Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NSRCL -2015 Conference Proceedings

Model Checking for E- Commerce Transaction

Fraisy Varghese
Software Developer Trainee
Izone Info Soft
Irinjalakuda, Thrissur.

Abstract- E-commerce is a modern business methodology
that address the needs of organizations, merchants, and
consumers to cut costs while improving quality of goods and
services and increasing the speed of service delivery. The fast
development of e-commerce has necessitate the development
of e-commerce protocols. These protocols guarantee the
confidentiality and integrity of information exchanged. In
addition, researchers have identified other desirable
properties, such as, money atomicity, goods atomicity and
validated receipt that must be satisfied by e-commerce
protocols. This seminar provides a brief introduction on how
model checking can be used to obtain an assurance about the
existence of these properties in an e-commerce protocol. It is
important that these desirable properties be satisfied, even in
the presence of site or communication failure. Using the
model checker we evaluate which failures cause the violation
of one or more of the properties. The results of the analysis
are then used to propose a mechanism that handles the
failures to make the protocol failure resilient.

Index Terms: Modern checking, securing e-commerce,
securing transaction

I INTRODUCTION

E-commerce can be defined as a modern business
methodology that address the desire firms, consumers, and
management to cut costs while improving the quality of
goods and increasing the speed of services. E-commerce is
termed as a new online approach to performing traditional
functions such as payment and funds transfer ,order entry
and processing ,invoicing, inventory management, cargo
tracking, electronic catalogs, and point-of-sales data
gathering .Number of e-commerce protocols developed due
to the popularity of e-commerce. Most of these protocols
ensure that the information exchanged between the parties
is protected from unauthorized revelation and modification.
Moreover, researchers have recognized several other
desirable properties of e-commerce protocols such as
money atomicity and goods atomicity and validated
receipt.!lMoney atomicity ensures that money is neither
created nor destroyed in the course of an e-commerce
transaction. Goods atomicity ensures that a merchant
receives payment if and only if the customer receives the
product. Validated receipt ensures that the customer is able
to verify the contents of the product about to be received,
before making the payment. Although such properties have
been identified, a major problem is verifying if a given e-
commerce protocol satisfies these properties, especially in
the presence of network and site failures. Here we

concentrate on the problem of protocol verification using
an existing software verification technique known as model
checking. Model checking, an approach based on
exhaustive search of finite state spaces, could be applied to
this system to verify its properties.! A model of this
system and a property specification could be given as input
to a model checker, which would return a yes, meaning that
the properties were verified, or provide a counter example.
The reasons for using model checking are as follows. 1)
Model checking is a completely automated technique and
considerably faster than other approaches, such as, manual
proofs and simulations. 2) if a property does not hold, a
counter example is produced by the model checker which
helps in understanding why the property does not hold. 3)
Model checking has previously been used successfully to
verify security protocols.

I1.PROTOCOL FUNDAMENTALS

Fig. 1 represents the high-level abstraction of the protocol,
and its processes are summarized as follows: Messages are
exchanged between a customer, a merchant and a trusted
third party (TTP) [2]. A merchant has several products to
sell. The merchant places a description of each product on
an online catalog service with a TTP, along with a copy of
the encrypted product. When a customer finds a product of
interest by browsing the catalog, he or she downloads the
encrypted product and then sends a purchase order to the
merchant. The customer cannot use the product unless it
has been decrypted, and the merchant does not send the
decrypting key unless the merchant receives a payment
token through the purchase order process. The customer,
in turn, does not pay unless he or she is sure that the correct
and complete product has been received. The TTP provides
anonymous support for purchase order validation, payment
token approval, and approval of the overall transaction
between the customer and the merchant. Given these
assumptions, the detailed steps of the protocol are as
follows. (A use case diagram of these processes is depicted
in Fig. 2; the corresponding sequence diagram is shown in
Fig. 3.)First, the customer browses the product catalog

Located at the TTP and chooses a product. The customer
then downloads the encrypted product, along with the
product identifier. The product identifier is a file that
contains information about the product, such as its
description and its identifier. If the identifier of the
encrypted product file corresponds to the identifier in the
product identifier file, the transaction proceeds. If the

Volume 3, | ssue 28

Published by, www.ijert.org 1

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NSRCL -2015 Conference Proceedings

identifiers do not match, advice is send to the TTP and the
customer waits for the correct encrypted product. This
process ensures that the customer receives the product that
was requested from the catalog. Next, the customer
prepares a purchase order containing the customer’s
identity, the merchant identifier, the product identifier, and
the product price. A cryptographic checksum is also
prepared. The purchase order (PO), along with the
cryptographic checksum, is then sent to the merchant. The
combination of the PO and cryptographic checksum allows
the merchant to ascertain whether the PO received is
complete or whether it was altered while in transit. Upon
receipt of the PO, the merchant examines its contents. If
the merchant is satisfied with the PO, the merchant
endorses the PO and digitally signs the cryptographic
checksum of the endorsed PO. This is forwarded to the
TTP. The TTP is involved in the process to prevent the
merchant from later claiming non-acceptance of the terms
and conditions of the transaction. The merchant also sends
a single use decrypting key for the product to the TTP.
Next, the merchant sends a copy of the encrypted product
to the customer, together with a signed cryptographic
checksum. The signed cryptographic checksum establishes
origin of the product and also provides a check to signify
whether the product has been corrupted during transit.
Upon receipt of this second copy of the encrypted product,
the customer validates that the first and second copies of
the product are identical. Through this process customers
can be assured that they received the product ordered. The
customer then requests the decrypting key from the TTP.
To do this the customer forwards to the TTP the purchase
order and a signed payment token, together with its
cryptographic checksum. The payment token contains the
customer’s identity, the identity of the customer’s financial
institution, the customer’s bank account number with the
financial institution, and the amount to be debited from the
customer’s account. To verify the transaction, the TTP first
compares the digest included in the PO from the customer
with the digest of the same from the merchant. If the two
do not match, the TTP aborts the transaction. Otherwise the
TTP proceeds by validating the payment token with the
customer’s financial institution by presenting the token and
the sale price. The financial institution validates the token.
If the token is not validated, the TTP aborts the transaction
and advises the merchant accordingly. If the token is
validated, the TTP sends the decrypting key to the
customer and the payment token to the merchant, both
digitally signed with the TTP’s private key. Secure
channels guarantee the confidentiality of all messages
throughout this protocol. The protocol ensures money
atomicity if the payment token generated by the customer
contains the amount to be debited from the customer’s
account and credited to the merchant’s account.
Consequently, no money is created or destroyed in the
system by this protocol. Goods atomicity is guaranteed if
the TTP hands over the payment token only when the
customer acknowledges the receipt of the product. The
process also ensures that the product is actually available to
the customer for use when the customer gives the go-ahead
for payment by acknowledging the receipt of the good

.Delivery verification is guaranteed if the TTP receives a
cryptographic checksum of the product from the
merchant. Also, the customer independently generates a
checksum of the product received and sends it to the TTP.
Using these two copies of the checksums, available at the
TTP, both the merchant and the consumer demonstrate
proof of the contents of the delivered goods.

Volume 3, | ssue 28

Published by, www.ijert.org 2

Special Issue - 2015 International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NSRCL -2015 Conference Proceedings

Recewve PO

Validate PO
catalog

Merchant

Receive
pay token

Customer

receive PO
digest

validate PO
digest

X

Trusted
Third Party

validate
pay token

Fig. 1. High-level use-case diagram for trading digital products over the internet.

Volume 3, I ssue 28 Published by, www.ijert.org 3

Special Issue - 2015 International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NSRCL -2015 Conference Proceedings

Encrypted goods purchasing system

Fig. 2. Use-case diagram for comprehensive e-Business protocol.

Volume 3, I ssue 28 Published by, www.ijert.org 4

Special Issue - 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181

NSRCL -2015 Conference Proceedings

Bank

Trusted

Customer Third Party

Merchant

Verify Amounts
Match & Sufficient

BrowseCatalog Place NewProduct
inCatalog

= SendCorrect
Product

ProductiD A

RequestDownloa:
ReceiveDownload

Encrypted
Product

D's

eques
Send Token & PO

PO &
--—— Digest [~

Funds Exist

Bank Nlo
oken
A 4 Yes
Product
ReceiveKey |- | Key [-—]SendKey&Token t—{ Token

DecryptProduct

-i Send NewProdcut |

Encrypted
Product

Product
checksum

PC & h
Digest - ForwardPO

A
.................. —-I ReceiveToken

Fig. 3. Sequence diagram for comprehensive e-Business Protocol.

Volume 3, | ssue 28

Published by, www.ijert.org

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NSRCL -2015 Conference Proceedings

I11. PROTOCOL IMPLEMENTATION

[2IThis section discusses an implementation of the above
protocol in FDR and an evaluation of its robustness.*! In FDR
model checking, which stands for “Failures Divergence
Refinement," the system model and the property specification
are both state machines represented in the same language. The
model checker then implements a refinement relation to see if
the state space given by the model is a subset of the state
space given by the property specification. Building FDR
models of simplified versions of the NetBill and Digicash
systems, which were then run through a model checker; we
can referred the audience to the paper for the results, noting
that while model checking has been useful for hardware
verification, and recently also for software verification, this is
the first time it has been applied to electronic commerce
protocols. The FDR model implements key elements of the
protocol with respect to money atomicity, goods atomicity,
and valid receipt under several options. In order to avoid an
overly technical presentation, the next section overviews a
subset of representative processes that deal with money
atomicity, goods atomicity, and validated receipt. The
language of FDR is termed CSP (for communicating
sequential processes). The writing of CSP code is greatly
simplified by use of a compiler called Casper. Casper allows
the user to describe the system in an abstract way, and the
compiler converts that description to CSP code. We have
included brief explanations of several expressions to assist the
reader in understanding. These expressions represent
processes that were outlined earlier, which should also aid in
following the examples.

A. MODELING THE CUSTOMER PROCESS

The protocol starts when the customer browses the catalog
hosted on the third party and downloads the encrypted
product from there. The downloading of the encrypted
product is modeled as the sending of the encrypted product by
the third party and the receipt of the product by the customer.
Thus, we can say that, initially the customer waits for an
encrypted product from the third party.

CUSTOMER = cint? x -> DOWNLOADED_EGOODS(x).

Once the customer has downloaded the product, it sends a
purchase order to the merchant. This is modeled as:
DOWNLOADED_EGOODS(x) = coutm ! po ->
PO_SENT(x)

The customer then waits for the encrypted product from the
merchant. On receiving a message from the merchant, the
customer checks to see if the message is indeed some
encrypted product sent by the merchant. If so, the customer
proceeds to the next step, otherwise it continues to wait for
the encrypted product. The specification for this event is as:

PO_SENT(x) = cinm ?y ->
if (y==encryptedGoods1 or y==encryptedGoods2) then
RECEIVED_EGOODS(x,y)else PO_SENT(x)

The next step involves comparing the encrypted product
received from the merchant with those downloaded from the
third party. If the two do not match, the customer terminates
the protocol.

RECEIVED_EGOODS(x,y)= if(x==y)then
RECEIVED_CORRECT_GOODS
else ABORT

When the customer is satisfied with the encrypted product, he
sends the payment token to the third party.

RECEIVED_CORRECT_GOODS = coutt !paymentToken ->
TOKEN_SENT

After sending the payment, the customer waits for a message
from the trusted third party. The third party either sends the
customer the key or an abort message, depending on the
outcome of the protocol. Once the customer has received the
message from the third party, the protocol stops. Otherwise
the customer continues to wait for the message.

TOKEN_SENT = cint ?y -> if (y==key) then SUCCESS else
if (y== transactionAborted) then ABORT else
TOKEN_SENT

B.MODELING THE MERCHANT PROCESS

On the merchant side, the protocol begins with the merchant
waiting to receive a purchase order from a customer.

MERCHANT = minc ?x -> if (x==po) then PO_REC else
MERCHANT

The merchant in response must send an encrypted product to
the customer. The merchant can act in two ways:

either he sends the correct encrypted

product (denoted by encryptedGoods1) or an incorrect
encrypted product (denoted by encryptedGoods2). This non-
deterministic choice is modeled as follows:

PO_REC = (moutc !encryptedGoods1 -

>ENCRYPTED GOODS_SENT)|A<|(moutc !
encryptedGoods2 -> ENCRYPTED_GOODS_SENT)

Once the merchant has sent the encrypted product, he must
send the decryption key to the trusted third party.
ENCRYPTED_GOODS_SENT = moutt 'key -> KEY_SENT

After sending the key, the merchant waits to receive the
payment token from the third party. The third party either
sends the payment token or a transaction abort message if the
transaction was aborted. The merchant process terminates
once it receives a message, otherwise it continues to wait for
the message.

KEY_SENT = mint ?x -> if (x==paymentToken)then
SUCCESS else if (x==transactionAborted)
then ABORT else KEY_SENT

Volume 3, | ssue 28

Published by, www.ijert.org 6

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NSRCL -2015 Conference Proceedings

C. MODELING THE TRUSTED THIRD PARTY PROCESS

The customer downloading the encrypted product, is modeled
from the third partya,.¢s end, as the trusted third party sending

the encrypted product to the
customer.
TP = toutc !encryptedGoodsl -> WAIT_TOKEN_KEY

The next step involves the third party waiting to receive the
payment token from the customer and the key from the
merchant. When the third party receives a message it checks
if the message is a payment token or key or neither. Note that,
it is not known whether the key or payment token will arrive
first. If the payment token arrives first, the third party must
wait for the key. On the other hand, if the key arrives first, the
third party must wait for the payment token. This aspect of the

protocol is modeled as follows:
WAIT_TOKEN_KEY = (tinc ?a -> if
(a==paymentToken)then WAIT_KEY (a) else

WAIT_TOKEN_KEY) [] (tinm ?b -> if (b==key) then
WAIT_TOKEN(b)else
WAIT_TOKEN_KEY)WAIT_KEY/(a)

tinm

?b

->

if

(b==key)

then

CHECK_TOKEN(a,b)
WAIT_TOKEN(b) =
(a==paymentToken) then
WAIT_TOKEN(b)

else WAIT_KEY (a)
tinc ?a -> if
CHECK _TOKEN(a,b) else

Once the third party has received both the key and the
payment token, it proceeds to the next step of validating the
payment token with the customera,,¢s
financial institution. The details of the validation process is
outside the scope of the protocol and is not modeled. Instead,
the model no deterministically
chooses between the options: (i) token okay or (ii) token not
okay. If the payment token is okay, the third party proceeds to
send out the key to the
customer and the token to the merchant. If the payment token
is not okay an abort message is sent to the customer and the

merchant, and the protocol
terminates.
CHECK_TOKEN(a,b) = OK_TOKEN(a,b) |Aq|

NOK_TOKEN
SEND_TOKEN_KEY (a,b)
SEND_ABORT_MESSAGE
The process of sending an abortmessage to customer and
merchant is modeled by the following step.
SEND_ABORT_MESSAGE = toutc !transAborted -> toutm
ItransAborted -> STOP

d.Modeling the Money Atomicity Property
Money atomicity is satisfied when one of the following things
happen:(i)the customer sends the payment token and the
merchant receives it or (i) the
customer sends the payment token and then receives a
transaction abort message. This is modeled as

OK_TOKEN(a,b) =
NOK_TOKEN =

SPEC1 = STOP |Aq ((coutt.paymentToken -
>mint.paymentToken ->
STOP) [] (coutt.paymentToken cint.transAborted -> STOP))
e.Modeling the Goods Atomicity Property
The goods atomicity property requires one of the following
things to happen: (i) the customer receives both the correct
encrypted product and the keys and the merchant receives the
token, or (ii) the customer receives just the encrypted product
and neither the merchant gets the payment token nor the
customer the keys
SPEC2

STOP

A

((cinm.encryptedGoods1

->

STOP)[]

(cinm.encryptedGoods2 -> STOP) [](cinm.encryptedGoods1 -
>

cint.key

->

mint.paymentToken

->

STOP)

I

(cinm.encryptedGoodsl mint.paymentToken -> cint.key ->
STOP))

f.Modeling the Validated Receipt Property
The validated receipt property ensures one of the following
things happen:(i) the customer receives some encrypted
product and does not make payment
(either because he has received incorrect product or decides
not to purchase the product), or (ii) the customer makes the
payment after receiving the correct encrypted product. This is
modeled as:
SPEC3

STOP

A

((cinm.encryptedGoods?2

->

STOP)

I
(cinm.encryptedGoods1->STOP)[](cinm.encryptedGoods1
coutt.paymentToken -> STOP))

Detecting Violation of Properties due to Failures
An informal analysis reveals that the properties may be
violated if the customer, merchant, third party and
Communication links fail arbitrarily. The following
paragraphs describe how we use the model checker to detect
failures that result in the destruction of the properties.
Introducing Unreliable Communication Channels The
properties are violated when the following channels are made
unreliable: (i) the channels connecting the third party and the
customer and (ii)those connecting the third party to the
merchant.

Volume 3, | ssue 28

Published by, www.ijert.org 7

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NSRCL -2015 Conference Proceedings

g.Introducing Failures in the Customer Process
In the following paragraphs we show how the properties

get consider the first step for the customer process:
CUSTOMER = cint ?x -> DOWNLOADED_EGOODS(x)

Suppose we allow the customer to abort in this step. The
question, then, is does any property get violated? To find out,
we need to model the possibility of the customer aborting in
the first step:

CUSTOMER = ABORT |A{
DOWNLOADED_EGOODS(X))

(cint 7x ->

The above specification says that the customer may abort or
wait for the downloading of the encrypted product in a non-
deterministic manner. After making the above alteration to the
customer process, we use FDR to check for the satisfaction of
the properties. As expected, the customer aborting in the first
step, has no effect on the properties. We make similar
modifications to each step in the customer process and check
for the violation of the properties. Our results indicate that
such modification to any step, except in the last step of the
customer process (that is after the customer has sent the
payment token), reserves all the properties. Allowing the
customer to abort in the last step violates both money
atomicity and goods atomicity.
toutc.encryptedGoods1,cint.encryptedGoods1,coutm.po,inc
.po,moutc.encryptedGoods1,moutt.key,tinm.key,cinm.encrypt
edGoods1,coutt.paymentToken,tinc.paymentToken,toutc.trans
Aborted,toutm.transAborted,mint.transAborted
The above sequence tells us that the following actions are
executed. The customer downloads the encrypted product
from the third party, then sends a purchase order to the
merchant. On receiving the purchase order, the merchant
sends the encrypted product to the customer and the key to the
third party. The third party receives the key. The customer
receives the encrypted product and validates it. The customer
then sends the payment token to the third party. At this point,
it appears that the customer aborts since we do not see any
more messages sent or received by the customer. The third
party receives the key from the merchant, the payment token
from the customer, and then validates the token. The token
turns out to be invalid and an abort message is sent by the
third party to the customer and the merchant. Since the
customer has aborted in the meantime, he does not get the
transaction abort message from the third party. The merchant,
however, receives the abort message. In the above scenario,
the customer sends out the payment token, but neither the
merchant received the payment token nor the customer the
transaction abort message. Thus money atomicity is violated.
Similarly, a counter example is generated illustrating how
goods atomicity was violated.. Thus, our conclusion is that,
the customer cannot abort after sending out the payment token
and before receiving the key; if the customer does indeed
abort we will no longer have money atomicity or goods
atomicity. Failures in Merchant, Third Party Processes
Allowing the merchant process to abort in the last step, that is,
after sending the key but before receiving the payment token,

violates both money atomicity and goods atomicity. Finally,
we consider the third party process. The third party process
can abort unilaterally only at its first step. Ensuring Failure
Resilence of the Protocol From the above discussion we can
summarize: (i) the customer cannot abort after he has sent the
payment token to the third party. (ii) The merchant cannot
abort after he has sent the product decryption key to the third
party. (iii)The third party cannot abort unilaterally after its
first step to ensure that the e-commerce protocol is resilient to
site or link failures we propose the following extension to the
basic protocol. We assume that each party involved in the
transaction, keeps a copy of the information that it sends to
another party for example purchase order, payment token and
S0 on in its stable storage till
such time as the information is no longer needed. Writes to
the stable storage are atomic and durable until intentionally
purged.

1. The customer, the merchant and the third party uses a
system-wide unique identifier, Ti, to denote the current e-
commerce transaction. The identifier is a tuple of the form
<PID;C;M>, where PID is the identifier for the product the
customer, C purchases from the merchant, M. The customer
stores a log record of the form <Ti;INITIATE> to its stable
storage and then sends the purchase order to the merchant.

2. When the merchant receives the purchase order, it writes
a log record < Ti;INITIATE> to its stable storage; then the
merchant checks to see if the purchase order is to its
satisfaction. If it is not, the merchant writes an abort record in
its log a€ce <Ti;ABORT> and aborts the transaction. It
informs the customer of this decision. Otherwise it sends the
encrypted product to the customer and the product decryption
key and the approved purchase order to the third party.
ininally, it writes a log record to its stable storage of the form
< Ti;KEY-SENT>. At this stage the merchant enters a point
of no return; it cannot abort unilaterally.

3. After receiving a message from the merchant the

customer checks to see if it is an abort message or the
encrypted product. If it is an abort, the customer
aborts the transaction and writes a log record of the form
<Ti;ABORT>. Otherwise the customer validates the
encrypted product. If validated, the customer sends the
payment token and purchase order to the third party and then
writes a log record to its stable storage. The log record is of
the form
< Ti;PAYMENT- SENT>. This is the point of no return for
the customer. If the encrypted product is not validated the
customer can either request the product from the merchant, or
abort the transaction.
4. One of the messages - either the message containing the
payment token and purchase order from the customer or the
message containing the product decryption key and approved
purchase order from the merchant - will arrive at the third
party before the other message. On receiving the message, the
third party associates the unique identifier Ti to this current
transaction and writes a log record to its stable storage of the
form <Ti;INITIATE>. The third party starts a timer at this
point. If the third party does not receive the other message
before the timer expires, it writes a log record <Ti;ABORT>
and sends abort messages to both the customer and the
merchant.

Volume 3, | ssue 28

Published by, www.ijert.org 8

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NSRCL -2015 Conference Proceedings

5. After receiving the payment token from the customer,
the third party validates the token with the customera, ¢s
financial institution. If the validation fails the third party
writes a log record <Ti;ABOR> and informs both the
customer and the merchant. Otherwise, after the third party
has received both the product decryption key from the
merchant and the payment token from the customer 4€ce the
third party sends the payment token to the merchant and
writes a log record <Ti;PAYMENT &€eFORWARDED>,
and sends the decryption key to the customer and writes a log
record
<Ti;KEY-FORWARDED>.

6. The customer writes the log record <Ti;FINISH> after
receiving the decryption key from the third party.

7. The merchant also writes a log record < Ti;FINISH>,
after it has received the payment token.

Protocol Failure Analysis

1. Merchant fails after sending product decryption key but
before writing <Ti;KEY-SENT>. After recovery from failure
the merchant finds from its log that Ti has been initiated but
the product decryption key has not been sent out (no
information about the key having been sent is recorded).
Consequently, it queries the third party to find out the status.
If the status is abort, the merchant aborts. If the third party has
not received the key, the merchant resends the key and write
the appropriate record. If the third party cannot provide a
status, the merchant resends the encrypted product to the
customer, and the key and approved purchase order to the
third party and writes the appropriate log records. It then
waits for the payment token from the third party. Finally, as a
result of the status query the merchant may receive the
payment token. It then finishes by writing the appropriate log
record.

2. Merchant fails after writing <Ti,KEY a€eSENT> or
Merchant fails before writing <Ti,FINISH>. After recovery
from failure, the merchant finds that it has not received the
payment token. It asks the third party for the payment
token. The third party responds either by sending the payment
token or an abort message. If it is an abort message, the
merchant write <Ti,ABORT> in its
stable storage and aborts. If payment token is received the
merchant writes < Ti,FINISH> to log.

3. Customer fails after sending payment token but before
writing< Ti,PAYMENT &€eSENT>. After recovery, the
customer notes from log that Ti
has been initiated but no other information (such as,
information about the product received or payment token
sent) is recorded in the log. The customer,
in this case, gets in touch with the merchant and asks for the
product. The merchant either sends the encrypted product or
an abort message. If the
customer receives the encrypted product, the customer
validates it, sends the payment token and writes the
appropriate log record.

4. Customer fails after writing <Ti,PAYMENT a€eSENT>
or Customer fails before writing<Ti,FINISH>. After recovery
the customer notes that the decryption key has not been
eceived. So it requests the third party for the product

decryption key. The third part responds with either an abort
message or the decryption key. If it is an abort message, the
customer writes <Ti,ABORT> to its log and aborts. If it is the
decryption key, the customer writes <Ti,FINISH> to the log
and finishes.

5. Third party fails before writing <Ti,INIT IATE>. At this
stage the third party is not aware of the transaction Ti.
Consequently the third party does
nothing. At some point of time either the customer or the
merchant will get in touch asking for the product decryption
key or a status query. At this stage the
third party will write the log record <Ti,INITIATE> and ask
the customer for the payment token and purchase order, and
the merchant for the product
decryption key and the approved purchase order. It then starts
the timer.

6. Third party fails after writing hTi;INITIATEi. or Third
party fails before writing either <Ti,PAYMENT
FORWARDED> or <TiKEY FORWARDED>. After
recovery the third party notes that Ti has been initiated.
It asks the customer for the payment token and purchase
order, and the merchant for the product decryption key and
the approved purchase order. Once the third party has
received a response, it starts the timer and waits for the other
message.

7. Third party fails after writing one of the
records<Ti,PAYMENT-FORWARDED> or <Ti,KEY
FORWARDED> but before writing the other.After recovery
the third party sends the message that was not sent out and
writes the appropriate record.

IV. CONCLUSION

Model checking can be defined as, an approach based on
exhaustive search of finite state spaces, could be applied to
this system to verify its properties. A model of this system
and a property specification could be given as input to a
model checker, which would return a yes, meaning that the
properties were verified, or provide a counter example .Model
checking is an very powerful method for protocol
verification. It is use to ensure an e-commerce protocol does
satisfy the properties of money atomicity, goods atomicity,
and validated receipt properties in the presence of site and
communication failures. After verification, it proposes a
mechanism that preserves the properties even in the event of
sites or communications failures.

REFERENCES

[1] I Ray, I. Ray, Failure analysis of an e-commerce protocol using
model checking, Proceedings of the Second International Workshop
on Advanced Issues of e-Commerce and Web-based Information
Systems, Milpitas, CA, 2000 June.

[2] Anderson, B.B., HansenJ.V., and Summers,S. Model checking for
design and assurance of e-business process.Communications of
ACM 49, 6 (June 2006),97-101

[3] http://seminarprojects.org/t-seminar-report-on-model-checking-for-
securing-e-commerce-transactions

[4] Heintze, N., Tygar, J., Wing, J., and Wong,H. Model checking
electronic commerce protocols |. Ray and |. Ray. Failure Analysis of
an E-commerce Protocol using Model Checking . Technical report,
University of Michigan-Dearborn, Jan. 2000.

Volume 3, | ssue 28

Published by, www.ijert.org 9

