

Minimizing Time Span of

Big Data Analytics

using Hadoop - Map Reduce

D. Christy Sujatha
1

1
Department Of Software

Engineering, Periyar Maniammai

University

D. Selvam
2

Department Of Computer Science

and Engineering , Periyar

Maniammai University

A. B. Karthick Anand Babu
3

Thanjavur, Tamilnadu ,India

Research Scholar, Bharathidasan

University, Trichy

Abstract--Private and public clouds offer a new delivery model

with virtually unlimited computing and storage resources. An

increasing number of companies are exploiting the MapReduce

paradigm and its open-source implementation Hadoop as a

platform choice for efficient Big Data processing and advanced

analytics over unstructured information. This new style of large

data processing enables businesses to extract information and

discover novel data insights in a nontraditional and game-

changing way. For many companies, their core business

depends on a timely analysis and processing of large quantities

of new data. The data analysis applications might be of different

complexities, resource needs, and data delivery deadlines. This

diversity creates competing requirements for program

design, job scheduling, and workload management policies in

MapReduce environments. In this Paper, Hadoop MapReduce

to perform word count is implemented. A map function is

specified to count the number of words in the distributed nodes

that produces intermediate key/value pairs, and a reduce

function that merges all intermediate values associated with the

same intermediate key. Programs written in this functional style

are automatically parallelized and executed on a large cluster of

commodity machines. We have also conducted a Simulation

based estimation. The result obtained from the simulation

shows that the wordcount using Map Reduce consumes less

amount of time when compared with the result obtained without

using map reduce programming .

Keywords--Map reduce , Work load management policy, data

delivery dead lines .

1.INTRODUCTION

Big data refers to large datasets that are challenging

to store, search, share, visualize, and analyze. At first glance,

the orders of magnitude outstrip conventional data processing

and the largest of data warehouses. For example, an airline

jet collects 10 terabytes of sensor data for every 30 minutes

of flying time. Compare that with conventional high

performance computing where New York Stock Exchange

collects 1 terabyte of structured trading data per day.

Compare again to a conventional structured corporate data

warehouse that is sized in terabytes and petabytes. Big Data

is sized in peta-, exa-, and soon perhaps, zetta-bytes. And,

it’s not just about volume, the approach to analysis contends

with data content and structure that cannot be anticipated or

predicted. These analytics and the science behind them filter

low value or low-density data to reveal high value or high-

density data. As a result, new and often proprietary analytical

techniques are required. Big Data has a broad array of

interesting architecture challenges. Big data is big news and

so too is analytics on big data. Technologies for analyzing

big data are evolving rapidly and there is significant interest

in new analytic approaches such as Hadoop MapReduce and

Hive, and MapReduce extensions to existing relational

DBMSs. Over the past five years, the authors and many

others at Google have implemented hundreds of special-

purpose computations that process large amounts of raw data,

such as crawled documents, web request logs, etc., to

compute various kinds of derived data, such as inverted

indices, various representations of the graph structure of web

documents, summaries of the number of pages crawled per

host, the set of most frequent queries in a given day, etc.

Most such computations are conceptually straightforward.

However, the input data is usually large and the computations

have to be distributed across hundreds or thousands of

machines in order to finish in a reasonable amount of time.

The issues of how to parallelize the computation, distribute

the data, and handle failures conspire to obscure the original

simple computation with large amounts of complex code to

deal with these issues. As a reaction to this complexity, it is

proposed a new abstraction that allows us to express the

simple computations we were trying to perform but hides the

messy details of parallelization, fault-tolerance, data

distribution and load balancing in a library.

. In this Paper, Hadoop MapReduce is applied

which is a programming model and an associated

implementation for processing and generating large data sets.

A map function is specified to count the number of words in

the distributed nodes that produces intermediate key/value

pairs, and a reduce function that merges all intermediate

values associated with the same intermediate key. Programs

written in this functional style are automatically parallelized

and executed on a large cluster of commodity machines. We

have also conducted a Simulation based estimation. The

result obtained from the Simulation shows that the

wordcount using Map Reduce consumes less amount of time

when compared with the result obtained without using map

reduce programming . The paper is organized as follows :

2070

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052041

International Journal of Engineering Research & Technology (IJERT)

Section II denotes the related work focusing on Hadoop

Map Reduce Programming . Section III denotes Hadoop

Map reduce Architecture . Section IV explains the

experimental setup and the Result discussion . Section V

gives the conclusion.

2. RELATED WORK

Alberto Abell´o et. all [1] proposed, from the

beginning of computerized data management, the possibility

of using computers in data analysis has been evident for

companies. However, first analysis tools needed the

involvement of the IT department to help decision makers to

query data [1] . They were not interactive at all and

demanded specific knowledge in computer science. By the

mid 1980’s, executive information systems appeared

introducing new graphical, keyboard-free interfaces (like

touch screens). However, executives were still tied to IT

professionals for the definition of ad hoc queries, and prices

of software and hardware requirements where prohibitive for

small companies.

In [2] Stavros Harizopoulos et. all , proposed

Modern general purpose online transaction processing

(OLTP) database systems include a standard suite of features:

a collection of on-disk data structures for table storage,

including heap files and B-trees, support for multiple

concurrent queries via locking- based concurrency control,

log based recovery, and an efficient buffer manager. These

features were developed to support transaction processing

in the 1970’s and 1980’s ,when an OLTP data base was

many times larger than the main memory, and when the

computers that run these database cost hundreds of

thousands to millions of dollars Today, the situation is quite

different.

Thus, it was in 1993 that Codd et al., in [3], coined

the term OLAP. In that report, the authors defined 12 rules

for a tool to be considered OLAP. These rules caused heated

controversy, and they did not succeed as Codd’s counterpart

for Relational Database Management Systems (RDBMS).

But, the name OLAP became very popular and broadly used.

OLAP is used to extract knowledge from the data warehouse.

Another kind of tool used with this purpose are data mining

tools (see Data Mining definitional entry). Till now, both

research communities have been evolving separately. The

former must be interactive, while the latter presents

computational complexity problems. However, it seems

promising to integrate both kinds of tools so that ones can

benefit from the others. In fact, it was already suggested in

[4], and some tools like Microsoft Analysis Services already

integrate them in some way. Nevertheless, there is much

work to do in this field, yet.

In [5] Danica Porobic et. all proposed Legacy

multisocket machines, which gained popularity in the 1995s

as symmetric multiprocessing servers, had non-uniform

memory access (NUMA) latencies. As proposed by Nigel

Pendse in [6], OLAP tools should pass the FASMI (Fast

Analysis of Shared Multidimensional Information) test. Thus,

they should be fast enough to allow interactive queries they

should help analysis task by providing flexibility in the usage

of statistical tools and what-if studies; they should provide

security (both in the sense of confidentiality and integrity)

mechanisms to allow sharing data; they should provide a

multidimensional view so that the data cube metaphor can be

used by users; and, finally, they should also be able to

manage large volumes of data (gigabytes can be considered a

lower bound for volumes of data in decision support) and

metadata.

In [7] Xuepeng Yin et all. Proposed XML format

for OLAP system, which overcomes the problem of

complexity in integrating fast changing data, physically into a

cube which is complex and time-consuming. Processing this

data efficiently requires fundamentally new designs for data

management systems. First, many database workloads,

especially those involving online transaction processing

(OLTP) can now fit entirely in main memory. These are the

types of databases that run most websites, banks, and other

organizations, containing a small set of records for each user

or customer. Typical workloads involve many concurrent

reads of records and only a few concurrent writes at a time as

users buy products, transfer funds, send emails, or perform

other operations.

 To address these issues, several new database designs

have been proposed for main memory OLTP workloads. The

most common design involves some form of data

partitioning, where each core is responsible for a different

subset of the data. Such approaches work well when data

partitions cleanly, because each core essentially operates on a

separate logical database, resulting in good cache locality and

low levels of contention for memory between cores.

However, as core counts grow, more and more data partitions

are needed when using this approach. As partition become

finer-grained, it becomes increasingly hard to partition the

database to ensure that each transaction accesses only one

partition. The resulting multi-partition transactions require

latching entire partitions for access to the records of other

cores, and have adverse effects on cache locality.

Furthermore, many databases schemas are not trivially

partitionable (such as social networks), and state-of-the-art

partitioning techniques are very workload dependent [8].

3. SYSTEM ARHITECTURE

2071

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052041

International Journal of Engineering Research & Technology (IJERT)

3.1 Apache Hadoop

The framework Apache Hadoop is used for

distributed processing of huge data sets known as ―Big

Data‖ across clusters of computers using a simple

programming model . Hadoop permits an application to

map, group, and reduce data across a distributed cloud of

machines so that applications can process huge data . It can

scale up to large number of machines as required for the

job; each machine will provide local computation and

storage. Apache Hadoop software library itself detects and

handles any failures at application layer.

Hadoop Distributed File System - HDFS

A distributed user-level filesystem HDFS Hadoop

Distributed File System written in Java stores huge files

across machines in a large cluster. Hadoop DFS stores each

file as a sequence of blocks, all blocks in a file except the

last block are the same size typically 64 MB . Blocks

belonging to a file are replicated for fault tolerance. The

block size and replication factor are configurable per file.

An application can specify the number of replicas of a file.

The replication factor can be specified at file creation time

and can be changed later. Files in HDFS are "write once"

and have strictly one writer at any time .

Name-Node

The Name-Node executes file system namespace

operations like opening, closing, and renaming files and

directories. The Name-Node does not store HDFS data

itself, but rather maintains a mapping between HDFS file

name, a list of blocks in the file, and the Data Node on

which those blocks are stored. The Name-Node makes all

decisions regarding replication of blocks.

Secondary Name-Node

HDFS includes a Secondary Name-Node, there is a

misconception that secondary Name-Node comes into

action after Primary Name-Node (i.e Name-Node) fails.

The fact is Secondary Name-Node is continuously

connected with Primary Name-Node and takes snapshots

of Name-Node's memory structures. These snapshots can

be used to recover the failed Name-Node and recent

memory structure

Data-Node

A Data-Node stores data in the Hadoop File System.

A functional filesystem has more than one Data-Node,

with data replicated across them. On startup, a Data-Node

connects to the Name-Node; spinning until that service

comes up. It then responds to requests from the Name-

Node for filesystem operations. Client applications can talk

directly to a Data-Node, once the Name-Node has provided

the location of the data .

Job-Tracker

Job-Tracker keeps track of which Map-Reduce jobs

are executing, schedules individual Maps, Reduces or

intermediate merging operations to specific machines,

monitors the success and failures of these individual Tasks,

and works to complete the entire batch job. The Job-

Tracker is a point of failure for the Hadoop Map-Reduce

service. If it goes down, all running jobs are halted.

Task-Tracker

A Task-Tracker is a node in the Hadoop cluster that

accepts tasks such as Map, Reduce and Shuffle operations

from a Job-Tracker. Task-Tracker is set up with set of slots

which depicts the number of tasks it can accept. The Task-

Tracker spawns a separate JVM processes to do the actual

work. The Task-Tracker supervises these spawned

processes, capturing the output and exit codes. When the

process finishes, successfully or not, the task tracker

notifies the Job-Tracker. The Task-Trackers also transmit

heartbeat messages to the Job-Tracker, usually every few

minutes, to reassure the Job-Tracker that it is still alive.

These messages also inform the Job-Tracker of the number

of available slots, so the Job-Tracker can stay up to date

with where in the cluster work can be assigned .

3.2 Mapping Process

When the user program calls the MapReduce function,

the following sequence of actions will be followed .

 The MapReduce library in the user program first

splits the input files into M pieces of typically 16

megabytes to 64 megabytes (MB) per piece

(controllable by the user via an optional parameter).

It then starts up many copies of the program on a

cluster of machines.

 One of the copies of the program is special . the

master. The rest are workers that are assigned work

by the master. There are M map tasks and R reduce

tasks to assign. The master picks idle workers and

assigns each one a map task or a reduce task.

 A worker who is assigned a map task reads the

contents of the corresponding input split. It parses

key/value pairs out of the input data and passes each

pair to the user defined Map function. The

intermediate key/value pairs produced by the Map

function are buffered in memory.

 Periodically, the buffered pairs are written to local

disk, partitioned into R regions by the partitioning

function. The locations of these buffered pairs on

the local disk are passed back to the master, who is

responsible for forwarding these locations to the

reduce workers.

 When a reduce worker is notified by the master

about these locations, it uses remote procedure calls

to read the buffered data from the local disks of the

map workers. When a reduce worker has read all

intermediate data, it sorts it by the intermediate

keys so that all occurrences of the same key are

grouped together. The sorting is needed because

typically many different keys map to the same

2072

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052041

International Journal of Engineering Research & Technology (IJERT)

reduce task. If the amount of intermediate data is too

large to fit in memory, an external sort is used.

3.3 Reducing Process

 The reduce worker iterates over the sorted

intermediate data and for each unique intermediate

key encountered, it passes the key and the

corresponding set of intermediate values to the

user's Reduce function. The output of the Reduce

function is appended to a final output file for this

reduce partition.

 When all map tasks and reduce tasks have been

completed, the master wakes up the user program.

At this point, the MapReduce call in the user

program returns back to the user code. After

successful completion, the output of the mapreduce

execution is available in the R output files (one per

reduce task, with file names as specified by the

user). Typically, users do not need to combine these

R output files into one file . they often pass these

files as input to another MapReduce call, or use

them from another distributed application that is

able to deal with input that is partitioned into

multiple files.

 3.4 Word Count Application

The word count that simply reads an input text file

containing number of words and count the number of times

that each word appears. As Hadoop is build on HDFS and

MapReduce, this example of word count will execute as a

part of Hadoop application. The input files are needed to be

put in HDFS. In some cases, this requires first to format a

file system to HDFS. After the system is formatted, the

input dictionary files are put into filesystem. Hadoop gives

better performance with single larger files rather than

smaller files. Short files should be copied to HDFS. This

data will be then processed using MapReduce program. The

program is Java file that contains Map and reduce

algorithms. Here each mapper takes a line as input and

breaks it into words. Each mapper then emits <key/value>

pairs of word where each emitted<key/value> pairs are then

“shuffled” that indicated that the pairs with the same key are

grouped and then passed to machine to be reduced by

reduce function. For word count example, to count the

number of word occurrence, the reduce function will

perform the aggregate (sum) of the values of the collection

of <key, value> pairs which have the same key.

4. SIMULATION MODEL

4.1 SYSTEM REQUIREMENTS

 The simulation was applied to the node with dual

processor , X86 , memory with 2 to 4 GB per machine and

the Operating System used was LINUX. The simulator has

been developed to model the implementation of map reduce

operation which generates one master node and n number of

slave nodes to perform the word count .

 4.2

EXPERIMENTAL RESULT AND DISCUSSION

 The simulation

has one master node and N number of

slave nodes . The number of slave nodes depends on the size

of the input data

which are created by the job tracker .The

MapReduce library in the program first splits the input files

into N

pieces of typically 64 megabytes (MB) per piece .

It

then starts up many copies of the program on the slave nodes.

The

slave node

who is assigned a map task reads the

contents of the corresponding input split

and counts the word

occurrence. The intermediate key/value pairs produced by the

Map function are buffered in memory.

The locations of these

buffered pairs on the local disk are passed back to the master,

who is responsible for forwarding these locations to the

reduce slave nodes. When a reduce slave node

is notified by

the master about these locations, it uses remote procedure

calls to read the buffered data from the local disks of the map

workers.

When a reduce worker has read all intermediate data, it

sorts it by the intermediate keys so that all occurrences of the

same key are grouped together. The sorting is needed

because typically many different keys map to the same

reduce task. The reduce function will perform the aggregate

(sum) of the values of the collection of <key, value> pairs

which have the same key.

2073

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052041

International Journal of Engineering Research & Technology (IJERT)

The simulation is executed using map reduce

algorithm to count the given word and the total elapsed time

is calculated . Total elapsed time is calculated for the same

word without using map reduce algorithm . The estimated

values are plotted in the graph .On the X-axis we have

plotted the duration in minutes and on the Y-axis we have

plotted the word to be counted . Table 1 shows the time

taken to count the words like The, Using ,System, Data &

And. The above word occurrences are performed with using

map reduce algorithm and without using map reduce

algorithm. It is found that the total time taken using

mapreduce consumes less amount of time than without

using map reduce .

 Table 1

 Word

count for

Elapsed

time

 Using Map

reduce

 (Minutes)

Elapsed

time

 Without

using Map

reduce

 (Minutes)

 The

1

5

 Using

2

10

 System

1

4

 Data

2

9

 And

1

7

 5. CONCLUSION

 Hadoop MapReduce is an

effective

programming

model and software

framework

which

is used for writing

data

intensive applications that speedily

process vast

amounts of data in parallel on low-level compute nodes of

clusters.

In this paper a map function is specified to count

the number of words in the distributed nodes that produces

intermediate key/value pairs, and a reduce function is

specified to merge all intermediate values associated with

the same intermediate key. A simulation based estimation is

conducted to find the time taken to count the number of

similar word occurrence .The result obtained from the

simulation shows that the wordcount using Map Reduce

consumes less amount of time when compared

with the result

obtained without using map reduce programming .

 REFERENCES

 [1]

Alberto Abell´o

and Oscar Romero, UniversitatPolit`ecnica de
Catalunya “ON-LINE ANALYTICAL PROCESSING”

 [2]

Stavros Harizopoulos et al. “ OLTP Through the Looking Glass, and

What We Found There” SIGMOD’08, June 9–12, 2008, Vancouver,
BC, Canada. Copyright 2008 ACM 978-1-60558-102

 [3] E.F. Codd, S.B. Codd and C.T. Salley ,”Providing OLAP to User-

Analysts: An

IT Mandate” Copyright © 1993 by E. F. Codd &
Associates.

 [4]

Danica Porobic , “ Efficient OLTP Architecture for Future Multisocket

Multicore Machines” DIAS, I&C, EPFL EDIC-

Research Proposal.

 [5] Danica Porobic Ippokratis Pandis Miguel Branco Pınar Anastasia

Ailamaki, “OLTP on Hardware Islands”

 [6] Nigel Pendse , “Online Analytical Processing Stream Data”

 [7]

Xuepeng Yin Aalborg University Fredrik Bajers, “Evaluating XML-

Extended OLAP Queries Based on a Physical Algebra” November 12–

13, 2004, Washington, DC, USA. Copyright 2004 ACM 1-58113-977

 [8]

Anil Vasudeve et.all “ Next Gen Infrastructure for in data Big Data” ,

SNIA Education

0

2

4

6

8

10

12

Ti
m

e
 in

 M
in

u
te

s

Word Count for

Map Reduce for Word Count

Elapsed time
Using Map
reduce

Elapsed time
Without using
Map reduce

2074

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052041

International Journal of Engineering Research & Technology (IJERT)

