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Abstract--Private  and public clouds offer a new delivery model 

with virtually unlimited computing and storage resources. An 

increasing number of companies are exploiting the MapReduce 

paradigm  and its open-source implementation Hadoop as a 

platform choice for efficient Big Data processing and advanced 

analytics over unstructured information. This new style of large 

data processing enables businesses to extract information and 

discover novel data insights in a nontraditional and game-

changing way. For many companies, their core business 

depends on a timely analysis and processing of large quantities 

of new data. The data analysis applications might be of different 

complexities, resource needs, and data delivery deadlines. This 

diversity  creates  competing  requirements  for  program 

design, job scheduling, and workload management policies in 

MapReduce environments.   In this Paper, Hadoop MapReduce  

to perform word count is implemented. A map function is 

specified to count the number of words in the distributed nodes    

that produces intermediate key/value pairs, and a reduce 

function that merges all intermediate values associated with the 

same intermediate key. Programs written in this functional style 

are automatically parallelized and executed on a large cluster of 

commodity machines. We have also conducted  a  Simulation 

based estimation. The result obtained  from the  simulation  

shows  that the  wordcount  using Map Reduce consumes less 

amount of time when compared with the result obtained without 

using map reduce programming . 

 

Keywords--Map reduce , Work load management policy, data 

delivery dead lines . 

 

1.INTRODUCTION 

 

Big data refers to large datasets that are challenging 

to store, search, share, visualize, and analyze. At first glance, 

the orders of magnitude outstrip conventional data processing 

and the largest of data warehouses. For example, an airline 

jet collects 10 terabytes of sensor data for every 30 minutes 

of flying time. Compare that with conventional high 

performance computing where New York Stock Exchange 

collects 1 terabyte of structured trading data per day. 

Compare again to a conventional structured corporate data 

warehouse that is sized in terabytes and petabytes. Big Data 

is sized in peta-, exa-, and soon perhaps, zetta-bytes.  And, 

it’s not just about volume, the approach to analysis contends 

with data content and structure that cannot be anticipated or 

predicted. These analytics and the science behind them filter 

low value or low-density data to reveal high value or high-

density data. As a result, new and often proprietary analytical 

techniques are required. Big Data has a broad array of 

interesting architecture challenges. Big data is big news and 

so too is analytics on big data. Technologies for analyzing 

big data are evolving rapidly and there is significant interest 

in new analytic approaches such as Hadoop MapReduce and 

Hive, and MapReduce extensions to existing relational 

DBMSs. Over the past five years, the authors and many 

others at  Google have implemented hundreds of special-

purpose computations that process large amounts of raw data, 

such as crawled documents, web request logs, etc., to 

compute various kinds of derived data, such as inverted 

indices, various representations of the graph structure of web 

documents, summaries of the number of pages crawled per 

host, the set of most frequent queries in a given day, etc. 

Most such computations are conceptually straightforward. 

However, the input data is usually large and the computations 

have to be distributed across hundreds or thousands of 

machines in order to finish in a reasonable amount of time. 

The issues of how to parallelize the computation, distribute 

the data, and handle failures conspire to obscure the original 

simple computation with large amounts of complex code to 

deal with these issues.  As a reaction to this complexity, it is 

proposed  a new abstraction that allows us to express the 

simple computations we were trying to perform but hides the 

messy details of parallelization, fault-tolerance, data 

distribution and load balancing in a library.  

.   In this Paper, Hadoop MapReduce is applied  

which   is a programming model and an associated  

implementation for processing and generating large data sets. 

A map function is specified to count the number of words in 

the distributed nodes   that produces intermediate key/value 

pairs, and a reduce function that merges all intermediate 

values associated with the same intermediate key. Programs 

written in this functional style are automatically parallelized 

and executed on a large cluster of commodity machines. We 

have also conducted  a  Simulation based estimation. The 

result obtained  from the  Simulation  shows  that the  

wordcount  using Map Reduce consumes less amount of time 

when compared with the result obtained without using  map 

reduce programming . The paper is organized as follows : 
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Section II denotes  the related work focusing on  Hadoop 

Map Reduce Programming . Section III  denotes Hadoop 

Map reduce Architecture . Section IV  explains  the 

experimental setup  and the Result discussion . Section V 

gives the conclusion. 

 

 

2.  RELATED WORK 

 

Alberto Abell´o et. all [1] proposed, from the 

beginning of computerized data management, the possibility 

of using computers in data analysis has   been evident for 

companies. However, first analysis tools needed the 

involvement of the IT department to help decision makers to 

query data [1] . They were not interactive at all and 

demanded specific knowledge in computer science.  By the 

mid 1980’s, executive information systems appeared 

introducing new graphical, keyboard-free interfaces (like 

touch screens). However, executives were still tied to IT 

professionals for the definition of ad hoc queries, and prices 

of software and hardware requirements where prohibitive for 

small companies.    

In [2]  Stavros Harizopoulos et. all , proposed 

Modern general purpose online transaction processing 

(OLTP) database systems include a standard suite of features: 

a collection of on-disk data structures for table storage, 

including heap files and B-trees, support for multiple  

concurrent queries via locking- based concurrency control, 

log based recovery, and an efficient buffer manager. These 

features    were developed to support transaction processing 

in the 1970’s and 1980’s  ,when an OLTP data base was 

many times larger than the main memory, and when the 

computers that run these database  cost hundreds of 

thousands to millions of dollars Today, the situation is quite 

different.  

Thus, it was in 1993 that Codd et al.,  in [3], coined 

the term OLAP.  In that report, the authors defined 12 rules 

for a tool to be considered OLAP. These rules caused heated 

controversy, and they did not succeed as Codd’s counterpart 

for Relational Database Management Systems (RDBMS). 

But, the name OLAP became very popular and broadly used.    

OLAP is used to extract knowledge from the data warehouse. 

Another kind of tool used with this purpose  are data mining 

tools  (see Data Mining definitional entry). Till now, both 

research communities have been evolving separately. The 

former must be interactive, while the latter presents 

computational complexity problems. However, it seems 

promising to integrate both kinds of tools so that ones can 

benefit from the others. In fact, it was already suggested in 

[4], and some tools like Microsoft Analysis Services already 

integrate them in some way. Nevertheless, there is much 

work to do in this field, yet. 

In [5] Danica Porobic et. all proposed Legacy 

multisocket machines, which gained popularity in the 1995s 

as symmetric multiprocessing servers, had non-uniform 

memory access (NUMA) latencies.    As proposed by Nigel 

Pendse in [6], OLAP tools should pass the FASMI (Fast 

Analysis of Shared Multidimensional Information) test. Thus, 

they should be fast enough to allow interactive queries they 

should help analysis task by providing flexibility in the usage 

of statistical tools and what-if studies; they should provide 

security (both in the sense of confidentiality and integrity) 

mechanisms to allow sharing data; they should provide a 

multidimensional view so that the data cube metaphor can be 

used by users; and, finally, they should also be able to 

manage large volumes of data (gigabytes can be considered a 

lower bound for volumes of data in decision support) and 

metadata. 

 

In [7] Xuepeng Yin   et all. Proposed XML format 

for OLAP system,  which overcomes the problem of 

complexity in integrating fast changing data, physically into a 

cube which  is complex and time-consuming. Processing this 

data efficiently requires fundamentally new designs for data 

management    systems. First, many database workloads, 

especially those involving online transaction processing 

(OLTP) can now fit entirely in main memory. These are the 

types of databases that run most websites, banks, and other 

organizations, containing a small set of records for each user 

or customer. Typical workloads involve many concurrent 

reads of records and only a few concurrent writes at a time as 

users buy products, transfer funds, send emails, or perform 

other operations. 

 

       To address these issues, several new database designs 

have been proposed for main memory  OLTP workloads. The 

most common design involves some form of data 

partitioning, where each core is responsible for a different  

subset of the data. Such approaches work well when data 

partitions cleanly, because each core essentially operates on a 

separate logical database, resulting in good cache locality and 

low levels of contention for memory between cores. 

However, as core counts grow, more and more data partitions 

are needed when using this approach. As partition  become 

finer-grained, it becomes increasingly hard to partition the 

database to ensure that each transaction accesses only one 

partition. The resulting multi-partition transactions require 

latching entire partitions for access to the records of other 

cores, and have adverse effects on cache locality. 

Furthermore, many databases schemas are not trivially 

partitionable (such as social networks), and state-of-the-art 

partitioning techniques are very workload dependent [8]. 

 

 

3. SYSTEM ARHITECTURE 
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3.1 Apache Hadoop 

The framework Apache Hadoop is used for 

distributed processing of huge data sets known as ―Big 

Data‖ across clusters of computers using a simple 

programming model . Hadoop permits an application to 

map, group, and reduce data across a distributed cloud of 

machines so that applications can process huge data . It can 

scale up to large number of machines as required for the 

job; each machine will provide local computation and 

storage. Apache Hadoop software library itself detects and 

handles any failures at application layer.  

 

Hadoop Distributed File System - HDFS  

A distributed user-level filesystem HDFS Hadoop 

Distributed File System written in Java stores huge files 

across machines in a large cluster. Hadoop DFS stores each 

file as a sequence of blocks, all blocks in a file except the 

last block are the same size typically 64 MB  . Blocks 

belonging to a file are replicated for fault tolerance. The 

block size and replication factor are configurable per file. 

An application can specify the number of replicas of a file. 

The replication factor can be specified at file creation time 

and can be changed later. Files in HDFS are "write once" 

and have strictly one writer at any time  .  

 

Name-Node  

The Name-Node executes file system namespace 

operations like opening, closing, and renaming files and 

directories. The Name-Node does not store HDFS data 

itself, but rather maintains a mapping between HDFS file 

name, a list of blocks in the file, and the Data Node on 

which those blocks are stored. The Name-Node makes all 

decisions regarding replication of blocks. 

 

Secondary Name-Node 

HDFS includes a Secondary Name-Node, there is a 

misconception that secondary Name-Node comes into 

action after Primary Name-Node (i.e Name-Node) fails. 

The fact is Secondary Name-Node is continuously 

connected with Primary Name-Node and takes snapshots 

of Name-Node's memory structures. These snapshots can 

be used to recover the failed Name-Node and recent 

memory structure  

 

Data-Node  

A Data-Node stores data in the Hadoop File System. 

A functional filesystem has more than one Data-Node, 

with data replicated across them. On startup, a Data-Node 

connects to the Name-Node; spinning until that service 

comes up. It then responds to requests from the Name-

Node for filesystem operations. Client applications can talk 

directly to a Data-Node, once the Name-Node has provided 

the location of the data . 

 

 

 

 

 

 

 

Job-Tracker  

Job-Tracker keeps track of which Map-Reduce jobs 

are executing, schedules individual Maps, Reduces or 

intermediate merging operations to specific machines, 

monitors the success and failures of these individual Tasks, 

and works to complete the entire batch job. The Job-

Tracker is a point of failure for the Hadoop Map-Reduce 

service. If it goes down, all running jobs are halted. 

 

Task-Tracker  

A Task-Tracker is a node in the Hadoop cluster that 

accepts tasks such as Map, Reduce and Shuffle operations 

from a Job-Tracker. Task-Tracker is set up with set of slots 

which depicts the number of tasks it can accept. The Task-

Tracker spawns a separate JVM processes to do the actual 

work. The Task-Tracker supervises these spawned 

processes, capturing the output and exit codes. When the 

process finishes, successfully or not, the task tracker 

notifies the Job-Tracker. The Task-Trackers also transmit 

heartbeat messages to the Job-Tracker, usually every few 

minutes, to reassure the Job-Tracker that it is still alive. 

These messages also inform the Job-Tracker of the number 

of available slots, so the Job-Tracker can stay up to date 

with where in the cluster work can be assigned . 

 

3.2 Mapping Process 

When the user program calls the MapReduce function, 

the following sequence of actions  will be followed . 

 

 The MapReduce library in the user program first 

splits the input files into M pieces of typically 16 

megabytes to 64 megabytes (MB) per piece 

(controllable by the user via an optional parameter). 

It then starts up many copies of the program on a 

cluster of machines. 

 One of the copies of the program is special . the 

master. The rest are workers that are  assigned work 

by the master. There are M map tasks and R reduce 

tasks to assign. The master picks idle workers and 

assigns each one a map task or a reduce task. 

 A worker who is assigned a map task reads the 

contents of the corresponding input split. It parses 

key/value pairs out of the input data and passes each 

pair to the user defined Map function. The 

intermediate key/value pairs produced by the Map 

function are buffered in memory. 

 Periodically, the buffered pairs are written to local 

disk, partitioned into R regions by   the partitioning 

function. The locations of these buffered pairs on 

the local disk are passed back to the master, who is 

responsible for forwarding these locations to the 

reduce workers. 

 When a reduce worker is notified by the master 

about these locations, it uses remote procedure calls 

to read the buffered data from the local disks of the 

map workers. When a reduce worker has read all 

intermediate   data, it sorts it by the intermediate 

keys so that all occurrences of the same key are 

grouped together. The sorting is needed because 

typically many different keys map to the same 
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reduce task. If the amount of intermediate data is too 

large to fit in memory, an external sort is used. 

 

3.3 Reducing Process 

 

 The reduce worker iterates over the sorted 

intermediate data and for each unique intermediate 

key  encountered, it passes the key and the 

corresponding set of intermediate values to the 

user's Reduce function. The output of the Reduce 

function is appended to a final output  file for this 

reduce partition.  

 

 When all map tasks and reduce tasks have been 

completed, the master wakes up the user program. 

At this point, the MapReduce call in the user 

program returns back to the user code. After 

successful completion, the output of the mapreduce 

execution is available in the R output files (one per 

reduce task, with file names as specified by the 

user). Typically, users do not need to combine these 

R output files into one file . they often pass these 

files as input to another MapReduce call, or use 

them from another distributed application that is 

able to deal with input that is partitioned into 

multiple files.  

 

   3.4  Word Count Application  

 

The  word  count that simply reads an input text file 

containing number of words and count the number of times 

that each word appears. As Hadoop is build on HDFS and 

MapReduce, this example of word count will execute as a 

part of Hadoop application. The input files are needed to be 

put in HDFS. In some cases, this requires first to format a     

file system to HDFS. After the system is formatted, the 

input dictionary files are put into filesystem. Hadoop gives 

better performance with single larger files rather than 

smaller files. Short files should be copied to HDFS. This 

data will be then processed using MapReduce program. The 

program is Java file that contains Map and reduce 

algorithms. Here each mapper takes a line as input and 

breaks it into words. Each mapper then emits <key/value> 

pairs of word where each emitted<key/value> pairs are then 

“shuffled” that indicated that the pairs with the same key are 

grouped and then passed to machine to be reduced by 

reduce function. For word count example, to count the 

number of word occurrence, the reduce function will 

perform the aggregate (sum) of the values of the collection 

of <key, value> pairs which have the same key.  

 

4. SIMULATION MODEL 

 

4.1 SYSTEM REQUIREMENTS 

  The simulation was  applied   to the node with  dual 

processor  , X86  , memory with 2 to 4 GB per machine and  

the Operating System used was  LINUX. The simulator has 

been developed to model the implementation of map reduce  

operation  which generates one master node and n number of 

slave nodes to perform the word count . 

 4.2
 

EXPERIMENTAL RESULT AND DISCUSSION
 

 The simulation 
 
has one master node and N  number of 

slave nodes . The number of slave nodes depends on the  size 

of  the  input data
 
which are created by the job tracker .The 

MapReduce library in the  program first splits the input files 

into N
 
pieces of typically 64 megabytes (MB) per piece .

 
It 

then starts up many copies of the program on the slave nodes. 

The 
 

slave node 
 

who is assigned a map task reads the 

contents of the corresponding input split
 
and counts the word 

occurrence. The intermediate key/value pairs produced by the 

Map function are buffered in memory.
 
The locations of these 

buffered pairs on the local disk are passed back to the master, 

who is responsible for forwarding these locations to the 

reduce slave nodes.  When a reduce slave node
 
is notified by 

the master about these locations, it uses remote procedure 

calls to read the buffered data from the local disks of the map 

workers.
 

 

 

 
 

 
When a reduce worker has read all intermediate   data, it 

sorts it by the intermediate keys so that all occurrences of the 

same key are grouped together. The sorting is needed 

because typically many different keys map to the same 

reduce task. The reduce function will perform the aggregate 

(sum) of the values of the collection of <key, value> pairs 

which have the same key.
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The simulation is executed  using map reduce 

algorithm to count the given word  and the total elapsed time 

is calculated . Total elapsed time is calculated for the same 

word  without using map reduce algorithm . The  estimated 

values are plotted in the graph .On the X-axis we have 

plotted   the duration in minutes  and  on the Y-axis we  have 

plotted  the word  to be counted  . Table 1 shows the time 

taken to count the words like The, Using ,System, Data  & 

And. The above word occurrences are  performed with using 

map reduce algorithm and without using map reduce 

algorithm.  It is found  that the total time taken using 

mapreduce consumes less amount of time  than without  

using map reduce . 

 

 Table 1

 Word 

count for

 

Elapsed 

time

 Using  Map 

reduce

 

 (Minutes)

 

Elapsed 

time

 Without 

using Map 

reduce

 (Minutes)

 The

 

1

 

5

 Using

 

2

 

10

 System

 

1

 

4

 Data

 

2

 

9

 And

 

1

 

7

 

 

 
 

 5.    CONCLUSION
 

 Hadoop MapReduce is an 
 
effective

 
programming 

model and software
 
framework

 
which 

 
is used for writing 

data
 

intensive  applications that speedily
 

process vast 

amounts of data in parallel on  low-level compute nodes of 

clusters.
 
In this paper a  map function is specified to count 

the number of words in the distributed nodes    that produces 

intermediate key/value pairs, and a reduce function  is 

specified  to merge all intermediate values associated with 

the same intermediate key. A simulation based estimation is 

conducted  to find the time taken to count the number of 

similar word occurrence .The result obtained  from the  

simulation  shows  that the  wordcount  using Map Reduce 

consumes less amount of time when compared
 
with the result 

obtained without using map reduce programming .
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