id+1) are

according to the message buffer configuration. Hence these

have to be configured in the Flexray module by the host

while in the CONFIG state before the start of the

communication.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060461
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

1037

4.4 Algorithm for FlexRay to CAN

A FlexRay message is typically larger than the data that

can be fit into a single CAN message. Hence the data is

split into multiple messages. The message buffer is

configured to receive the data as any normal receive

buffers with corresponding filters. The table mapping now

contains the buffer number to which a specific CAN

message id is mapped. The start and end byte position of

the data in the payload is also configured. In case of buffer

overruns, an interrupt is generated and the flag is set in the

interrupt management block register. Care must be taken as

to not exceed the bandwidth limitation of CAN or to flood

the CAN network with gateway messages as it may

increase the bus load and disrupt the normal operation of

CAN network.

V. CONCLUSION

Integration of protocol controllers into microcontroller

reduces the cost. Similarly integrating the protocol

controllers into a single chip will also reduce the overall

area required. The Flexray controller complexity is greater

compared to CAN controllers, it may be possible to use

some of the blocks already available in Flexray block, such

as clock control units, pre-scalars, transmit & receive

buffers, reducing devices required compared to individual

implementation. Integrating these controller IPs will also

result in reduction of overall area requirement if

implemented on a SoC, since there is potential of re-using

some of the blocks. Integration will also help in simpler

and quicker data routing since the data need not travel

through the application of the host and can be handled

completely in the hardware. A host can use a common

interface accessing both the networks. This will reduce the

pin count requirement, which are usually at a premium.

Since the interface for a FlexRay controller will usually

require a faster interface between host and controller to

handle data rates of 10MBps, the CAN traffic will not

cause excessive overhead and hence can use the same

interface. The above model should serve to eliminate the

dependence on gateways and instead the operation be

transferred to one of the nodes in CAN or FlexRay, with

just an additional controller replacement.

REFERENCES
[1] ISO. Road vehicles – Controller area network (CAN) – Part

1: Data link layer and physical signaling. 11898-1:2003.

[2] FlexRay Consortium. FlexRay Communications System,

Electrical Physical Layer Specification, Version 2.1, May

2005.

[3] FlexRay Consortium. FlexRay Communications System,

Preliminary Central Bus Guardian Specification, Version

2.0.9, December 2005.

[4] FlexRay Consortium. FlexRay Communications System,

Protocol Specification Version 3.0.1, Oct. 2010.

[5] MFR4310 Reference Manual from Freescale

semiconductors.

[6] Investigation of a Flexray - CAN Gateway in the

Implementation of Vehicle Speed Control ,Brian Somers,

Waterford Institute Of Technology.

[7] Intra-Vehicle Networks: A Review Shane Tuohy, Martin

Glavin,et al. IEEE Transactions On Intelligent

Transportation Systems.

[8] In-vehicle communication networks - a historical perspective

and review, Nicolas Navet1, Françoise Simonot-Lion,

Proceedings of the IEEE, special issue on Industrial

Communications Systems, vol 96.

[9] R. Makowitz, and C. Temple, "FlexRay- A Communication

Network for Automotive Control Systems," in proc. IEEE

Int. Workshop Factory Commun. Syst.

[10] H. Zinner, J. Noebauer, T. Gallner, J. Seitz, and T. Waas,

“Application and realization of gateways between

conventional automotive and IP/Ethernet-based networks,”

in proc. 48th Design Automation Conference (DAC’11),

2011,

[11] Road vehicles – Unified diagnostic service (UDS), ISO

standard 14229.

[12] Gateway Framework for In-Vehicle Networks based on

CAN, FlexRay and Ethernet Jin Ho Kim, Suk-Hyun Seo,

Nguyen Tien Hai, Bo Mu Cheon, Young

Seo Lee, and Jae Wook Jeon, IEEE Transactions on

Vehicular Technology

[13] E-Ray-FlexRay IP-Module User’s Manual from Bosch.

[14] The Potential of CAN FD Technology to Impact Upon

FlexRay C. Quigley, A. Williams, R. McLaughlin, Warwick

Control Technologies Ltd., CAN in Automation

[15] Gateway System for CAN and FlexRay in Automotive ECU

Networks, Zhao Rui, Qin Gui he, Liu, Jia qiao, 2010

International Conference on Information, Networking and

Automation (ICINA).

[16] Design of flexray communication controller protocol for an

automotive application, IEEE Sponsored 9th International

Conference on Intelligent Systems and Control (ISCO)2015,

R.Radhiga, J.Pradeep

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060461
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

1038

