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Abstract--In this paper the idea of using acoustically
induced Doppler spectra as a means for metallic object
detection and identification is introduced. Acousto-EM
wave interaction occurs when an electromagnetic wave
scatters from an object under acoustic illumination. The
incident acoustic wave causes a boundary deformation
within the metallic cylinder. The acoustically vibrating
cylinder gives rise to a frequency modulated scattered
electromagnetic field which is a function of the
cylinder’s natural resonance frequency and both the
electromagnetic and acoustic source parameters.
Results indicate that the scattered Doppler frequencies
correspond to the mechanical vibration frequencies of
the cylinder, and the sidelobe Doppler spectrum level is,
to the first order, linearly proportional to the degree of
deformation. The prior knowledge of doppler responses
and signature of each metal help us to detect and
identify the buried metallic cylinder.
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L INTRODUCTION

Ground penetrating radars [3] have been used for detection
and identification of buried objects. For civilian
applications such radars are used to locate underground
pipes, conduits, and cables, while military applications
include mine detection and clearing abandoned military
practice ranges of unexploded ordinance (UXO). If an
identifiable Doppler spectrum is unique for the buried
objects, corresponding to unique mechanical modes of the
objects, then improvement in detection and identification of
the objects is possible. In this approach,[4] object detection
is based on the small changes in ground displacement when
a buried object is introduced. The proposed scenario is
shown in Fig. 1 In which an acoustic source launches an
acoustic wave in the soil, mechanically exciting the buried
objects, and electromagnetic radar measures the received
electromagnetic spectrum from the vibrating objects.
Significant displacement of an object only occurs when the
object is excited at one of its acoustic resonances. Hence,
the scattered electromagnetic Doppler spectrum will be
composed of frequencies corresponding to the object's
acoustic resonances. The frequency location of an object's
resonances depends upon the object's shape and material
properties and is generally different for different objects. In
this technique, both acoustic and electromagnetic receivers
are used to detect ground vibrations. As a feasibility study,
we will examine, analytically, the Doppler scattering from a
vibrating metallic circular cylinder in a homogeneous
surrounding medium. Perturbation theory is an established

analytical approach for scattering solutions and was applied
by Rayleigh [5] and Maxwell [6] to certain scalar field
problems. These methods have found application in
electromagnetic scattering from rough surfaces [7, 8],
cylinders [9, 10 and 11] and spheres [12, 13].
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Fig. 1: Setup for object detection

L ANALYTICAL DEVELOPMENT

Here, the bistatic scattered field from a perfectly conducting
circular cylinder with arbitrary deformation and illuminated
by an electromagnetic plane wave is formulated. Ane/"et
time dependence for electromagnetic waves and an e/%at
time dependence for acoustic waves is understood in all
expressions representing waves and is suppressed.

T™ Mode

Consider an incident TM plane wave impinging upon a
perfectly conducting, slightly deformed circular cylinder as
shown in Fig. 2. For a vibrating cylinder whose cross
section shape is varying with time, the scattered field will
be time-varying which gives rise to the scattered Doppler
spectrum. The perimeter of the cylinder’s surface can be
expressed in polar coordinates as
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Fig. 2
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p'=a+bf(@,t)
Where a is the unperturbed cylinder radius, f(@,t) is a
periodic and smooth function of @', and b is a perturbation
constant assumed to be much smaller than the wavelength.
The standard method for the computation of the scattered
field from a circular cylinder is the -eigen-function
expansion of the total field. Following the development in
[13], the incident plane wave propagating along the x-
direction with a polarization parallel to the cylinder’s axis
can be expressed as

Bi= eiheos0 = N () kpel™®  — - - -
n=—-ow

-2

Where k is the wavenumber. When there is no perturbation
on the surface (i.e.,b = 0 ), the scattered field is given by

]n( ) 2) ing
B = ) ()M HP (ep)em® — -~ —
Hy? (ka)

--=3)
If a small perturbation is introduced on the boundary, the
scattered field may be expanded in terms of a perturbation
series in kb. To the first order in, we may write

B= ) (—j)"ﬂ))(l + Cukb)H® (kp)e ™

Where the C,, ’s are unknown coefficients to be determined
using the boundary condition EX 4+ E5 = 0 on the surface
of the perturbed cylinder. This expression is, of course; a
permissible solution of Maxwell’s equations since it
satisfies both the wave equation and the radiation condition.
Using Taylor series expansion, the eigen-functions in (2)
and (4) can also be approximated to the first order in kb,
ie.,

Z,(kp) = Zy(k(a+ bf(9)1)))
~ Z,(ka) + kbf(@,t)Z, (ka)
- (5
Where Z, represents the Bessel or Hankel function of nth
order. Applying the boundary condition at the surface of the
cylinder

D () Untka) + kbf (@', O (ka)]e™’

 Ju(ka)
n_z_w( 2ot

+ C,kb) [H,§2>(ka)

+kbf (@, OH (ke —
- (6)
Neglecting the (kb)? term and using the Wronskian

relationship for Bessel functions results in the following
expression:
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Now if f(@',t) has a Fourier series expansion with respect
to @’

[@,0)= ) An®em® --—-®

and is inserted into (7), the resulting solution for the
coefficients, C,, is

)n+1

Any(®
p n-p\J
], (k) Z D Py

Hence for a given dlsplacement function, f (@', t), the C,, ’s
calculated from (9) can be used in (4) to yield the bistatic
scattered field at any angle . In this derivation it is
implicitly assumed that the time rate of variations of
f(@',t) is much slower than the electromagnetic frequency
so that relativistic effects can be neglected. Under this
assumption, a Fourier transform of the time-varying
scattered field will provide the scattered Doppler spectrum.

Ca(t) = -==

IL ACOUSTIC VIBRATION OF A SOLID
CYLINDER
Mathematical Formulation for Displacement

In order to calculate the deformation of a circular cylinder
due to a time-harmonic incident acoustic wave, the acoustic
scattering from the cylinder must be evaluated. An
interesting aspect of acoustic scattering from solid objects
is that mechanical waves within the solid are excited which
consist of both transverse shear waves and longitudinal
compressional waves. The equation of motion for a solid
elastic medium can be written [17]

The wave inside the cylinder will be represented by suitable
solution of the equation of motion of a solid elastic
medium, which may be written as

0%u
@+2WVA—pV X Q) =p1og7  ————— (10)
E(1-o0) V(Vu)—LVx(qu)
1+4+0)1-20) ' 2(1+0)

0%u
= Pz --—--(11)

Where p; is the density of the scatterer, u is the
displacement, and E and o are Young’s modulus and
Poisson’s ratio, respectively. Solutions to this equation for a
solid cylinder of infinite length are of the form [16]

Where
A=V:w === (12)
And
20=VXu
From Eq. (14) can be derived the equations,
2 P1 9%A
V2A= (/1+2)6t2 (13)
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And
pr\ 9%(20)
2 _ (1 e
V2(20) (u> = (14)
Which define the wave velocities
1 1
A+2w)]? E(1-— Z
qzr M y 1-0) [—as
P1 p1(1+0)(1 - 20)
And
1 B 1
u\z 2
T
27 \py 2p;(1+o0)

Solution of Eq. (10) can be found by assuming that
displacement can be derived from a scalar and a vector
potential:
u=-V¥+VxA. - ==
-7
The displacements thus can be thought of as the sum of two
displacements, one associated with compressional waves
and other with shear waves. If we assume that potentials
satisfy the equations,
Vi = l az_q] ____
~\c2) at?
- (18)
And

veq o (L)0%
—\¢2) a2

- —(19)
the displacement derived from it shall be symmetrical about
0=0. Now, by Eq. (17) and (11),

b, d
Uy = Z) [T]n(kzr) —an E]n(klr)] cosn@
n=

~ —(20)
- na, d .
Ug = Z [—]n(k1r) —b, d—]n(kzr)] sinn@ — =(21)
n=0 r r
The factors c, are the unknown coefficients which must be
evaluated.

The following boundary conditions are applied at the
surface of the cylinder:

pi +ps = —[rr] at r
=a, ——(24)
U, r+ U = U at r
=aq, ——(25)
And
[r0] =[rz] =0 atr = a. ———(26)
z
——
g ’
=
e — ]
a
2
<t
Fig. 3
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substitution from Eqgs. (18), (19), (20), (22), (23), and (21),
the boundary condition Egs. (24), (25), and (26), for the nth
mode solving these equations simultaneously for c¢,. The
result is

Cn = —Poen (=" sinup, exp(jnn), T
--@7

Mapping to Radial Displacement

The displacement of the cylinder is now represented by
both a radial and angular displacement in (32) and (33).
Recall that the perimeter of the cylinder is expressed from
(1) as p'=a+bf(@',t) with the radial displacement
given by bf (@', t). The radial and angular displacement can
be mapped into only radial displacement by setting

bf(@,t) = u, (@' = @o,t)  ————— (28)

Where @, is the angular shift corresponding to the angular
component of displacement, uy . Frombasic geometry (see
Fig. 4) and an application of Taylor series about @,

5, - 1@ =000
uy(9', 1) ug (9, 1)
= - @
a a
- —(29)
Solving for @,
B = up(9',1)
07 a+uy(,t)
ug(@',t) L
- a
- (30)
Y
B
f@;gj \s)nD
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v

Fig. 4:. Mapping Radial Displacement
Since uy(@',t) < a. And substituting (30) into (28) gives
ug(9',t)
bf(@r,t)= uT(Q)I_@T't)' _—
- (31

Rewriting u, and uy with time dependence explicitly
shown

u.(0',t) = Z Uy cos(wgt + 6,,) cos (n@")
n=0

--32)
ug(@',t) = Z Ugn cos(Wut + 05,) sin (n@")
" —(33)
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Where U, ,and Ug,are the magnitudes of the coefficients
for the n™ mode given by the expressions in brackets in (20)
and (21), respectively, and 6, ,and 6 are the respective
phases of these coefficients. Substituting (32)and (33) into
31).

When only one mode has significant displacement,
however, for the n" mode simplifies to

bf = Uy, ,COS(wgt + 6,,) COS |n| @’

B UgnCOS(Wat + 657)
a

Sin(n(Z)'))

-— 39
this expression should be expanded in a Fourier series about
. The coefficients, A,,(t) , of the expansion can then be
used in the TM or TE electromagnetic solution to obtain the
time-varying scattered field. Takingb = U,,, we can
expand f (@', t)in a Fourier series about @' .

III. SIMULATIONS

Doppler Response

Fig. 6 shows the calculated Doppler spectrum of the
backscattered field with TM incidence for n=2 mode. The
spectrum is similar to a frequency modulated signal with a
low index of modulation. The spectrum has frequency
components at harmonics of the incident acoustic frequency
of which the first is by far the largest. Other acoustic modes
produce a similar Doppler spectrum where the frequency
components are at harmonics of the vibration frequency and
the first component is still the most significant. When the
frequency of the incident acoustic wave is not close to a
resonant frequency of the cylinder, it behaves as a rigid
cylinder. Consequently, there is negligible displacement at
the surface of the cylinder, and the magnitude of the
Doppler spectrum is also negligible. However, when' the
frequency of the incident acoustic wave is close to a
resonance of the object, the mode corresponding to this
resonance is excited and a measurable Doppler spectrum
results.

Excitation at Resonance

Here, the magnitude of the first harmonic of the Doppler
spectrum in the backscatter field is calculated as a function
of the incident acoustic frequency. This illustrate the effect
of resonance on the scattered Doppler spectrum. Fig. 7
show measured and computed first harmonic of the
scattered Doppler spectrum for the cylinders of various
material in air.
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Fig. 6: Fourier transform of backscattered Doppler spectrum
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The doppler response of the scattered field 1§ p
against acoustic frequency. This is highly sensitive to
resonances in the cylinder. Note that the n=2 mode is
resonant at the lowest frequency, followed by the n=1
andn=3 modes. Hence, by acoustically vibrating the
cylinder over a wide range of frequencies, the Doppler
response will have significant Doppler components only at
the mechanical resonant frequencies of the cylinder.

Fig. 7 show the scattered doppler spectrum for Steel
cylinder of radius Scm for mode n=1 and 2. The young
modulus is 200 X 10° Pascal, possoinratio is 0.28, density
is 7.7 glem’.

Doppler Response For Steel Cylinder For n=1 Mode
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Fig. 7 (a): Doppler Response For Steel Cylinder For n=1 Mode

Doppler Response For Steel Cylinder For n=2 Mode
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Fig. 7 (b): Doppler Response For Steel Cylinder For n=2 Mode
Here ,the profile of three cylinders of Aluminium, Steel and
Brass is presented. If we have some knowledge of their
pattren of doppler response and magnitude in advance, then
we can easily detect the buried cylinders.

Three different mode of excitation of cylinder of different
materials is given in the Table 1. In each mode cylinder has
different resonant frequency and magnitude of doppler
response. Resonant frequency, magnitude of doppler
response and difference between 1 and 2™ harmonic of
doppler response are the factors that differentiate the
cylinder of different material. All these properties of
different material are shown in Table 1.

This undesirable result is offset by realizing that in a
practical scenario the buried objects of interest are likely to
be metallic or plastic shells which will have significantly
larger displacements (and lower resonant frequencies) than
the virtually rigid, solid objects considered here.
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Doppler Response for Aluminium
Cylinder

M | X1=Prop | Reso | Magnit | Diffe
od | agation nant | ude of | rence
e | Constant | Freq | Dopple | Betw
No | *Radius | uenc r een
y | Respon | 1
(KHz | se(dB) and
) 2nd
Harm
onic
n= 1.43 2.82 58 5dB
1
n= 1.174 2.32 71 0.5d
2 B
n= 1.83 3.61 36 3dB
3

Table 1: Doppler Response for Aluminium Cylinder

IV. CONLUSION

In this work, the analytical Doppler spectrum of an
acoustically vibrated circular cylinder is examined
and which is strongly dependent upon the cylinder’s
mechanical resonances. An analytical solution for the
bistatic scattering from a deformed cylinder is
derived using a perturbation method. The Doppler
spectrum consist of harmonics of the incident
acoustic frequency where the first harmonic is the
most significant. Also, the first harmonic only
becomes measurable when the cylinder is excited
near a mechanical resonance. These results
indicatethat acoustically vibrating an object at its
resonant frequencies and measuring the Doppler
scattered response monostatically or bistatically
could provide an effective method for detecting and
identifying buried objects of different metals. Afer
analysing the signature of different metals, it is
concluded that the signature of metal buried under
the ground have very sharp response, than as it
happens in case of steel that can be property of an
alloy. From the signature reflected from the different
metals buried under the ground, it obsereved that the
profile of that metal including amplitude doppler
response for resonant frequency and its harmonic are
found different for different metal where it is
concluded using the profile of the reflected signature,
we can identify the metal of the buried objects.
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