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Abstract: 

In this paper, a steady two-dimensional 

Magnetohydrodynamic (MHD) mixed convection 

stagnation point flow of an incompressible, viscous 

and electrically conducting micropolar  fluid toward 

a stretching/shrinking vertical surface with 

prescribed surface heat flux is investigated. The 

effects of induced magnetic field and the radiative 

heat flux are taken into account. The transformed 

differential equations are solved numerically by a 

finite-difference scheme, known as Keller-box 

method. The results for skin friction, heat transfer 

and induced magnetic field coefficients are obtained. 

The velocity, microrotation and temperature 

distribution for various parameters are shown 

graphically. The present results are compared with 

existing results in literature and establish to be in 

good conformity. 

Key words: micropolar fluid, stagnation point, 

stretching/shrinking sheet, radiative heat flux, 

induced magnetic field. 

AMS subject classification: 76W05, 76S05 

 
1. Introduction 

The theory of microrotation fluids, first 

studied by Eringen (1966), displays the 

effects of local rotary inertia and couple 

stresses, can explain the flow behavior due 

to the microscopic effects arising from the 

local structure and micromotions of the fluid 

elements in which the classical Newtonian 

fluids theory is inadequate. The behaviors of 

non-Newtonian fluids such as polymeric 

fluids, liquid crystals, paints, animal blood, 

colloidal fluids, ferro-liquids etc. can be 

described with the help of a mathematical 

model using this theory. Several researchers 

have investigated the theory and its 

applications such as Ariman et al. (1973, 

1974), Lukaszewick (1999), Eringen (2001), 

Ishak et al.(2007, 2008) etc. 

The stagnation point flow is important in 

many practical applications such as cooling 

of nuclear reactors, cooling of electronic 

devices, extrusion of plastic sheets, paper 

production, glass blowing, metal spinning 

and drawing plastic films and many 

hydrodynamic processes. Laminar mixed 

convection in two-dimensional stagnation 

flows around heated surfaces in the case of 

arbitrary surface temperature and heat flux 

variations was examined by Ramachandran 

et al. (1988). They established a reverse 

flow developed in the buoyancy opposing 

flow region and dual solutions are found to 

exist for a certain range of the buoyancy 

parameter.  Devi et al. (1991) extended this 

work for unsteady case. Lok et al.(2005) 

studied the case for a vertical surface 

immersed in a micropolar fluid. Chin et al. 

(2007), Ling et al. (2007) and Ishak et al. 
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(2007, 2008) reported the existence of dual 

solutions in the opposing flow case. 

The study of the boundary layer flow under 

the influence of a magnetic field with the 

induced magnetic field was considered by 

few authors. Raptis and Perdikis (1984) 

studied the MHD free convection boundary 

layer flow past an infinite vertical porous 

plate. Later, Kumari et al. (1990) considered 

prescribed wall temperature or heat flux, and 

Takhar et al. (1993) studied the time 

dependence of a free convection flow. Ali et 

al. (2011) discussed MHD mixed convection 

boundary layer flow under the effect of 

induced magnetic field. Hydromagnetic 
thermal boundary layer flow of a 
perfectly conducting fluid was observed 
by Das (2011). Mukhopadhyay et al. 
(2012) discussed Lie group analysis of 
MHD boundary layer slip flow past a 
heated stretching sheet in presence of 
heat source/sink. Shit and Halder (2012) 
examined thermal radiation effects on 
MHD viscoelastic fluid flow over a 
stretching sheet with variable viscosity. 
Heat transfer effects on MHD viscous flow 
over a stretching sheet with prescribed 
surface heat flux was studied by Adhikari 
and Sanyal (2013).  

In this paper, a steady MHD mixed 

convection stagnation point flow of an 

incompressible micropolar fluid towards a 

stretching/shrinking vertical surface with 

prescribed surface heat flux is studied. The 

effects of induced magnetic field and the 

radiative heat flux are taken into account. 

2. Mathematical Formulation 

Consider a steady two-dimensional MHD 

flow of an incompressible electrically 

conducting micropolar fluid near the 

stagnation point on a vertical plate with 

prescribed surface heat flux with a velocity 

proportional to the distance from the fixed 

origin O of a stationary frame of reference 

(x,y), as shown in figure 1. A uniform 

induced magnetic field of strength H0 is 

assumed to be applied in the positive y-

direction, normal to the vertical plate. The 

normal component of the induced magnetic 

field H2 vanishes when it reaches the wall 

and the parallel component H1 approaches 

the value of H0. It is assumed that the 

velocity of the flow external to the boundary 

layer 𝑈 = 𝑎𝑥  and the surface heat flux 

𝑞𝑤   = 𝑏𝑥  of the plate are proportional to 

the distance x from the stagnation point, 

where a, b are constants. 

 

Fig 1: Sketch of the Problem 

The magnetic Reynolds number of the flow 

is taken to be large enough so that the 

induced magnetic field is not negligible. 

Under the Boussinesq and the boundary 

layer approximations the governing 

equations are given by     

∂u

∂x
+

∂v

∂y
= 0,                       (1) 

∂H1

∂x
+

∂H2

∂y
= 0 ,                    (2)  

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
 +  

μ+κ

ρ
 

∂2u

∂y2                                                                                                          

+
κ

ρ

∂N

∂y
+ 

μ0

ρ
 H1

∂H1

∂x
+ H2

∂H1

∂y
  

U=ax, 
q

w
=bx
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y
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O
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− 
μ0

ρ
He

∂He

∂x
+ gβ(T − T∞),           (3) 

u
∂H1

∂x
+ v

∂H1

∂y
− H1

∂u

∂x
 

−H2
∂u

∂y
= α1

∂2H1

∂y2  ,                     (4)   

ρj  u
∂N

∂x
+ v

∂N

∂y
 = γ 

∂2N

∂y2
 

−κ  2N +
∂u

∂y
 ,            (5)                          

u
∂T

∂x
+ v

∂T

∂y
 

= α
∂2T

∂y2 −
1

ρCp

∂qr

∂y
 ,                   (6) 

Subject to the boundary conditions  

                                                                                                        

𝑎𝑡  𝑦 = 0:  u = 𝑢𝑤 x = cx,                                                                                                                         

 v = 𝑣𝑤(𝑥),   N = −n
∂u

∂y
 , 

  
∂T

∂y
= −

qw

k
,   

∂H1

∂y
= H2 = 0 ,   (7) 

 𝑎𝑡    𝑦 → ∞:     u → ue x = ax,                   
N → 0,        T → T∞, 

H1 = He x = H0
𝑎𝑥

𝜈
 .          (8) 

where u and v are the velocity components 

along the x and y-axis respectively, uw(x) 

the wall shrinking or stretching velocity 

(c>0 for stretching , c<0 for shrinking and 

c=0 for static wall), vw(x) the wall mass flux 

velocity, N is the microrotation or angular 

velocity whose direction of rotation is in the 

xy plane, µ is the dynamic viscosity, 𝜇0 is 

the magnetic permeability,  ρ is the density 

of the fluid,  j is the micro-inertia per unit 

mass, i.e., micro-inertia density, γ is the spin 

gradient viscosity, 𝜅  is the vortex viscosity 

or micro-rotation viscosity, T is the fluid 

temperature in the boundary layer, β is the 

thermal expansion coefficient, α is the 

thermal diffusivity, 𝛼1 is the magnetic 

diffusivity,   k is he thermal conductivity, qw 

is the wall heat flux. Note that n is a 

constant such that 0≤n≤1. When n=0 then 

N=0 at the wall represents concentrated 

particle  flows in which the microelements 

close to the wall surface are unable to rotate. 

This case is also known as the strong 

concentration of microelements. When 

n=1/2, we have the vanishing of anti-

symmetric part of the stress tensor and 

denotes weak concentration of 

microelements, the case n=1 is used for the 

modeling of turbulent boundary layer flows. 

We shall consider here both cases of n=0 

and n=1/2.  Assume γ =  μ +
κ

2
 j =

μ  1 +
K

2
 j,   where K =

κ

μ
   is the material 

parameter. This assumption is invoked to 

allow the field of equations that predicts the 

correct behavior in the limiting case when 

the microstructure effects become negligible 

and the total spin N reduces to the angular 

velocity [Ahmadi (1976), Yuce(1989)].  

By using the Rosseland approximation the 

radiative heat flux 𝑞𝑟  in y-direction is given 

by [Brewster (1992)] 

𝑞𝑟 = −
4𝜎𝑠

3𝑘𝑒

𝜕𝑇4

𝜕𝑦
 ,                       (9) 

where 𝜎𝑠 is the Stefan-Bolzmann constant 

and  𝑘𝑒  the mean absorption coefficient. It 

should be noted that by using Rosseland 

approximation, the present study is limited 

to optically thick fluids. 

Expanding 𝑇4 in a Taylor series about 𝑇∞ as:  

𝑇4 = 𝑇∞
4 + 4𝑇∞

3 𝑇 − 𝑇∞  

+6𝑇∞
2 𝑇 − 𝑇∞ 2 + ⋯  . 

Neglecting higher-order terms beyond the 

first degree in 𝑇 − 𝑇∞  , we get 

𝑇4 ≅ 4𝑇∞ 
3 𝑇 − 3𝑇∞

4 ,                 (10) 

137

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80173



 
  

  

 

In view of the equations (9) and (10), the 

equation (6) becomes 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+

16𝜎𝑠 𝑇∞
3

3𝑘𝑒𝜌  𝐶𝑝

𝜕2𝑇

𝜕𝑦2
   ,     (11) 

Introduce a Stream function Ψ as follows                                                  

u =
∂Ψ

∂y
 ,   v = −

∂Ψ

∂x
 .               (12) 

The momentum, angular momentum and 

energy equations can be transformed into the 

corresponding ordinary differential 

equations by the following transformation: 

η =  
a

ν
 y,    f η =

Ψ

x aν
 ,    p η =

N

ax 
a

ν

  , 

θ η =
k(T−T∞)

qw
 

a

ν
,      H1 = H0

ax

ν
 hˊ η ,     

H2 = −H0 
a

ν
  h η ,                  (13) 

where   the independent dimensionless 

similarity variable. Thus u and v are given 

by 𝑢 = 𝑎𝑥𝑓ˊ 𝜂 ,   𝑣 = − 𝑎𝜈 𝑓 𝜂 . 

Substituting variables (13) into equations (2) 

to (6), we get the following ordinary 

differential equations:                                                                                       

 1 + K fˊˊˊ + ffˊˊ + 1 − fˊ2 + Kpˊ 

+M hˊ2 − h hˊˊ − 1 + 𝜆𝜃 = 0,          (14) 

𝛼2 ˊˊˊ + 𝑓 ˊˊ −  𝑓ˊˊ = 0,               (15)   

                                                                                                     

 1 +
𝐾

2
 pˊˊ + 𝑓pˊ − p𝑓ˊ 

−𝐾 2p + 𝑓ˊˊ = 0,              (16) 

1

Pr
 1 +

4

3F
 θˊˊ + fθˊ − θfˊ = 0,       (17) 

subject to the boundary conditions (7) and 

(8) which become       

 𝑓 0 = 𝑠,   𝑓ˊ 0 = 𝑒,  𝑝 0 = −𝑛𝑓ˊˊ 0 ,                                                                                                                                    
 𝜃ˊ 0 = −1,      0 = ˊˊ 0 = 0,                                                                                                                                  
𝑎𝑠   𝜂 → ∞:  𝑓ˊ 𝜂 → 1, 𝑝 𝜂 → 0 

𝜃 𝜂 → 0,    ˊ 𝜂 → 1.                   (18) 

Here fˊ η , p η , hˊ η and θ(η) give 

(dimensionless) the velocity, the angular 

velocity, the induced magnetic field and 

temperature respectively. In the above 

equations, primes denote differentiation with 

respect to η;    𝑗 =
𝜈

𝑎
   the characteristic 

length [Rees & Bassom (1996)], Pr =
ν

α
 the 

Prandtl number,  𝑀 =
𝜇𝑒𝐻0

2

𝜌𝜈2    the magnetic 

parameter or Hartmann number, 𝛼2 =
𝛼1

𝜈
  is 

the reciprocal of the magnetic Prandtl 

number,    e=c/a the velocity ratio 

parameter,  𝑠 = −
𝑣𝑤  𝑥 

 𝑎𝜈  
  the constant mass 

flux with s>0 for suction and s<0 for 

injection, 𝜆 =
𝐺𝑟𝑥

𝑅𝑒𝑥
5/2  the Buoyancy or mixed 

convection parameter, 𝐹 =
𝑘𝑒  𝑘

4𝜎𝑠𝑇∞
3   the 

radiation parameter, 𝐺𝑟𝑥 =
𝑔𝛽 (𝑇𝑤−𝑇∞)𝑥3

𝜈2
   the 

local Grashof  number and 𝑅𝑒𝑥 =
𝑈𝑥

𝜈
   is the 

local Reynolds number.  Here λ is a constant 

and the negative and positive values of λ 

correspond to the opposing and assisting 

flows respectively.  When λ=0, i.e., when 

Tw=T∞ is for pure forced convection flow. 

Ramchandran et al (1988) considered the 

present problem with M=0 and K=0. 

         The skin friction coefficient  Cf and the 

local Nusselt number Nux are defined as 

𝐶𝑓 =
𝜏𝑤

𝜌𝑈2/2
,  𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
 ,          (19) 

where the wall shear stress 𝜏𝑤  and the heat 

flux  𝑞𝑤   are given by  
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 𝜏𝑤 =   𝜇 + 𝜅 
𝜕𝑢

𝜕𝑦
+ 𝜅𝑁 

𝑦=0
,  

 𝑞𝑤 = −𝑘  
𝜕𝑇

𝜕𝑦
 
𝑦=0

,                  (20) 

with k being the thermal conductivity. Using 

the similarity variables (10), we get  

1

2
𝐶𝑓𝑅𝑒𝑥

1/2
=  1 + (1 − 𝑛)

𝐾

2
 𝑓ˊˊ 0 ,      

 
𝑁𝑢𝑥

𝑅𝑒𝑥
1/2 =

1

𝜃(0)
  .                      (21) 

3. Numerical Solutions: 

     The equations  (14) – (17) subject to the 

boundary conditions (18) are solved 

numerically using an implicit finite-

difference scheme known as the Keller-box 

method [Cebeci & Bradshaw (1988)]. The 

method has following four basic steps:  

 i) Reduce Equations (14)-(17) to  first order 

equations;                                                        

ii) Write the difference equations using 

central differences;                                                  

iii) Linearise the resulting algebraic 

equations by Newton’s method and write 

them in Matrix-vector form;                                   

iv) Use the Block-tridiagonal elimination 

technique to solve the linear system. 

The details are also described by Adhikari 
and Sanyal (2013). 
 

4. Results & Discussion:  

The step size ∆η of η and the edge of the 

boundary layer η∞ had to be adjusted for 

different values of parameters to maintain 

accuracy within the interval 0≤η≤η∞ , where 

η∞ is the boundary layer thickness, we run 

the programme in MATLAB upto the 

desired level of accuracy. The validity of the 

numerical results has been compared with 

the results of Bachok and Ishak (2009) and 

they are found to be in a very good 

agreement, as presented in Table 1.  

Table1: Values of f
//
(0) and 1/θ(0) for 

different values of Pr 

(when λ=1, K=0, n=0.5, M=0, ∆ η=0.02) 

Pr Bachok & 
Ishak(2009) 

 Present result 
(for s=0,e=0, 
n=0) 

f//(0) 1/θ 0  f//(0) 1/θ 0  

0.7 
1.0 
7.0 
10.0 

1.8339 
1.7338 
1.4037 
1.3711 

0.7776 
0.8781 
1.6913 
1.9067 

1.8339 
1.7339 
1.4037 
1.3712 

0.7776 
0.8781 
1.6913 
1.9072 

 

The velocity, induced magnetic field, 

angular velocity and temperature 

distribution are given in the figures 1 to 17 

for different parameters.  Figures 1 and 5 

respectively depict that the velocity profiles 

for the assisting flow decrease with the 

increase of M, Pr, K and F; whereas for the 

opposing flow the velocity profiles decrease 

with M, increase with Pr and F but almost 

no change with K. With the increase of s, 

figure 6 describes that the velocity profiles 

for the assisting flow enhance near boundary 

and after η=1 it reduce, but for the opposing 

flow the velocity profiles increase. For the 

both flows velocity profiles raise with α2 

(fig.7).  Figures 8 to 12 illustrate that the 

induced magnetic field distribution for the 

assisting flow boost with M, Pr, K, F and s; 

but for the opposing flow it decrease with 

M, increase with Pr and s, almost no change 

with K and increase very slowly with F. 

Angular velocity profiles increase for the 

both flows with s and M (figs. 13 and 14). 

Temperature distribution for the both flows 

increase with M (fig 15), decrease with F 

and Pr (figs.16 and 17). Figures 18 and 19 

represent that the Skin friction coefficient 

and the local Nusselt number decrease with 

M for the both flows. 
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Fig.2 : Velocity distribution for different M 
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=0.7, F=0.05, 
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n=0.5, e=0.5, s=0.5
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Fig 3 Velocity distribution for different P
r
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=10, K=0.1,
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Fig.4: Velocity distribution for different K

 

 

K=0, 0,1 for opposing flow

(=-0.1)

K=0, 0.1 for assisting flow 
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=10, n=0.5, e=0.5,

s=0.5
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Fig.5: Velocity Distribution for different F

 

 

F=0.01, 0.05, 0.09 for assisting flow

(=1)

F=0.01, 0.05, 0.09 for opposing flow

(=-0.1)

P
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K=0.1, 
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Fig.6: Velocity distribution for different s

 

 

s=-1, 0, 1 for assisting flow

(=1.0)

P
r
=0.7, M=1, F=0.05,  K=0.1,  

2
=10,

 n=0.5, e=0.5, 

s=-1, 0, 1 for opposing flow

(=-0.1)
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Fig 7: velocity distribution for different 
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2
= 5, 10, 15 

for assisting flow

(=1)

P
r
=0.7, M=1, F=0.05,  K=0.1,  s=0.5,

 n=0.5, e=0.5, 


2
= 5, 10, 15 for opposing flow

(=-0.1)
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Fig.8: Induced magnetic field for different M 
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Fig 9:  Induced Magnetic field for different P
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Fig 10: Induced Magnetic field for different K
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Fig 11: Induced Magnetic field for different F
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Fig.12: Induced magnetic field for different s
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Fig 13: Angular velocity for different s 
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 Solid lines: for assisting flows (=1)

Dotted lines: for opposing flows (=-0.1)

P
r
=0.7, M=1, K=0.1, 

2
=10,

n=0.5, e=0.5, F=0.05
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Fig.15: Temperature distribution for different M 
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Fig 16: Temperature distribution for different F
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Fig 17: Temperature distribution for different  P
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Fig18: Skin friction coefficient for different M
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Fig. 19: Local Nusselt number for different M
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