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Abstract--In this paper the idea of using acoustically 

induced Doppler spectra as a means for metallic object 

detection and identification is introduced. Acousto-EM 

wave interaction occurs when an electromagnetic wave 

scatters from an object under acoustic illumination. The 

incident acoustic wave causes a boundary deformation 

within the metallic cylinder. The acoustically vibrating 

cylinder gives rise to a frequency modulated scattered 

electromagnetic field which is a function of the 

cylinder’s natural resonance frequency and both the 

electromagnetic and acoustic source parameters. 

Results indicate that the scattered Doppler frequencies 

correspond to the mechanical vibration frequencies of 

the cylinder, and the sidelobe Doppler spectrum level is, 

to the first order, linearly proportional to the degree of 

deformation. The prior knowledge of doppler responses 

and signature of each metal help us to detect and 

identify the buried metallic cylinder. 

Keywords: - Electromagnetic Scattering, Acoustics, 

Metallic cylinders, Doppler spectrum, MATLAB. 

I. INTRODUCTION 

 
Ground penetrating radars [3] have been used for detection 

and identification of buried objects. For civilian 

applications such radars are used to locate underground 

pipes, conduits, and cables, while military applications 

include mine detection and clearing abandoned military 

practice ranges of unexploded ordinance (UXO). If an 

identifiable Doppler spectrum is unique for the buried 

objects, corresponding to unique mechanical modes of the 

objects, then improvement in detection and identification of 

the objects is possible. In this approach,[4] object detection 

is based on the small changes in ground displacement when 

a buried object is introduced. The proposed scenario is 

shown in Fig. 1 In which an acoustic source launches an 

acoustic wave in the soil, mechanically exciting the buried 

objects, and electromagnetic radar measures the received 

electromagnetic spectrum from the vibrating objects. 

Significant displacement of an object only occurs when the 

object is excited at one of its acoustic resonances. Hence, 

the scattered electromagnetic Doppler spectrum will be 

composed of frequencies corresponding to the object's 

acoustic resonances. The frequency location of an object's 

resonances depends upon the object's shape and material 

properties and is generally different for different objects. In 

this technique, both acoustic and electromagnetic receivers 

are used to detect ground vibrations. As a feasibility study, 

we will examine, analytically, the Doppler scattering from a 

vibrating metallic circular cylinder in a homogeneous 

surrounding medium. Perturbation theory is an established 

analytical approach for scattering solutions and was applied 

by Rayleigh [5] and Maxwell [6] to certain scalar field 

problems. These methods have found application in 

electromagnetic scattering from rough surfaces [7, 8], 

cylinders [9, 10 and 11] and spheres [12, 13].  

 

Fig. 1: Setup for object detection 

I. ANALYTICAL DEVELOPMENT 

Here, the bistatic scattered field from a perfectly conducting 

circular cylinder with arbitrary deformation and illuminated 

by an electromagnetic plane wave is formulated. An�����  

time dependence for electromagnetic waves and an �����  

time dependence for acoustic waves is understood in all 

expressions representing waves and is suppressed.  

TM Mode 

Consider an incident TM plane wave impinging upon a 

perfectly conducting, slightly deformed circular cylinder as 

shown in Fig. 2. For a vibrating cylinder whose cross 

section shape is varying with time, the scattered field will 

be time-varying which gives rise to the scattered Doppler 

spectrum. The perimeter of the cylinder’s surface can be 

expressed in polar coordinates as 

 
Fig. 2 
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�� = 
 + �
�∅�, �� 																																													− − − − − �1� 

Where 
 is the unperturbed cylinder radius, 
�∅′, �� is a 

periodic and smooth function of  ∅′, and � is a perturbation 

constant assumed to be much smaller than the wavelength. 

The standard method for the computation of the scattered 

field from a circular cylinder is the eigen-function 

expansion of the total field. Following the development in 

[13], the incident plane wave propagating along the x-

direction with a polarization parallel to the cylinder’s axis 

can be expressed as 

��� = 	��������∅ = 	 � �− �!"!�#����!∅∞

!$�∞ 					− − − −
− �2� 

 

Where # is the wavenumber. When there is no perturbation 

on the surface (i.e.,� = 0 ), the scattered field is given by 

��� =	 � �− �! "!�#
�'!�(��#
� '!�(��#����!∅ 		− − − −∞

!$�∞ − −�3�		 
If a small perturbation is introduced on the boundary, the 

scattered field may be expanded in terms of a perturbation 

series in	#�. To the first order in, we may write 

 

��� =	 � �− �! "!�#
�'!�(��#
� �1 + *!#��'!�(��#����!∅∞

!$�∞ − −�4� 
 

Where the *! ’s are unknown coefficients to be determined 

using the boundary condition ��� +	��, = 0 on the surface 

of the perturbed cylinder. This expression is, of course, a 

permissible solution of Maxwell’s equations since it 

satisfies both the wave equation and the radiation condition. 

Using Taylor series expansion, the eigen-functions in (2) 

and (4) can also be approximated to the first order in #�, 

i.e., 

 -!�#�′� = 	 -!.#�
 + �
�∅′, ���/≈ 	-!�#
� + #�
�∅′, ��-!′ �#
� 					− −�5� 

Where -!  represents the Bessel or Hankel function of nth 

order. Applying the boundary condition at the surface of the 

cylinder 

� �− �!2"!�#
� + #�
�∅�, ��"!� �#
�3��!∅45
!$�5

= 	 � �− �! "!�#
�'!�(��#
� �15
!$�5+ *!#�� 6'!�(��#
�

+ #�
�∅�, ��'!�(�4�#
�7��!∅4 							− −− �6� 

Neglecting the �#��( term and using the Wronskian 

relationship for Bessel functions results in the following 

expression: 

 

� �− �!*!"!�#
���!∅′∞

!$�∞
=	2 
�∅′, ��9#
 � �− �! ��!∅′

'!�(��#
�
∞

!$�∞ 			− −
− − − −�7� 

Now if 
�∅′, �� has a Fourier series expansion with respect 

to ∅′ 

�∅′, �� = 	 � ;<�����<∅′∞

<$�∞ 																											− − − −�8� 

 

and is inserted into (7), the resulting solution for the 

coefficients, *!, is 

 

*!��� = 	 2� �!>?9#
"!�#
� � �− �@ ;!�@���'@�(��#
� 											− − − �9�∞

@$�∞  

Hence for a given displacement function,	
�∅′, ��, the *! ’s 

calculated from (9) can be used in (4) to yield the bistatic 

scattered field at any angle . In this derivation it is 

implicitly assumed that the time rate of variations of 
�∅′, �� is much slower than the electromagnetic frequency 

so that relativistic effects can be neglected. Under this 

assumption, a Fourier transform of the time-varying 

scattered field will provide the scattered Doppler spectrum. 

 

II. ACOUSTIC VIBRATION OF A SOLID 

CYLINDER 

Mathematical Formulation for Displacement 

In order to calculate the deformation of a circular cylinder 

due to a time-harmonic incident acoustic wave, the acoustic 

scattering from the cylinder must be evaluated. An 

interesting aspect of acoustic scattering from solid objects 

is that mechanical waves within the solid are excited which 

consist of both transverse shear waves and longitudinal 

compressional waves. The equation of motion for a solid 

elastic medium can be written [17] 

The wave inside the cylinder will be represented by suitable 

solution of the equation of motion of a solid elastic 

medium, which may be written as 

�B + 2C�∇∆ − C∇ × �2G� = �? H(IH�( 						− − − − − �10� ��1 − J��1 + J��1 − 2J�∇�∇. I� − �2�1 + J�∇ × �∇ × I�
= 	 �? H(IH�( 																												− − − −�11� 

Where �? is the density of the scatterer, u is the 

displacement, and �	 and J	are Young’s modulus and 

Poisson’s ratio, respectively. Solutions to this equation for a 

solid cylinder of infinite length are of the form [16] 

Where  ∆= ∇ ∙ I																																																									 − − − − − �12� 
And 2G = ∇ × I 
From Eq. (14) can be derived the equations, 

∇(∆= .�?B + 2C/ H(∆H�( 																																− − − − − �13� 
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And 

∇(�2G� = M�?C N H(�2G�H�( 																																− − − −�14� 

Which define the wave velocities 

O? = P�B + 2C��? Q?( = R ��1 − J��?�1 + J��1 − 2J�S
?( 							− −�15� 

And 

O( = M C�?N
?( =	 R �2�?�1 + J�S

?( 																					− − − −�16� 

Solution of Eq. (10) can be found by assuming that 

displacement can be derived from a scalar and a vector 

potential: I = −∇Ψ + ∇ × ;.																																															 − − − −− �17� 
The displacements thus can be thought of as the sum of two 

displacements, one associated with compressional waves 

and other with shear waves. If we assume that potentials 

satisfy the equations, 

∇(
Ψ = T 1O?(U H(

ΨH�( 																																															− − − −
− �18� 

And 

∇(; = 	T 1O((UH(;H�( 																																																					− −
− −�19� 

the displacement derived from it shall be symmetrical about 

θ=0. Now, by Eq. (17) and (11),  

IV = � RW�!X "!�#(X� − 
! YYX "!�#?X�S OZ[W\∞

!$] 						
− −�20� 

I^ = � RW
!X "!�#?X� − �! YYX "!�#(X�S [_WW\∞

!$] 					− −�21� 

The factors O! are the unknown coefficients which must be 

evaluated. 

The following boundary conditions are applied at the 

surface of the cylinder:  `� + `� = −2XX3														
�				X= 
,																					 − −�24� 
 I�,			V + I�,			V = IV 													
�				X= 
,																										 − −�25� 
And 2X\3 = 2Xa3 = 0											
�	X = 
.																												 − − − �26� 

 
Fig. 3 

 

By the conditions of symmetry, 2Xa3 = 0 everywhere.Upon 

substitution from Eqs. (18), (19), (20), (22), (23), and (21), 

the boundary condition Eqs. (24), (25), and (26), for the nth 

mode solving these equations simultaneously for O!. The 

result is 

 O! = −b]c!�− �!>?[_Wd! exp� d!� ,																− −− −�27� 

 
Mapping to Radial Displacement 

The displacement of the cylinder is now represented by 

both a radial and angular displacement in (32) and (33).  

Recall that the perimeter of the cylinder is expressed from 

(1) as  �� = 
 + �
�∅�, �� with the radial displacement 

given by	�
�∅�, ��. The radial and angular displacement can 

be mapped into only radial displacement by setting 

 �
�∅�, �� = 	IV�∅� − ∅], �� 																											− − − − − �28� 
 

Where ∅] is the angular shift corresponding to the angular 

component of displacement, I∅ . Frombasic geometry (see 

Fig. 4) and an application of Taylor series about ∅] 

∅] = 	I∅�∅� − ∅], ��
 	
≈ 	 I∅�∅�, ��
 −	∅] I∅� �∅�, ��
 									− −�29�	 

Solving for ∅] 

∅] = 	 I∅�∅�, ��
 + I∅� �∅�, �� 	
≈ 	I∅�∅�, ��
 																																	− −− �30� 

 

 
Fig. 4: Mapping Radial Displacement 

 

Since I∅� �∅�, �� ≪ 
. And substituting (30) into (28) gives 

�
�∅�, �� = 	 IV T∅� − I∅�∅�, ��
 , �U 	.																												− −
− �31� 

Rewriting IV and I∅ with time dependence explicitly 

shown 

IV�∅�, �� = 	� iV,! cosmno� + \�,!p cos	�W∅�� 														5
!$] − −�32� 

I∅�∅�, �� = 	� i∅,! cosmno� + \∅,!p sin	�W∅�� 													5
!$] − −�33� 
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Where iV,!and i∅,!are the magnitudes of the coefficients 

for the nth mode given by the expressions in brackets in (20) 

and (21), respectively, and \�,!and \∅,!are the respective 

phases of these coefficients. Substituting (32)and (33) into 

(31). 

When only one mode has significant displacement, 

however, for the n
th

 mode simplifies to        

�
 = 	iV,!COSmno� + \�,!p *vw xWy∅�

− i∅,!*vwmno� + \∅,!p
 w_W�W∅��z{						
− −		�34� 

this expression should be expanded in a Fourier series about 

. The coefficients, Am(t)  , of the expansion can then be 

used in the TM or TE electromagnetic solution to obtain the 

time-varying scattered field.  Taking	� = 	iV,!, we can 

expand 
�∅�, ��in a Fourier series about ∅� .  
III. SIMULATIONS 

Doppler Response 

Fig. 6 shows the calculated Doppler spectrum of the 

backscattered field with TM incidence for n=2 mode. The 

spectrum is similar to a frequency modulated signal with a 

low index of modulation. The spectrum has frequency 

components at harmonics of the incident acoustic frequency 

of which the first is by far the largest. Other acoustic modes 

produce a similar Doppler spectrum where the frequency 

components are at harmonics of the vibration frequency and 

the first component is still the most significant.   When the 

frequency of the incident acoustic wave is not close to a 

resonant frequency of the cylinder, it behaves as a rigid 

cylinder. Consequently, there is negligible displacement at 

the surface of the cylinder, and the magnitude of the 

Doppler spectrum is also negligible. However, when the 

frequency of the incident acoustic wave is close to a 

resonance of the object, the mode corresponding to this 

resonance is excited and a measurable Doppler spectrum 

results. 

Excitation at Resonance 

Here, the magnitude of the first harmonic of the Doppler 

spectrum in the backscatter field is calculated as a function 

of the incident acoustic frequency. This illustrate the effect 

of resonance on the scattered Doppler spectrum.  Fig. 7 

show measured and computed first harmonic of the 

scattered Doppler spectrum for the cylinders of various 

material in air. 

 
Fig. 6: Fourier transform of backscattered Doppler spectrum 

 The doppler  response of the scattered field is plotted 

against acoustic frequency. This is highly sensitive to 

resonances in the cylinder.  Note that the n=2 mode is 

resonant at the lowest frequency, followed by the n=1 

andn=3 modes. Hence, by acoustically vibrating the 

cylinder over a wide range of frequencies, the Doppler 

response will have significant Doppler components only at 

the mechanical resonant frequencies of the cylinder. 

Fig. 7 show the scattered doppler spectrum for Steel 

cylinder of radius 5cm for mode n=1 and 2. The young 

modulus is 200 × 10| Pascal, possoinratio is 0.28, density 

is 7.7 g/cm
3
. 

 
Fig. 7 (a): Doppler Response For Steel Cylinder For n=1 Mode 

 

 
Fig. 7 (b): Doppler Response For Steel Cylinder For n=2 Mode 

Here ,the profile of three cylinders of Aluminium, Steel and 

Brass is presented. If we have some knowledge of their 

pattren of doppler response and magnitude in advance, then 

we can easily detect the buried cylinders.    

Three different mode of excitation of  cylinder of different 

materials is given in the Table 1. In each mode cylinder has 

different resonant frequency and magnitude of doppler 

response. Resonant frequency, magnitude of doppler 

response and difference between 1
st
 and 2

nd
 harmonic of 

doppler response are the factors that  differentiate the 

cylinder of different material. All these properties of 

different material are shown in Table 1.   

This undesirable result is offset by realizing that in a 

practical scenario the buried objects of interest are likely to 

be metallic or plastic shells which will have significantly 

larger displacements (and lower resonant frequencies) than 

the virtually rigid, solid objects considered here. 
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Doppler Response for Aluminium 

Cylinder 

M
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Constant
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uenc
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) 

Magnit

ude of 

Dopple

r 

Respon

se(dB) 

Diffe

rence 

Betw
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1
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and 

2
nd

 

Harm

onic 

n=

1 

1.43 2.82 58 5dB 

n=

2 

1.174 2.32 71 0.5d

B 

n=

3 

1.83 3.61 36 3dB 

 
Table 1: Doppler Response for Aluminium Cylinder 

 

IV. CONLUSION 

In this work, the analytical Doppler spectrum of an 

acoustically vibrated circular cylinder is examined 

and which is strongly dependent upon the cylinder’s 

mechanical resonances. An analytical solution for the 

bistatic scattering from a deformed cylinder is 

derived using a perturbation method. The Doppler 

spectrum consist of harmonics of the incident 

acoustic frequency where the first harmonic is the 

most significant. Also, the first harmonic only 

becomes measurable when the cylinder is excited 

near a mechanical resonance. These results 

indicatethat acoustically vibrating an object at its 

resonant frequencies and measuring the Doppler 

scattered response monostatically or bistatically 

could provide an effective method for detecting and 

identifying buried objects of different metals. Afer 

analysing the signature of different metals, it is 

concluded that the signature of metal buried under 

the ground have very sharp response, than as it 

happens in case of steel that can be property of  an 

alloy. From the signature reflected from the different 

metals buried under the ground,  it obsereved that the 

profile of that metal including amplitude doppler 

response for resonant frequency and its harmonic are 

found different for different metal where it is 

concluded using the profile of the reflected signature,  

we can identify the metal of the buried objects. 
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