Mining High Utility Sequential Pattern using Lexicographic q-Sequence Tree and Utility Linked-List

Sreedevi Devaraj
Department of Computer Science and Engineering
Mangalam College of Engineering, Ettumanoor
Kottayam, India

Vivek M. K
Department of Computer Science and Engineering
Mangalam College of Engineering, Ettumanoor
Kottayam, India

Reno Rajan
Department of Computer Science and Engineering
Mangalam College of Engineering, Ettumanoor
Kottayam, India

Dr. Ranju S. Kartha
Department of Computer Science and Engineering
Mangalam College of Engineering, Ettumanoor
Kottayam, India.

Abstract—High utility sequential pattern (HUSP) mining is an important field to discover high utility patterns in a sequence. Nowadays it becomes more relevant and important in real life applications like market basket analysis, e-commerce recommendations and bioinformatics etc. Sequential Pattern Mining (SPM) is used to mine or extract sequential or frequent patterns from vast database. In traditional SPM certain factors like utility of products, profit are not considered. To improve its features, the process of SPM is generalized to HUSP Mining (HUSPM) which is used to discover the high utility patterns in a sequence database. Many algorithms have been proposed to find the high utility of a sequence database, but due to the large search space, the combinatorial explosion has been raised. This paper proposes a new algorithm, for mining HUSP-Utility Linked List (ULL). The objective of HUSP-ULL is to discover the sequential pattern and to find the utility of each pattern in the database, that meets or exceeds predefined minimum utility threshold. HUSPM make use of lexicographic q-sequence and UL (Utility Linked) - list for identifying high utility patterns. The obtained output can be used in many applications like e-commerce, market basket analysis, healthcare industry, web mining, bioinformatics and mobile computing etc.

Keywords— Lexicographic q-Sequence, Utility Linked List structure, High Utility Pattern Mining, Pruning Strategy, Sequential Pattern Mining.

I. INTRODUCTION

Sequential pattern mining (SPM) [1],[7],[8] is an emerging and interesting area of research in extracting the knowledge or information in a database. Utility mining is a new approach in data mining where mining results must meet user’s goals. Existing algorithms of association rule, mining does not consider interestingness measures for users. Previously many algorithms were proposed for frequent pattern mining, but most of them mainly based on the count or occurrence value of an itemset. In this paper, a new approach for high utility pattern mining has been proposed which uses pruning and bagging methods to improve the performance.

Utility based pattern mining in sequential database is more challenging than frequent itemset mining [1], [9] and ordinary SPM. Consider two products TV and milk bottle, when mining the database milk bottle may appear more frequent than TV but the utility of TV is more than that of milk bottles. So, in such situations mining became more complicated. High utility sequential pattern mining (HUSPM) [4],[6],[9],[10] generalizes SPM and it is used for mining sequence pattern by considering the utility. So, HUSPM extracts high utility sequential patterns that can be used in many real time applications.

In market basket analysis it can easily identify the association between two products or pair of products purchased and also identify pattern of co-occurrence. It means that two or more process occurring parallely. Consider an item X is purchased by customer and an item Y is likely to be purchased and that it will be based on the probability rules derived from frequency of co-occurrence. So, by applying various cross selling strategies, the selling such products can be improved. In e commerce recommendation system, it helps the customer to find and purchase product using e-commerce sites. HUSPM mining helps them to discover the most relevant search results and also helps to promote the products. So, this can be turned into a serious business tool. Consider an example- a book recommendation in a library. The student is spending a lot of time for searching a particular book in a library and sometimes it may not be available or it is difficult to find. The algorithm extracts the frequent pattern of books that may help the students to save their valuable time.

The main objective of the proposed algorithm is to:
- Discover the sequential pattern and find the utility of each pattern in the database, that meets or exceeds predefined minimum utility threshold.
- Reduce the time and memory required when compared to other algorithms.

In this paper, the remaining sections are organized as follows. Section II comprises of the literature review of
related works. Research Methodologies are presented in
Section III. Result Analysis based on the proposed algorithm
is provided in Section IV. Finally, conclusions are drawn in
Section V.

II. LITERATURE SURVEY

Many algorithms are available to find the high utility of a
sequence database. But finding the high utility pattern in a
sequence database is a complex task. Efficiency and
scalability are the major insight for all the algorithms. Earlier,
the algorithms of HUSPM like UP and UL [11] which
performs breadth-first-search and depth-first-search
respectively. These algorithms discover patterns and high
utility in two different phases. Also, these two algorithms are
very time consuming and wastage of more memory spaces.
Other algorithms like USpan [12], HUSP uses SWU
(sequence-weighted utilization) and it generates too many
candidates so the efficiency is very less. The major
disadvantage of USpan is that it is not a complete algorithm
for generating HUSP.

PrefixSpan [2] mines the complete set of patterns and it
reduces the efforts of a person’s subsequence generation.
Prefix-projection substantially reduces the size of projected
databases and leads to efficient processing. But there are
some time related issues. Frequent pattern tree (FP-tree) [1]
structure, which is an extended prefix tree structure for
storing compressed and, crucial information about frequent
patterns. Here, the number of combinations to be found is
comparatively less. The concept of UP_Growth (Utility
Pattern Growth) [3] for mining high utility item set were
proposed. But the accuracy related issues are raised in this
algorithm. Later an algorithm to mine Top-k high utility
itemset [4] were proposed by Tseng V. S. et.al. It consists of
two algorithms named TKU (mining Top-K Utility item sets)
and TKO (mining Top-K utility item sets in One phase) for
mining. Unfortunately, it is performing mining process of k-
top high utility itemset only. A two-phase algorithm MHUH
[5] were proposed by P. Fournier-Viger et. al. The first phase
named Extension, the existing algorithm FHUSpan [5]
efficiently mine the general high-utility sequences (g-
sequences). The second phase named Replacement; the
special high-utility sequences is mined with the hierarchical
relation (s-sequences) as high-utility hierarchical sequential
patterns from g-sequences. Here the accuracy related issues
are the major challenge.

Projection-based Utility (ProUM) is an approach to find
high-utility sequential pattern from a sequence of data [15].
The limitation of this approach is when dealing with
sequence data since they are time-consuming and require
large amount of memory usage. An algorithm named fast
algorithm for mining discriminative high utility patterns
(DHUPs) with strong frequency affinity (FDHUP) [16] is
proposed to efficiently discover DHUPs by considering both
the utility and frequency affinity constraints. Two compact
structures named EI-table and FU-tree and three pruning
strategies are introduced in the proposed algorithm to reduce
the search space, to discover DHUPs. But, it is not as much
efficient as the algorithm proposed in this article. U. Yun, D.
Kim, E. Yoon, and H. Fujita introduced a method called high
average utility pattern mining (HAUPM)[18] approach,
which discovers patterns that are related to one another.

Eventhough, this method provides important patterns, the
search space cannot be reduced. An algorithm proposed by W.
Gan called High Utility Occupancy Pattern Mining
(HUOPM)[19] uses two data structures called utility
occupancy list and frequency utility table for effectively
finding useful patterns without candidate generation. But the
issue is that it can be only used in static databases. An
algorithm called High Incremental High Utility Itemset
Mining (HUIIM) [20] were proposed which incrementally
updates and outputs the high utility itemsets and a dynamic
dataset is used rather than a static dataset. But there is no
downward closure property to reduce the search space.

In the case of top-k high utility itemset mining, where k is
the desired number of high utility item sets to be mined. The
proposed algorithms have good scalability on large datasets
and the performance of the proposed algorithms is very close
to the optimal case of the state-of-the-art of first and second
phases of the existing utility mining algorithms. Although
here it is proposing a new framework for top-k HUI mining, it
has not yet been incorporated with other utility mining tasks
to discover different types of top-k high utility patterns such as
top-k high utility episodes, top-k closed high utility itemset,
top-k high utility web access patterns and top-k mobile high utility sequential patterns. These gives an
opportunity for exploration as its future work.

III. SIGNIFICANCE, CONTRIBUTIONS AND
METHODOLOGY

Fig. 1 shows the system architecture of the proposed
system, it consists of following modules:

A. Concatenation and Creation of LQS-tree

LQS-tree is mostly used in most of the HUSPM
algorithms to represent the search space [12] for HUSPs. In
this case, each node is used to represent a candidate of HUSP
whose utility value will be compared with the minimum
threshold value to check whether it is HUSP or not. To add a
new node to the LQS-tree, two operations [12][13] are
performed and they are I- Concatenation and S-
Concatenation.

In I- Concatenation, the new item is appended along with
the last item in the sequence. In S- Concatenation, the new
item is appended to the sequence as the last element.
Therefore, the number of items in I- Concatenation remains the same while the number of items in S- Concatenation grows. So, the result of these two operations will generate a sequence which is the search space for mining HUSPs.

B. UL-List

Utility Linked List [13] is used to record the information about the utility of each sequence that has been generated during the concatenation operations. These UL- list consist of two parts: the first one is the Header Table, which is used to store set of items with its first occurring place in transformed sequence and, the second one is the Utility and Position (UP) information, which stores the details about utility of certain item.

C. Closure Property of Upper Bound

This paper proposes a downward closure property called Sequence- Weighted Utilization (SWU) [12] upper bound to identify HUSP using the algorithm HUSP- ULL without any combinatorial explosion of search space. By creating an upper bound, each space can be reduced and it increase the speed of the mining process.

D. Pruning Itemset

A LAR Strategy [14] is used to remove candidate item from a sequence. So, only less number of item will be considered while concatenating two operations. This strategy reduces the execution time required by the algorithm.

E. HUSP- ULL Algorithm

HUSP- ULL algorithm [14] is mainly used for scanning the sequential database and generates the UL-list for each of the q-sequences. Further, the algorithm works based on the above provided four factors. At last, the algorithm will provide the set of HUSPs that has been discovered as the output.

The algorithm firstly removes unwanted items and then recalculates the UL-list. Each node in a lexicographic q-sequence (LQS)- tree represents a candidate HUSP, whose utility can be compared with the minimum utility threshold to determine if the candidate is a HUSP. For each node that the algorithm visits in the LQS-tree, a projected database is built, which consists of utility-linked (UL)-lists obtained by transforming transactions (q-sequences) of the original database. The algorithm utilizes the UL-lists of each node (candidate HUSP) present in the tree to calculate its utility and upper-bounds. Each UL-list represents a transaction (q-sequence). To add a new node to the LQS- tree, two operations are performed and are called as I- Concatenation and S- Concatenation, respectively. Then by using the LAR strategy, items having utility value less than minimum utility value are discarded. After, that using a Judge procedure, the candidates having utility values not less than minimum threshold value are generated and provided as the output.

Based on the LQS-tree and UL-lists, the proposed HUSP- ULL algorithm can successfully identify the complete set of HUSPs using a depth-first search that applies two concatenation operations. However, this process can lead to exploring a very large number of candidates in the LQS-tree, since there is a combinatorial explosion of the number of candidates in the mining process of HUSPs. To speed up the mining process and also to maintain the downward closure property, a new property called sequence-weighted utilization (SWU) upper-bound was proposed to obtain a sequence-weighted downward closure (SWDC) property for HUSPs mining. This property greatly helps in reducing the search space and eliminate unpromising candidates early for reducing execution time.

IV. RESULT AND DISCUSSIONS

The proposed algorithm is used to obtain high utility sequential patterns (HUSPs). Here, three datasets were used for performing the experiments. Among the three datasets, all of them are real-life datasets. The datasets that are used are as shown in the following TABLE I:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>No. of Sequence</th>
<th>Avg. no. of elements per sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign</td>
<td>730</td>
<td>52.0</td>
</tr>
<tr>
<td>Bible</td>
<td>36,369</td>
<td>21.6</td>
</tr>
<tr>
<td>Leviathan</td>
<td>5834</td>
<td>33.8</td>
</tr>
</tbody>
</table>

- Sign: It is a real-life dataset which contains sequence of sign language utterance.
- Bible: It is a real-life dataset that is prepared by converting the bible into a set of sequence of words.
- Leviathan: It is a conversion of one of the work of Thomas Hobbes’ Leviathan to a sequence of words.

The Fig. 2 represents the pattern mined details from three datasets sign(Fig.2(a)), bible(Fig.2(b)) and Leviathan(Fig.2(c)) by using two algorithms, HUSP-ULL and ProUM.
The HUSPs obtained from the proposed algorithm can be applied in various real-life applications that are already mentioned in this paper. Here the transaction done by the user is applied as the input to the proposed algorithm. The algorithm calculates the itemset utility value. The frequently made transactions can be found out from the output. Suppose, Products Purchased in a supermarket:

Transaction 1:
- Coke, 6
- Chips, 2
- Dip, 1

Transaction 2:
- Coke, 1

Transaction 3:
- Coke, 2
- Chips, 1

Transaction 4:
- Chips, 1

Transaction 5:
- Chips, 2

Transaction 6:
- Coke, 6
- Chips, 1

After applying the proposed algorithm HUSP- ULL in this dataset the output shown as below:

Frequent Items=('Chips', 'Coke'), itemset_utility=30.02
Frequent Items=('Chips'), itemset_utility=20.93

By using the pruning strategy in this algorithm, the number of candidates that are generated in these three datasets are comparatively less than the number of candidates generated by other existing algorithms. So, from this also we can clearly say find that the memory usage of the proposed algorithm is far less than the existing algorithms. Therefore, if is identified that this algorithm is useful for pattern mining in large datasets.

V. CONCLUSION

The utility-based sequence pattern mining is a vital issue seen among certain real-life applications. The algorithm HUSP- ULL, proposed in this article provide an efficient output as desired. Experiments done on different datasets using the proposed algorithm showed the efficient and effective identification and retrieval of HUSPs. Also, this algorithm reduces the search space by the use of pruning strategy. The only concern that arises in this scenario is the accuracy variation depends on the datasets that are available. This article also provides certain ideas that can be used for future developments in this sequential pattern mining field.

VI. FUTURE SCOPE

The proposed algorithm in this paper is a pattern mining algorithm and here it can be used for classification purpose. Here it is used to recognize the patterns and chooses the frequently made transactions. So, in the future it can be modified by including performance matrix and comparative study of various algorithms. So the data can be divided as training and testing sets and by using the performance matrix and resultant graphs the classification of data can be done more accurately and efficiently.

ACKNOWLEDGEMENT

We would like to express our special thanks of gratitude to Dr. Vinodh P. Vijayan for his able guidance and support in our research work. We would also like to extend our gratitude to the Principal Dr. Manoj George (Mangalam College of Engineering, Etumanoor, Kerala) for providing us with all the facilities that are required.

REFERENCES

Mining on Sequence Data”, IEEE TRANSACTIONS ON CYBERNETICS, 2020

