

Model Checking for E- Commerce Transaction

Fraisy Varghese
Software Developer Trainee

Izone Info Soft

Irinjalakuda, Thrissur.

Abstract- E-commerce is a modern business methodology

that address the needs of organizations, merchants, and

consumers to cut costs while improving quality of goods and

services and increasing the speed of service delivery. The fast

development of e-commerce has necessitate the development

of e-commerce protocols. These protocols guarantee the

confidentiality and integrity of information exchanged. In

addition, researchers have identified other desirable

properties, such as, money atomicity, goods atomicity and

validated receipt that must be satisfied by e-commerce

protocols. This seminar provides a brief introduction on how

model checking can be used to obtain an assurance about the

existence of these properties in an e-commerce protocol. It is

important that these desirable properties be satisfied, even in

the presence of site or communication failure. Using the

model checker we evaluate which failures cause the violation

of one or more of the properties. The results of the analysis

are then used to propose a mechanism that handles the

failures to make the protocol failure resilient.

Index Terms: Modern checking, securing e-commerce,

securing transaction

I INTRODUCTION

E-commerce can be defined as a modern business

methodology that address the desire firms, consumers, and

management to cut costs while improving the quality of

goods and increasing the speed of services. E-commerce is

termed as a new online approach to performing traditional

functions such as payment and funds transfer ,order entry

and processing ,invoicing, inventory management, cargo

tracking, electronic catalogs, and point-of-sales data

gathering .Number of e-commerce protocols developed due

to the popularity of e-commerce. Most of these protocols

ensure that the information exchanged between the parties

is protected from unauthorized revelation and modification.

Moreover, researchers have recognized several other

desirable properties of e-commerce protocols such as

money atomicity and goods atomicity and validated

receipt.[1]Money atomicity ensures that money is neither

created nor destroyed in the course of an e-commerce

transaction. Goods atomicity ensures that a merchant

receives payment if and only if the customer receives the

product. Validated receipt ensures that the customer is able

to verify the contents of the product about to be received,

before making the payment. Although such properties have

been identified, a major problem is verifying if a given e-

commerce protocol satisfies these properties, especially in

the presence of network and site failures. Here we

concentrate on the problem of protocol verification using

an existing software verification technique known as model

checking. Model checking, an approach based on

exhaustive search of finite state spaces, could be applied to

this system to verify its properties.[4] A model of this

system and a property specification could be given as input

to a model checker, which would return a yes, meaning that

the properties were verified, or provide a counter example.

The reasons for using model checking are as follows. 1)

Model checking is a completely automated technique and

considerably faster than other approaches, such as, manual

proofs and simulations. 2) if a property does not hold, a

counter example is produced by the model checker which

helps in understanding why the property does not hold. 3)

Model checking has previously been used successfully to

verify security protocols.

 II.PROTOCOL FUNDAMENTALS

Fig. 1 represents the high-level abstraction of the protocol,

and its processes are summarized as follows: Messages are

exchanged between a customer, a merchant and a trusted

third party (TTP) [2]. A merchant has several products to

sell. The merchant places a description of each product on

an online catalog service with a TTP, along with a copy of

the encrypted product. When a customer finds a product of

interest by browsing the catalog, he or she downloads the

encrypted product and then sends a purchase order to the

merchant. The customer cannot use the product unless it

has been decrypted, and the merchant does not send the

decrypting key unless the merchant receives a payment

token through the purchase order process. The customer,

in turn, does not pay unless he or she is sure that the correct

and complete product has been received. The TTP provides

anonymous support for purchase order validation, payment

token approval, and approval of the overall transaction

between the customer and the merchant. Given these

assumptions, the detailed steps of the protocol are as

follows. (A use case diagram of these processes is depicted

in Fig. 2; the corresponding sequence diagram is shown in

Fig. 3.)First, the customer browses the product catalog

Located at the TTP and chooses a product. The customer

then downloads the encrypted product, along with the

product identifier. The product identifier is a file that

contains information about the product, such as its

description and its identifier. If the identifier of the

encrypted product file corresponds to the identifier in the

product identifier file, the transaction proceeds. If the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSRCL-2015 Conference Proceedings

Volume 3, Issue 28

Special Issue - 2015

1

identifiers do not match, advice is send to the TTP and the

customer waits for the correct encrypted product. This

process ensures that the customer receives the product that

was requested from the catalog. Next, the customer

prepares a purchase order containing the customer’s

identity, the merchant identifier, the product identifier, and

the product price. A cryptographic checksum is also

prepared. The purchase order (PO), along with the

cryptographic checksum, is then sent to the merchant. The

combination of the PO and cryptographic checksum allows

the merchant to ascertain whether the PO received is

complete or whether it was altered while in transit. Upon

receipt of the PO, the merchant examines its contents. If

the merchant is satisfied with the PO, the merchant

endorses the PO and digitally signs the cryptographic

checksum of the endorsed PO. This is forwarded to the

TTP. The TTP is involved in the process to prevent the

merchant from later claiming non-acceptance of the terms

and conditions of the transaction. The merchant also sends

a single use decrypting key for the product to the TTP.

Next, the merchant sends a copy of the encrypted product

to the customer, together with a signed cryptographic

checksum. The signed cryptographic checksum establishes

origin of the product and also provides a check to signify

whether the product has been corrupted during transit.

Upon receipt of this second copy of the encrypted product,

the customer validates that the first and second copies of

the product are identical. Through this process customers

can be assured that they received the product ordered. The

customer then requests the decrypting key from the TTP.

To do this the customer forwards to the TTP the purchase

order and a signed payment token, together with its

cryptographic checksum. The payment token contains the

customer’s identity, the identity of the customer’s financial

institution, the customer’s bank account number with the

financial institution, and the amount to be debited from the

customer’s account. To verify the transaction, the TTP first

compares the digest included in the PO from the customer

with the digest of the same from the merchant. If the two

do not match, the TTP aborts the transaction. Otherwise the

TTP proceeds by validating the payment token with the

customer’s financial institution by presenting the token and

the sale price. The financial institution validates the token.

If the token is not validated, the TTP aborts the transaction

and advises the merchant accordingly. If the token is

validated, the TTP sends the decrypting key to the

customer and the payment token to the merchant, both

digitally signed with the TTP’s private key. Secure

channels guarantee the confidentiality of all messages

throughout this protocol. The protocol ensures money

atomicity if the payment token generated by the customer

contains the amount to be debited from the customer’s

account and credited to the merchant’s account.

Consequently, no money is created or destroyed in the

system by this protocol. Goods atomicity is guaranteed if

the TTP hands over the payment token only when the

customer acknowledges the receipt of the product. The

process also ensures that the product is actually available to

the customer for use when the customer gives the go-ahead

for payment by acknowledging the receipt of the good

.Delivery verification is guaranteed if the TTP receives a

cryptographic checksum of the product from the

merchant. Also, the customer independently generates a

checksum of the product received and sends it to the TTP.

Using these two copies of the checksums, available at the

TTP, both the merchant and the consumer demonstrate

proof of the contents of the delivered goods.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSRCL-2015 Conference Proceedings

Volume 3, Issue 28

Special Issue - 2015

2

Fig. 1. High-level use-case diagram for trading digital products over the internet.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSRCL-2015 Conference Proceedings

Volume 3, Issue 28

Special Issue - 2015

3

Fig. 2. Use-case diagram for comprehensive e-Business protocol.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSRCL-2015 Conference Proceedings

Volume 3, Issue 28

Special Issue - 2015

4

Fig. 3. Sequence diagram for comprehensive e-Business Protocol.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSRCL-2015 Conference Proceedings

Volume 3, Issue 28

Special Issue - 2015

5

III. PROTOCOL IMPLEMENTATION

[2]This section discusses an implementation of the above

protocol in FDR and an evaluation of its robustness.[4] In FDR

model checking, which stands for ``Failures Divergence

Refinement,'' the system model and the property specification

are both state machines represented in the same language. The

model checker then implements a refinement relation to see if

the state space given by the model is a subset of the state

space given by the property specification. Building FDR

models of simplified versions of the NetBill and Digicash

systems, which were then run through a model checker; we

can referred the audience to the paper for the results, noting

that while model checking has been useful for hardware

verification, and recently also for software verification, this is

the first time it has been applied to electronic commerce

protocols. The FDR model implements key elements of the

protocol with respect to money atomicity, goods atomicity,

and valid receipt under several options. In order to avoid an

overly technical presentation, the next section overviews a

subset of representative processes that deal with money

atomicity, goods atomicity, and validated receipt. The

language of FDR is termed CSP (for communicating

sequential processes). The writing of CSP code is greatly

simplified by use of a compiler called Casper. Casper allows

the user to describe the system in an abstract way, and the

compiler converts that description to CSP code. We have

included brief explanations of several expressions to assist the

reader in understanding. These expressions represent

processes that were outlined earlier, which should also aid in

following the examples.

A. MODELING THE CUSTOMER PROCESS

The protocol starts when the customer browses the catalog

hosted on the third party and downloads the encrypted

product from there. The downloading of the encrypted

product is modeled as the sending of the encrypted product by

the third party and the receipt of the product by the customer.

Thus, we can say that, initially the customer waits for an

encrypted product from the third party.

CUSTOMER = cint? x -> DOWNLOADED_EGOODS(x).

Once the customer has downloaded the product, it sends a

purchase order to the merchant. This is modeled as:

DOWNLOADED_EGOODS(x) = coutm ! po ->

PO_SENT(x)

The customer then waits for the encrypted product from the

merchant. On receiving a message from the merchant, the

customer checks to see if the message is indeed some

encrypted product sent by the merchant. If so, the customer

proceeds to the next step, otherwise it continues to wait for

the encrypted product. The specification for this event is as:

PO_SENT(x) = cinm ?y ->

if (y==encryptedGoods1 or y==encryptedGoods2) then

RECEIVED_EGOODS(x,y)else PO_SENT(x)

The next step involves comparing the encrypted product

received from the merchant with those downloaded from the

third party. If the two do not match, the customer terminates

the protocol.

RECEIVED_EGOODS(x,y)= if(x==y)then

RECEIVED_CORRECT_GOODS

else ABORT

When the customer is satisfied with the encrypted product, he

sends the payment token to the third party.

RECEIVED_CORRECT_GOODS = coutt !paymentToken ->

TOKEN_SENT

After sending the payment, the customer waits for a message

from the trusted third party. The third party either sends the

customer the key or an abort message, depending on the

outcome of the protocol. Once the customer has received the

message from the third party, the protocol stops. Otherwise

the customer continues to wait for the message.

TOKEN_SENT = cint ?y -> if (y==key) then SUCCESS else

if (y== transactionAborted) then ABORT else

TOKEN_SENT

B.MODELING THE MERCHANT PROCESS

On the merchant side, the protocol begins with the merchant

waiting to receive a purchase order from a customer.

MERCHANT = minc ?x -> if (x==po) then PO_REC else

MERCHANT

The merchant in response must send an encrypted product to

the customer. The merchant can act in two ways:

either he sends the correct encrypted

product (denoted by encryptedGoods1) or an incorrect

encrypted product (denoted by encryptedGoods2). This non-

deterministic choice is modeled as follows:

PO_REC = (moutc !encryptedGoods1 -

>ENCRYPTED_GOODS_SENT)|Ã‹|(moutc !

encryptedGoods2 -> ENCRYPTED_GOODS_SENT)

Once the merchant has sent the encrypted product, he must

send the decryption key to the trusted third party.

ENCRYPTED_GOODS_SENT = moutt !key -> KEY_SENT

After sending the key, the merchant waits to receive the

payment token from the third party. The third party either

sends the payment token or a transaction abort message if the

transaction was aborted. The merchant process terminates

once it receives a message, otherwise it continues to wait for

the message.

KEY_SENT = mint ?x -> if (x==paymentToken)then

SUCCESS else if (x==transactionAborted)

then ABORT else KEY_SENT

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSRCL-2015 Conference Proceedings

Volume 3, Issue 28

Special Issue - 2015

6

C. MODELING THE TRUSTED THIRD PARTY PROCESS

The customer downloading the encrypted product, is modeled

from the third partyâ„¢s end, as the trusted third party sending

the encrypted product to the

customer.

TP = toutc !encryptedGoods1 -> WAIT_TOKEN_KEY

The next step involves the third party waiting to receive the

payment token from the customer and the key from the

merchant. When the third party receives a message it checks

if the message is a payment token or key or neither. Note that,

it is not known whether the key or payment token will arrive

first. If the payment token arrives first, the third party must

wait for the key. On the other hand, if the key arrives first, the

third party must wait for the payment token. This aspect of the

protocol is modeled as follows:

WAIT_TOKEN_KEY = (tinc ?a -> if

(a==paymentToken)then WAIT_KEY(a) else

WAIT_TOKEN_KEY) [] (tinm ?b -> if (b==key) then

WAIT_TOKEN(b)else

WAIT_TOKEN_KEY)WAIT_KEY(a)

=

tinm

?b

->

if

(b==key)

then

CHECK_TOKEN(a,b) else WAIT_KEY(a)

WAIT_TOKEN(b) = tinc ?a -> if

(a==paymentToken) then CHECK_TOKEN(a,b) else

WAIT_TOKEN(b)

Once the third party has received both the key and the

payment token, it proceeds to the next step of validating the

payment token with the customerâ„¢s

financial institution. The details of the validation process is

outside the scope of the protocol and is not modeled. Instead,

the model no deterministically

chooses between the options: (i) token okay or (ii) token not

okay. If the payment token is okay, the third party proceeds to

send out the key to the

customer and the token to the merchant. If the payment token

is not okay an abort message is sent to the customer and the

merchant, and the protocol

terminates.

CHECK_TOKEN(a,b) = OK_TOKEN(a,b) |Ã‹|

NOK_TOKEN OK_TOKEN(a,b) =

SEND_TOKEN_KEY(a,b) NOK_TOKEN =

SEND_ABORT_MESSAGE

The process of sending an abortmessage to customer and

merchant is modeled by the following step.

SEND_ABORT_MESSAGE = toutc !transAborted -> toutm

!transAborted -> STOP

d.Modeling the Money Atomicity Property

Money atomicity is satisfied when one of the following things

happen:(i)the customer sends the payment token and the

merchant receives it or (ii) the

customer sends the payment token and then receives a

transaction abort message. This is modeled as

SPEC1 = STOP |Ã‹| ((coutt.paymentToken -

>mint.paymentToken ->

STOP) [] (coutt.paymentToken cint.transAborted -> STOP))

e.Modeling the Goods Atomicity Property

The goods atomicity property requires one of the following

things to happen: (i) the customer receives both the correct

encrypted product and the keys and the merchant receives the

token, or (ii) the customer receives just the encrypted product

and neither the merchant gets the payment token nor the

customer the keys

SPEC2

=

STOP

|Ã‹|

((cinm.encryptedGoods1

->

STOP)[]

(cinm.encryptedGoods2 -> STOP) [](cinm.encryptedGoods1 -

>

cint.key

->

mint.paymentToken

->

STOP)

[]

(cinm.encryptedGoods1 mint.paymentToken -> cint.key ->

STOP))

f.Modeling the Validated Receipt Property

The validated receipt property ensures one of the following

things happen:(i) the customer receives some encrypted

product and does not make payment

(either because he has received incorrect product or decides

not to purchase the product), or (ii) the customer makes the

payment after receiving the correct encrypted product. This is

modeled as:

SPEC3

=

STOP

|Ã‹|

((cinm.encryptedGoods2

->

STOP)

[]

(cinm.encryptedGoods1->STOP)[](cinm.encryptedGoods1

coutt.paymentToken -> STOP))

Detecting Violation of Properties due to Failures

An informal analysis reveals that the properties may be

violated if the customer, merchant, third party and

Communication links fail arbitrarily. The following

paragraphs describe how we use the model checker to detect

failures that result in the destruction of the properties.

Introducing Unreliable Communication Channels The

properties are violated when the following channels are made

unreliable: (i) the channels connecting the third party and the

customer and (ii)those connecting the third party to the

merchant.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSRCL-2015 Conference Proceedings

Volume 3, Issue 28

Special Issue - 2015

7

g.Introducing Failures in the Customer Process

In the following paragraphs we show how the properties

get consider the first step for the customer process:

CUSTOMER = cint ?x -> DOWNLOADED_EGOODS(x)

Suppose we allow the customer to abort in this step. The

question, then, is does any property get violated? To find out,

we need to model the possibility of the customer aborting in

the first step:

CUSTOMER = ABORT |Ã‹| (cint ?x ->

DOWNLOADED_EGOODS(x))

The above specification says that the customer may abort or

wait for the downloading of the encrypted product in a non-

deterministic manner. After making the above alteration to the

customer process, we use FDR to check for the satisfaction of

the properties. As expected, the customer aborting in the first

step, has no effect on the properties. We make similar

modifications to each step in the customer process and check

for the violation of the properties. Our results indicate that

such modification to any step, except in the last step of the

customer process (that is after the customer has sent the

payment token), reserves all the properties. Allowing the

customer to abort in the last step violates both money

atomicity and goods atomicity.

toutc.encryptedGoods1,cint.encryptedGoods1,coutm.po,inc

.po,moutc.encryptedGoods1,moutt.key,tinm.key,cinm.encrypt

edGoods1,coutt.paymentToken,tinc.paymentToken,toutc.trans

Aborted,toutm.transAborted,mint.transAborted

The above sequence tells us that the following actions are

executed. The customer downloads the encrypted product

from the third party, then sends a purchase order to the

merchant. On receiving the purchase order, the merchant

sends the encrypted product to the customer and the key to the

third party. The third party receives the key. The customer

receives the encrypted product and validates it. The customer

then sends the payment token to the third party. At this point,

it appears that the customer aborts since we do not see any

more messages sent or received by the customer. The third

party receives the key from the merchant, the payment token

from the customer, and then validates the token. The token

turns out to be invalid and an abort message is sent by the

third party to the customer and the merchant. Since the

customer has aborted in the meantime, he does not get the

transaction abort message from the third party. The merchant,

however, receives the abort message. In the above scenario,

the customer sends out the payment token, but neither the

merchant received the payment token nor the customer the

transaction abort message. Thus money atomicity is violated.

Similarly, a counter example is generated illustrating how

goods atomicity was violated.. Thus, our conclusion is that,

the customer cannot abort after sending out the payment token

and before receiving the key; if the customer does indeed

abort we will no longer have money atomicity or goods

atomicity. Failures in Merchant, Third Party Processes

Allowing the merchant process to abort in the last step, that is,

after sending the key but before receiving the payment token,

violates both money atomicity and goods atomicity. Finally,

we consider the third party process. The third party process

can abort unilaterally only at its first step. Ensuring Failure

Resilence of the Protocol From the above discussion we can

summarize: (i) the customer cannot abort after he has sent the

payment token to the third party. (ii) The merchant cannot

abort after he has sent the product decryption key to the third

party. (iii)The third party cannot abort unilaterally after its

first step to ensure that the e-commerce protocol is resilient to

site or link failures we propose the following extension to the

basic protocol. We assume that each party involved in the

transaction, keeps a copy of the information that it sends to

another party for example purchase order, payment token and

so on in its stable storage till

such time as the information is no longer needed. Writes to

the stable storage are atomic and durable until intentionally

purged.

1. The customer, the merchant and the third party uses a

system-wide unique identifier, Ti, to denote the current e-

commerce transaction. The identifier is a tuple of the form

<PID;C;M>, where PID is the identifier for the product the

customer, C purchases from the merchant, M. The customer

stores a log record of the form <Ti;INITIATE> to its stable

storage and then sends the purchase order to the merchant.

2. When the merchant receives the purchase order, it writes

a log record < Ti;INITIATE> to its stable storage; then the

merchant checks to see if the purchase order is to its

satisfaction. If it is not, the merchant writes an abort record in

its log â€œ <Ti;ABORT> and aborts the transaction. It

informs the customer of this decision. Otherwise it sends the

encrypted product to the customer and the product decryption

key and the approved purchase order to the third party.

ininally, it writes a log record to its stable storage of the form

< Ti;KEY-SENT>. At this stage the merchant enters a point

of no return; it cannot abort unilaterally.

3. After receiving a message from the merchant the

customer checks to see if it is an abort message or the

encrypted product. If it is an abort, the customer

aborts the transaction and writes a log record of the form

<Ti;ABORT>. Otherwise the customer validates the

encrypted product. If validated, the customer sends the

payment token and purchase order to the third party and then

writes a log record to its stable storage. The log record is of

the form

< Ti;PAYMENT- SENT>. This is the point of no return for

the customer. If the encrypted product is not validated the

customer can either request the product from the merchant, or

abort the transaction.

4. One of the messages - either the message containing the

payment token and purchase order from the customer or the

message containing the product decryption key and approved

purchase order from the merchant - will arrive at the third

party before the other message. On receiving the message, the

third party associates the unique identifier Ti to this current

transaction and writes a log record to its stable storage of the

form <Ti;INITIATE>. The third party starts a timer at this

point. If the third party does not receive the other message

before the timer expires, it writes a log record <Ti;ABORT>

and sends abort messages to both the customer and the

merchant.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSRCL-2015 Conference Proceedings

Volume 3, Issue 28

Special Issue - 2015

8

5. After receiving the payment token from the customer,

the third party validates the token with the customerâ„¢s

financial institution. If the validation fails the third party

writes a log record <Ti;ABOR> and informs both the

customer and the merchant. Otherwise, after the third party

has received both the product decryption key from the

merchant and the payment token from the customer â€œ the

third party sends the payment token to the merchant and

writes a log record <Ti;PAYMENT â€œFORWARDED>,

and sends the decryption key to the customer and writes a log

record

<Ti;KEY-FORWARDED>.

6. The customer writes the log record <Ti;FINISH> after

receiving the decryption key from the third party.

7. The merchant also writes a log record < Ti;FINISH>,

after it has received the payment token.

Protocol Failure Analysis

1. Merchant fails after sending product decryption key but

before writing <Ti;KEY-SENT>. After recovery from failure

the merchant finds from its log that Ti has been initiated but

the product decryption key has not been sent out (no

information about the key having been sent is recorded).

Consequently, it queries the third party to find out the status.

If the status is abort, the merchant aborts. If the third party has

not received the key, the merchant resends the key and write

the appropriate record. If the third party cannot provide a

status, the merchant resends the encrypted product to the

customer, and the key and approved purchase order to the

third party and writes the appropriate log records. It then

waits for the payment token from the third party. Finally, as a

result of the status query the merchant may receive the

payment token. It then finishes by writing the appropriate log

record.

2. Merchant fails after writing <Ti,KEY â€œSENT> or

Merchant fails before writing <Ti,FINISH>. After recovery

from failure, the merchant finds that it has not received the

payment token. It asks the third party for the payment

token. The third party responds either by sending the payment

token or an abort message. If it is an abort message, the

merchant write <Ti,ABORT> in its

stable storage and aborts. If payment token is received the

merchant writes < Ti,FINISH> to log.

3. Customer fails after sending payment token but before

writing< Ti,PAYMENT â€œSENT>. After recovery, the

customer notes from log that Ti

has been initiated but no other information (such as,

information about the product received or payment token

sent) is recorded in the log. The customer,

in this case, gets in touch with the merchant and asks for the

product. The merchant either sends the encrypted product or

an abort message. If the

customer receives the encrypted product, the customer

validates it, sends the payment token and writes the

appropriate log record.

4. Customer fails after writing <Ti,PAYMENT â€œSENT>

or Customer fails before writing<Ti,FINISH>. After recovery

the customer notes that the decryption key has not been

eceived. So it requests the third party for the product

decryption key. The third part responds with either an abort

message or the decryption key. If it is an abort message, the

customer writes <Ti,ABORT> to its log and aborts. If it is the

decryption key, the customer writes <Ti,FINISH> to the log

and finishes.

5. Third party fails before writing <Ti,INIT IATE>. At this

stage the third party is not aware of the transaction Ti.

Consequently the third party does

nothing. At some point of time either the customer or the

merchant will get in touch asking for the product decryption

key or a status query. At this stage the

third party will write the log record <Ti,INITIATE> and ask

the customer for the payment token and purchase order, and

the merchant for the product

decryption key and the approved purchase order. It then starts

the timer.

6. Third party fails after writing hTi;INITIATEi. or Third

party fails before writing either <Ti,PAYMENT

FORWARDED> or <Ti,KEY FORWARDED>. After

recovery the third party notes that Ti has been initiated.

It asks the customer for the payment token and purchase

order, and the merchant for the product decryption key and

the approved purchase order. Once the third party has

received a response, it starts the timer and waits for the other

message.

7. Third party fails after writing one of the

records<Ti,PAYMENT-FORWARDED> or <Ti,KEY

FORWARDED> but before writing the other.After recovery

the third party sends the message that was not sent out and

writes the appropriate record.

IV. CONCLUSION

Model checking can be defined as, an approach based on

exhaustive search of finite state spaces, could be applied to

this system to verify its properties. A model of this system

and a property specification could be given as input to a

model checker, which would return a yes, meaning that the

properties were verified, or provide a counter example .Model

checking is an very powerful method for protocol

verification. It is use to ensure an e-commerce protocol does

satisfy the properties of money atomicity, goods atomicity,

and validated receipt properties in the presence of site and

communication failures. After verification, it proposes a

mechanism that preserves the properties even in the event of

sites or communications failures.

REFERENCES

[1] I. Ray, I. Ray, Failure analysis of an e-commerce protocol using

model checking, Proceedings of the Second International Workshop
on Advanced Issues of e-Commerce and Web-based Information

Systems, Milpitas, CA, 2000 June.
[2] Anderson, B.B., Hansen,J.V., and Summers,S. Model checking for

design and assurance of e-business process.Communications of

ACM 49, 6 (June 2006),97-101
[3] http://seminarprojects.org/t-seminar-report-on-model-checking-for-

securing-e-commerce-transactions

[4] Heintze, N., Tygar, J., Wing, J., and Wong,H. Model checking
electronic commerce protocols I. Ray and I. Ray. Failure Analysis of

an E-commerce Protocol using Model Checking . Technical report,

University of Michigan-Dearborn, Jan. 2000.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSRCL-2015 Conference Proceedings

Volume 3, Issue 28

Special Issue - 2015

9

