Modeling and Simulation Studies of a Variable Speed Compressor

Pavan Kumar Veldandi Department of Chemical Engineering Osmania University College of Technology Hyderabad, India

Abstract— With the increasing need for optimizing the power consumption and to regulate emissions from any process plant, large number of manufacturers looking towards to operating compressors using variable speed drives. The performance of a gas compressor cab be described by the relationship of Actual Flow (Q), Isentropic Head (H), Isentropic Efficiency (η) , with the operating speed as a parameter (Reference 1). In this paper a computer model has been developed to simulate the variation of power, pressure with inlet flowrate of the compressor and rotation speed of the compressor. It is found that the head, power, pressure ratios can be related to inlet volumetric rate of the compressor using a quadratic expression. It is also found that this variable can be linearly fitted to the speed of the compressor. When multiple speed data curves are given a compressor performance can be predicted at an unknown speed

Keywords— Variable speed compressor, Process Simulation and Modeling, Least square analysis.

I. INTRODUCTION

Centrifugal compressors are the preferred mean of compressing the gas in a process system. Centrifugal compressors exhibit performance characteristics that depend on the operating point imposed on them by the process (Reference 3). It is thus, necessary for a process simulation model to determine the performance of the gas compressor depending on the head and flow requirement of the operating point, and subsequently, the performance of the compressor as a function of the speed and absorbed power .With the increasing need for optimizing the power consumption and to regulate emissions from any process plant, large number of manufacturers looking towards to operating compressors using variable speed drives (Reference 4). The performance of a gas compressor is described by the relationship of Actual Flow (Q), Isentropic Head (H), Isentropic Efficiency (n), with the operating speed as a parameter. Typical manufacturer data includes a map containing this information, which looks as shown below (Refer to Fig. 1

II. ADVANTAGES

The advantages of predicting the performance of a compressor at variable speeds are as follows

- Multiple number of compressor performance curves can be generated
- Extrapolation for speeds which fall beyond the data for which user has data

Prof. V. Ramseh Kumar Prof. Chintha Sailu Department of Chemical Engineering Osmania University College of Technology Hyderabad, Indiad

- Head vs Flow data generation, when compressor operates on a fluid with a different MWt than for which user has data
- Surge and stonewall prediction for various RPMs and MWts

III. PROCEDURE FOR PERFORMANCE CURVE FITTING

When a user wants to simulate and find the compressor performance curve, itll be necessary for user to fit performance of the compressor to an equation. If the compressor performance data is Head vs flow then this data can be fitted to an equation say a polynomial of the order 2, which looks as follows.

 $H=a^{*}Q^{2}+b^{*}Q+c$ ---- (1)

From the performance data H and Q are available. A computer program can be written to find the parameters a through e. A Sum of squares of errors method can be employed to find these parameters.

 $(H-(a*Q^2+b*Q+c))^2=0----(2)$

Once these parameters are available, using the same equation (1) the performance of the compressor can be estimated any unknown flow rates. And when the values estimates from the generated parameters and plotted against the data available it should exactly overlap. Same method can be employed to predicted other performances of the compressor like Outlet pressure, Outlet Temperature and work vs Flowrate

Generally compressor vendors provide the compressors performance data at 5 to 6 operating speeds, ranging from 80% to 105% of the normal operating speed (100%). So users will have data only at these operating speeds, but when user wants to predict the performance of a compressor at a speed for which data is not available following procedure need to be employed

If RPM is the Speed of the Compressor and H is the Head developed at any given flow rate. As shown in the above diagram if user has the data at 11347 and 14184 RPMs and needs to predict the performance data at a speed of 12766 RPM following linear fitting can be used to generate Head data at various flow rates and once the data is available same can be fitted to equation (1) to predict the Head at an unknown flow rates.

$$\frac{RPM_2 - RPM_1}{H_2 - H_1} = \frac{RPM_X - RPM_1}{H_X - H_1} - - - -(3)$$

When the RPMx is in between RPM1 and RPM2, the Hx data generated using (3) data when plotted against the data user already has it should exactly fall in between as shown in Fig (2) .Above mentioned two techniques are very important in curve fitting in any commercial simulation.

IV. RESULTS AND DISCUSSION

A. To model multiple performance curves

The first step in predicting the compressor performance is to be able to read the data for different speeds and be able to fit that data to equation (1). The data in table (1) is considered as input data and when the model is run following output is generated as shown in table (2) & table (3). From the figure 2 it's clear that the input data and fitted curve data match properly without much deviation. Now same fitted curve can be used to predict head value at a given volumetric rate for input speeds. The purpose of this step is to make the view the compressor performance curves in graphical format only

B. To compare the fitted data with output from program

Now that the input data is fitted to equations, next step is to run the compressor model at the speed which is equal to input data. In this step the compressor model is run at a speed of 11347. A case study is run varying the inlet molar rate of the entering fluid and output adiabatic head is calculated (refer to table 4). The resulting adiabatic head is plot against the inlet volumetric rate. From fig. 4 it is clear that the compressor is running properly at the user supplied speed.

C. To get the performance at unknown speed

In step 3, the compressor input speed it changed from 11347 to 12000. Same case study as mentioned in step-2 is run and the compressor output data (table 5) of Adiabatic Head vs Volumetric Rate is plot. The compress output is shown in middle curve in fig 5. It falls exactly it between the two compressor performance curves without any overlapping.

D. To get the performance for Output Pressure curves

The procedure explained in section-1 can be extended to performance data of Outlet Pressure of the compressor vs Inlet volumetric rate. The compressor is operated at a speed of 12000 RPM which is the speed at which no performance data is available. Case study is run by varying the inlet molar rate and Outlet pressure output is generated. The data in tables 6,7 & 8 plot as Outlet pressure against Volumetric rate as shown in fig.6, The middle curve gives the output from compressor case study.

E. To introduce the efficiency curves

All the above steps from step-1 to step -4 are at a constant efficiency of 100%. But generally the compressor efficiency curves are provided by vendors at different RPMs. The same method as mentioned in section-1 which is used to predict the performance as Head vs Volumetric rate can be used to predict the efficiency values at different volumetric rates and Speeds. The efficiency curve fitting for tabular data is as shown below in tables 9,10 and 11. The same data is plot as shown in Fig 7.

F. To get the performance for Pressure Ratio curves

Similar to step-4, in which outlet pressure vs volumetric rate curves are generated, user can give performance curves in Pressure ratio vs Volumetric rate format also. When these curves along with multiple speed Efficiency curves are applied following results are obtained as shown in tables 12,13 &14. The same data is plot in Fig 8.

G. Surge Points prediction

The next step is the prediction of surge point. User needs to mention for each performance curve what is the surge point; only then percentage surge can be predicted. When the inlet flow goes too low the head developed by a compressor is very high and it may lead to reverse flow. When the inlet flow goes below surge point following warning is given to the user by calculating the inlet flowrate. The operating point is shown as in Fig 9.

** WARNING ** UNIT 1, 'C1' - Volumetric flow rate is at 83.158 percent of SURGE.

H. Stonewall Points prediction

When the flowrate to the compressor is very high the inlet pressure and outlet pressure almost becomes the same. Following warning is given to the user to that effect. The operating point is shown as in Fig 10.

** WARNING ** UNIT 1, 'C1' - Volumetric flow rate is at 102.73 percent of STONE WALL.

TABLE 1 GENERAL COMPRESSOR INPUT DATA						
Input Data	@ RPM1	Input Data @ RPM2				
Volumetric Flowrate (m3/hr)	Adiabatic Head(m)	Volumetric Flowrate(m3/hr)	Adiabatic Head(m)			
4919.2798	12654.7	5838.5698	16032.9			
5457.3999	12545.7	6264.5698	15996.6			
5995.52	12364.1	6600.8999	15923.9			
6354.2598	12146.1	7094.1699	15778.6			
6668.1602	11964.5	7475.3398	15597			
6982.0601	11710.2	7968.6099	15233.8			
7228.7002	11456	8372.2002	14834.2			
7542.6001	11056.4	8820.6299	14325.6			
8013.4502	10402.5	9067.2598	13998.7			
8372.2002	9821.35	9358.7402	13599.1			
8618.8301	9349.13	9650.2197	13126.9			
8820.6299	8876.9	10031.4	12364.1			
9156.9502	8077.75	10278	11782.9			
9291.4805	7714.5	10479.8	11238			

V. TABLES TABLE 1 GENERAL COMPRESSOR INPUT DATA

TABLE3: COMPARISON OF INPUT PERFORMANCE DATA AND FITTED DATA AT SPEED = 12766 RPM

	Data con	nparison @	Speed = 12	766 RPM	
Input	Data	Fitted	Data	Fitted Data	
m3/hr	Head (M)	m3/hr	Head (M)	m3/hr	Head (M)
5838.57	16032.9	5838.57	16032.9	7869.96	15317.5
6264.57	15996.6	5923.77	16030.6	7968.61	15233.8
6600.9	15923.9	6008.97	16025.9	8049.33	15158.3
7094.17	15778.6	6094.17	16018.6	8130.05	15080.6
7475.34	15597	6179.37	16008.9	8210.76	15000.7
7968.61	15233.8	6264.57	15996.6	8291.48	14918.5
8372.2	14834.2	6331.84	15983.8	8372.2	14834.2
8820.63	14325.6	6399.1	15970.1	8461.89	14741.3
9067.26	13998.7	6466.37	15955.6	8551.57	14644
9358.74	13599.1	6533.63	15940.2	8641.26	14542.3
9650.22	13126.9	6600.9	15923.9	8730.94	14436.2
10031.4	12364.1	6699.55	15902.9	8820.63	14325.6
10278	11782.9	6798.21	15877.9	8869.96	14261
10479.8	11238	6896.86	15848.9	8919.28	14196.1
10883.4	9748.7	6995.52	15815.8	8968.61	14130.7
		7094.17	15778.6	9017.93	14064.9
		7170.4	15749.2	9067.26	13998.7
		7246.64	15716.3	9125.56	13924.6
		7322.87	15680	9183.85	13847.6
		7399.11	15640.2	9242.15	13767.7
		7475.34	15597	9300.44	13684.8
		7573.99	15535.4	9358.74	13599.1
		7672.65	15468.3	9417.04	13512.4
		7771.3	15395.6	9475.33	13421.8

Table 4: Comparison of fitted data with compressor output data at speed = 11347 RPM

Compressor output data @ Speed = 11347 RPM						
m3/hr	Head, M	m3/hr	Head, M			
5454.3657	12550.812	7227.0347	11461.819			
5590.7251	12521.252	7363.394	11291.956			
5727.084	12480.771	7499.7529	11116.46			
5863.4434	12429.079	7636.1123	10940.108			
5999.8022	12365.663	7772.4712	10756.279			
6136.1616	12281.509	7908.8306	10562.079			
6272.5205	12198.968	8045.1895	10359.681			
6408.8799	12123.874	8181.5488	10149.267			
6545.2388	12048.396	8317.9082	9920.7471			
6681.5981	11959.294	8454.2666	9680.3398			
6817.957	11856.876	8590.626	9412.1992			
6954.3164	11739.811	8726.9854	9099.832			
7090.6758	11608.71					

Table 2: Comparison of input performance data and fitted data at Speed = $11347\ RPM$

Input	Input Data		Fitted Data		Fitted Data	
m3/hr	Head (M)	m3/hr Head (M)		m3/hr	Head (M)	
4919.28	12654.7	4919.28	12654.7	6793.72	11872.1	
5457.4	12545.7	5026.904	12638.7	6856.5	11821.2	
5995.52	12364.1	5134.528	12619.8	6919.28	11767.3	
6354.26	12146.1	5242.152	12598	6982.06	11710.2	
6668.16	11964.5	5349.776	12573.3	7031.39	11663.6	
6982.06	11710.2	5457.4	12545.7	7080.72	11614.8	
7228.7	11456	5565.024	12523.3	7130.04	11564	
7542.6	11056.4	5672.648	12494	7179.37	11511.1	
8013.45	10402.5	5780.272	12457.7	7228.7	11456	
8372.2	9821.35	5887.896	12414.4	7291.48	11378.4	
8618.83	9349.13	5995.52	12364.1	7354.26	11299.7	
8820.63	8876.9	6067.268	12319.6	7417.04	11219.7	
9156.95	8077.75	6139.016	12275.6	7479.82	11138.7	
9291.481	7714.5	6210.764	12232	7542.6	11056.4	
		6282.512	12188.8	7636.77	10935.5	
		6354.26	12146.1	7730.94	10809.7	
			12115.6	7825.11	10678.9	
			12082.2	7919.28	10543.2	
			12045.9	8013.45	10402.5	
			12006.6	8085.2	10296.3	
		6668.16	11964.5	8156.95	10185.1	
		6730.94	11919.8	8228.7	10068.9	

TABLE5: Compressor output performance data at speed = 12000 $$\rm RPM$$

Compressor output @ speed = 12000 RPM						
m3/hr	Head, M	m3/hr	Head, M	m3/hr	Head, M	
5454.37	14146.3	6681.598	13778.6	7772.471	12893	
5590.73	14136.4	6817.957	13707.3	7908.831	12738	
5727.08	14117.6	6954.316	13624.6	8045.19	12572	
5863.44	14089.9	7090.676	13530.8	8181.549	12398	
5999.8	14052.9	7227.035	13426.3	8317.908	12210	
6136.16	14001.8	7363.394	13304.3	8454.267	12015	
6272.52	13948.5	7499.753	13174.1	8590.626	11802	
6408.88	13895.5	7636.112	13038.1	8726.985	11560	
6545.24	13840.6					

TABLE 6: COMPARISON OF INPUT PERFORMANCE DATA AND FITTED DATA AT
SPEED = 11347 RPM

Speed @ RPM = 11347							
Input	Data		Fitted	data			
m3/hr	К Ра	m3/hr	К Ра	m3/hr	К Ра		
5357.8	2276.8	5357.8	2276.8	6677	2236.8		
5996.8	2267.7	5485.6	2276.4	6786	2229.5		
6460.1	2249.4	5613.4	2275.3	6895	2221.5		
7003.2	2212.9	5741.2	2273.5	7003	2212.9		
7562.3	2158.2	5869	2270.9	7115	2204.5		
7993.6	2094.3	5996.8	2267.7	7227	2194.8		
8440.9	2030.4	6089.5	2265	7339	2183.9		
8872.2	1948.3	6182.1	2261.8	7450	2171.7		
9335.5	1847.9	6274.8	2258.2	7562	2158.2		
9782.8	1729.3	6367.4	2254	7649	2145.2		
10150	1619.8	6460.1	2249.4	7735	2132.4		

Table 7: Comparison of input performance data and fitted data at Speed = $12766 \ RPM$

Speed @ RPM = 12766						
Input	Data		Fitte	ed data		
m3/hr	К Ра	m3/hr	К Ра	m3/hr	К Ра	
5916.933	2514.07	5916.93	2514.07	7507.988	2450.876	
6571.885	2495.82	6047.92	2511.21	7629.394	2441.18	
7386.582	2459.32	6178.91	2507.96	7750.799	2430.229	
7993.611	2404.56	6309.9	2504.31	7872.205	2418.024	
8520.767	2331.56	6440.9	2500.26	7993.611	2404.563	
9000	2249.43	6571.89	2495.82	8099.042	2391.415	
9511.183	2158.18	6734.82	2491.91	8204.473	2377.541	
9862.62	2076.05	6897.76	2486.3	8309.904	2362.94	
10357.83	1939.16	7060.7	2479	8415.336	2347.613	
10996.81	1701.9	7223.64	2470.01	8520.767	2331.559	

TABLE 8: Compressor output performance data at speed = 12000 $$\rm RPM$$

Output data @ 12000 RPM							
m3/hr	Кра	m3/hr	Кра	m3/hr	Кра		
5509.294	2388.66	7850.75	2255.6	10054.46	1823.55		
5647.027	2387.14	7988.48	2237.76	10192.2	1782.79		
5784.759	2384.96	8126.21	2220.41	10329.93	1739.75		
5922.492	2382.1	8263.94	2201.45	10467.66	1694.42		
6060.224	2378.65	8401.68	2180.81	10605.39	1646.81		
6197.957	2374.53	8539.41	2157.95	10743.13	1596.91		
6335.689	2369.64	8677.14	2133.28	10880.86	1544.73		
6473.421	2363.99	8814.87	2107.88	11018.59	1490.26		
6611.154	2357.86	8952.6	2082.16	11156.32	1433.5		
6748.886	2351.45	9090.34	2056.59	11294.05	1374.46		
6886.618	2343.91	9228.07	2029.51	11431.79	1313.13		
7024.351	2335.38	9365.8	2000.13	11569.52	1249.52		
7162.083	2326.23	9503.53	1968.39	11707.25	1183.62		
7299.815	2315.48	9641.27	1934.53	11844.98	1115.44		
7437.548	2303.27	9779	1898.94	11982.72	1044.97		
7575.28	2289.42	9916.73	1862.02	12120.45	972.213		
7713.013	2272.82			12120.45	897.172		

Table 9: Comparison of input Efficiency data and fitted data at Speed $= 11347 \; RPM$

	Efficiendy data @ Speed RPM = 11347							
Input I	Data	Fitted Data @ RPM = 11347						
m3/hr	Eff %	m3/hr	Eff %	m3/hr	Eff %	m3/hr		
5357.8	84	5358	84	7734.8	86.1	8700		
5996.8	86	5486	84.6	7821.1	86.1	8786		
6460.1	86	5613	85.1	7907.3	86	8872		
7003.2	86	5741	85.5	7993.6	86	8965		
7562.3	86	5869	85.8	8083.1	85.9	9058		
7993.6	86	5997	86	8172.5	85.8	9150		
8440.9	86	6089	86	8262	85.7	9243		
8872.2	84	6182	86	8351.4	85.6	9335		
9335.5	81	6275	86	8440.9	85.5	9425		
9782.7	75	6367	86	8527.2	85.3	9514		
10150	71	6460	86	8613.4	85	9604		

TABLE 12: COMPARISON OF INPUT PRESSURE RATIO DATA AND FITTED DATA AT SPEED = 11347 RPM

	Speed @ RPM = 11347						
Inpu	ıt Data	Fitte	ed Data @ RF	PM = 11347.0	00000		
m3/hr	Pres Ratio	m3/hr	Pres Ratio	m3/hr	Pres Ratio		
5357.8	2.46	5357.8	2.465	6568.69	2.428365		
5996.8	2.45	5485.6	2.46454	6677.316	2.421047		
6460.1	2.43	5613.4	2.46333	6785.942	2.413048		
7003.2	2.4	5741.2	2.46135	6894.569	2.404365		
7562.3	2.34	5869	2.45858	7003.195	2.395		
7993.6	2.27	5996.8	2.455	7115.016	2.38595		
8440.9	2.2	6089.5	2.45204	7226.837	2.375525		
8872.2	2.11	6182.1	2.44856	7338.658	2.363725		
9335.5	2	6274.8	2.44456	7450.48	2.35055		
9782.7	1.87	6367.4	2.44004	7562.301	2.336		
10150	1.75	6460.1	2.435	7648.563	2.322007		

Table 13: Comparison of input Pressure Ratio data and fitted data at Speed = $12766\ RPM$

Speed @ RPM = 12766							
Input	t Data	Fi	itted Data @	RPM = 127	66		
m3/hr	Pres Ratio	m3/hr	Pres Ratio	m3/hr	Pres Ratio		
5916.93	2.721	5916.93	2.721	7507.99	2.6529		
6571.89	2.702	6047.92	2.71814	7629.39	2.6425		
7386.58	2.662	6178.91	2.71481	7750.8	2.6307		
7993.61	2.603	6309.9	2.71101	7872.21	2.6175		
8520.77	2.524	6440.9	2.70674	7993.61	2.603		
9000	2.435	6571.89	2.702	8099.04	2.5888		
9511.18	2.336	6734.82	2.69759	8204.47	2.5738		
9862.62	2.247	6897.76	2.69139	8309.9	2.558		
10357.8	2.099	7060.7	2.68339	8415.34	2.5414		
10996.8	1.842	7223.64	2.67359	8520.77	2.524		
		7386.58	2.662	8616.61	2.5065		

TABLE 10: Comparison of input Efficiency data and fitted data at Speed = $12766\ RPM$

Efficiency Data @ RPM = 12766									
Input D	ata	Fitted Data @ RPM = 12766							
m3/hr	Eff %	m3/hr	Eff %	m3/hr	Eff %	m3/hr	Eff %		
5916.93	84	5916.93	84	8808.3	86.11	9862.62	83		
6571.89	86	6047.92	84.54	8904.2	86.07	9961.66	82.4		
7386.58	86	6178.91	85.01	9000	86	10060.7	81.6		
7993.61	86	6309.9	85.41	9102.2	85.8	10159.8	80.8		
8520.77	86	6440.9	85.74	9204.5	85.6	10258.8	80		
9000	86	6571.89	86	9306.7	85.4	10357.8	79		
9511.18	85	6734.82	86	9408.9	85.2	10485.6	77.7		
9862.62	83	6897.76	86	9511.2	85	10613.4	76.2		
10357.8	79	7060.7	86	9581.5	84.66	10741.2	74.6		
10996.8	71	7223.64	86	9651.8	84.28	10869	72.9		
		8616.61	86.07	9722	83.88	10996.8	71		
		8712.46	86.11	9792.3	83.46				

TABLE 11: Compressor output efficiency data at speed = 12000 RPM

Efficiency Data @ RPM = 12000						
m3/hr	Eff %	m3/hr	Eff %	m3/hr	Eff %	
5509.29	83.38	7299.8	86	8814.9	85.1	
5647.03	84.03	7437.5	86	8952.6	84.8	
5784.76	84.57	7575.3	86	9090.3	84.4	
5922.49	85.03	7713	86.03	9228.1	83.8	
6060.22	85.35	7850.7	86.03	9365.8	82.8	
6197.96	85.58	7988.5	86	9503.5	81.6	
6335.69	85.76	8126.2	85.98	9641.3	80.3	
6473.42	85.91	8263.9	85.91	9779	79	
6611.15	86	8401.7	85.78	9916.7	77.7	
6748.89	86	8539.4	85.61	10054	76.4	
6886.62	86	8677.1	85.42	10192	75.2	

TABLE 14: COMPRESSOR OUTPUT PERFORMANCE DATA SPEED = 12000 RPM

Compressor output Speed 12000 RPM						
m3/hr	Pres Ratio	m3/hr	Pres Ratio	m3/hr	Pres Ratio	
5509.294	2.58524	6886.62	2.537	8126.21	2.403628	
5647.027	2.58376	7024.35	2.5277	8263.942	2.383136	
5784.759	2.58153	7162.08	2.5178	8401.675	2.360808	
5922.492	2.57855	7299.82	2.5062	8539.406	2.336058	
6060.224	2.57489	7437.55	2.4931	8677.139	2.309332	
6197.957	2.57049	7575.28	2.4781	8814.871	2.281803	
6335.689	2.56523	7713.01	2.4602	8952.604	2.253863	
6473.421	2.55911	7850.75	2.4416	9090.336	2.226085	
6611.154	2.55237	7988.48	2.4224	9228.068	2.196699	
6748.886	2.54529			9365.801	2.164898	

VI. FIGURES

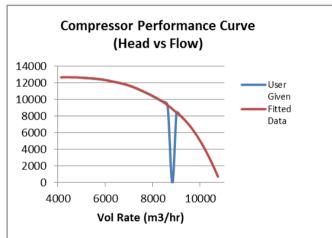
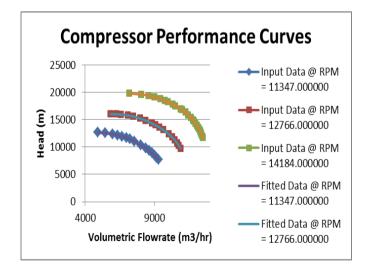



Fig 1.Compressor Performance data fitting using SSE

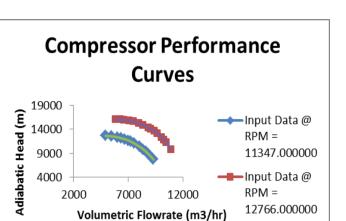


Fig 3.Compressor data viewing in curve format

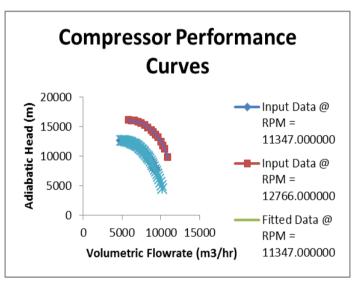


Fig 4.Compressor performance matching with the data in curve format $% \left({{{\rm{Fig}}} \right)$

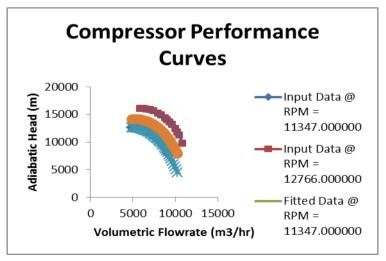


Fig 5.Compressor performance prediction at 12000 rpm

Fig 2.compressor performance

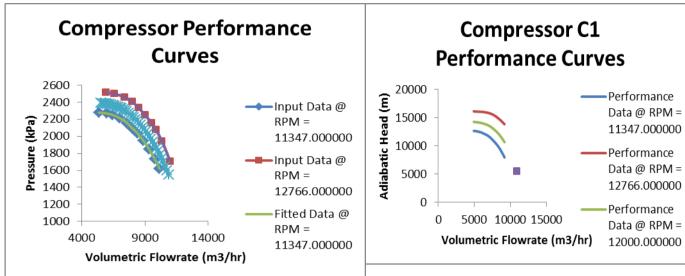


Fig 6.Compressor performance prediction at 12000 rpm

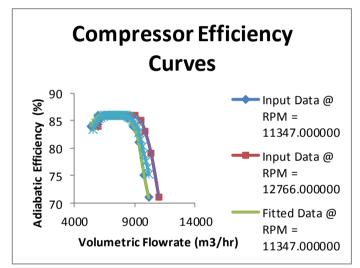


FIG 7.Compressor efficiency prediction at 12000 rpm

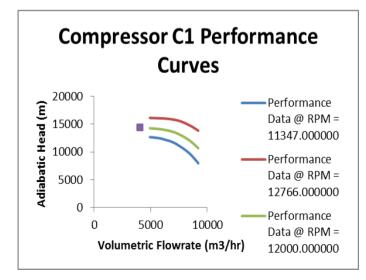


Fig 9 .Compressor surge point prediction at 12000 rpm

Fig 10 .Compressor stonewall point prediction at 12000 rpm

VII. CONCLUSIONS

From the above analysis it's clear that a quadratic fit will be sufficient to model performance curves of a variable speed compressor

The assumption of variation of heat developed by a compressor is linearly proportional to it's speed can be verified

VIII. REFERENCES

- Perry, R.H. and Green, D.W. (Editors), Perry's Chemical Engineers' Hand Book,8th Edition, McGraw-Hill, New York 2007
- [2] McCabe, W., Smith, J. and Harriott, P. Unit operations of chemical engineering, 7th Edition, McGraw-Hill, New York 2004
- [3] Bruce A. Finlayson, Introduction to Chemical Engineering Computing, 2nd Edition, Wiley, Washington 2014
- [4] P.A. O'Neill, Industrial Compressors: Theory and Practice Hardcover ,1st Edition, Butterworth-Heinemann, Oxford 199