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Abstract: - Micro-electromechanical systems (MEMS) are Freescale's enabling technology for 

sensors. MEMS based sensor products provide an interface that can sense, process and/or control 

the surrounding environment. Freescale's MEMS-based sensors are a class of devices that builds 

very small electrical and mechanical components on a single chip. Silicon-based MEMS (Micro 

Electro-Mechanical Systems) devices have a high potential of making a new field of applications 

for   defense equipment. The design of sensors has increasingly made use of micro 

electromechanical systems (MEMS) technology. In this paper we focus on personal navigation 

device for defense department. Innovative approaches for improved Accuracy in navigation 

research, and led to the development of the Global Positioning System (GPS).  
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INTRODUCTION:-  
 

The mechanical design of 

microscopic mechanical systems, even 

simple systems, first requires an 

understanding of the mechanical behaviour 

of the various elements used. While the 

basic rules of mechanical dynamics are still 

followed in the miniaturised world, many of 

the materials used in these structures are not 

well mechanically characterised. For 

example, most MEMS systems use 

polysilicon to build mechanical structures. 

Polysilicon is a familiar material in the IC 

world, and is compatible with IC 

manufacturing  processes. 

Microelectromechanical systems (MEMS) 

devices are manufactured using similar 

microfabrication techniques as those used to 

create integrated circuits.  

 

In the most general form, MEMS 

consist of mechanical microstructures, 

microsensors, microactuators and 

microelectronics, all integrated onto the 

same silicon chip. This is shown 

schematically in Figure . 

 
Figure: MEMS components. 

 
Figure: - MEMS Technology Diagram 
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MEMS fabrication techniques 

 

MEMS fabrication uses many of the 

same techniques that are used in the 

integrated circuit domain such as oxidation, 

diffusion, ion implantation, LPCVD, 

sputtering, etc., and combines these 

capabilities with highly specialized 

micromachining processes. Production of a 

MEMS device consists of two phases - 

phase 1 involves the fabrication of structures 

and elements on the silicon wafer, and phase 

2 involves packaging and assembly of 

individual silicon chips. The assembled chip 

products are mounted on PC Boards for 

insertion into electronics systems. Some of 

the most widely used micromachining 

processes are 

 

 Bulk micromachining - whereby 

the bulk of the Si substrate is etched 

away to leave behind the desired 

micromechanical elements. Bulk 

micromachining involves the 

removal of part of the bulk substrate. 

It is a subtractive process that uses 

wet anisotropic etching or a dry 

etching method such as reactive ion 

etching (RIE), to create large pits, 

grooves and channels. Materials 

typically used for wet etching 

include silicon and quartz, while dry 

etching is typically used with silicon, 

metals, plastics and ceramics. 

 

  Wafer bonding - Wafer bonding is 

a micromachining method that is 
analogous to welding in the 
macroscale world and involves the 
joining of two (or more) wafers 
together to create a multi-wafer 
stack. There are three basic types of 
wafer bonding including: direct or 
fusion bonding; field-assisted or 
anodic bonding; and bonding using 
an intermediate layer. In general, all 
bonding methods require substrates 

that are very flat, smooth, and clean, 
in order for the wafer bonding to be 
successful and free of voids.. 

permits an Si substrate (aka 'wafer') 

to be attached to another substrate, 

typically Si or glass, to construct 

more complex 3D microstructures 

such as microvalves and 

micropumps. 

 

 

 Surface micromachining - Surface 

micromachining involves processing 

above the substrate, mainly using it 

as a foundation layer on which to 

build. It was initiated in the 1980‘s 

and is the newest MEMS production 

technology. where the structures are 

built on top of the substrate and not 

inside of it, enabling fabrication of 

multi-component, integrated 

micromechanical structures not 

possible using bulk micromachining 

 

 Micromolding - a process using 

molds to define the deposition of the 

structural layer, and enabling the 

manufacture of high aspect ratio 3D 

microstructures in a variety of 

materials such as ceramics, glasses, 

metals, and polymers 

 

 LIGA - LIGA is an important 

tooling and replication method for 

high-aspect-ratio microstructures. a 

micromolding process that combines 

extremely thick-film resists (>1 mm 

thick) and high-energy x-ray 

lithography, to enable the 

manufacture of high-aspect-ratio 3D 

microstructures in a wide variety of 

materials 

 

 High aspect ratio micromachining 

(HAR) - combines aspects of both 

surface and bulk micromachining to 

allow for silicon structures with 
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extremely high aspect ratios through 

thick layers of silicon. HARMEMS 

technology provides over-damped 

mechanical response and exceptional 

signal-to-noise ratio to address 

customer requirements. 
 

 

Application 

 

Guidance and navigation have been 

critical for military success since the dawn 

of civilization. Accuracy was the focus of in 

the Defense navigation research, and led to 

the development of the Global Positioning 

System (GPS). The current focus in the 

Defense is the development of portable 

localization systems, particularly for GPS-

denied or -compromised environments. 

These include mountainous or urban 

environments, situations in which there are 

dismounted soldiers, and with unmanned 

aerial vehicles.  

In the Electrical and Computer Engineering 

& the Robotics Engineering has been 

combining radio frequency (RF) velocity 

and range sensors with miniaturized 

microelectromechanical systems (MEMS) 

inertial measurement units (IMUs) to 

achieve superior navigation accuracy. This 

paper includes the development and 

demonstration of such micro and nano scale 

low-power navigation sensors, MEMS IMU 

technology and integrated navigation 

systems techniques that allow long term 

(hours to days) GPS-denied precision 

navigation.  

―This is an exciting vertically 

integrated research project that involves 

both sensor development of the MEMS and 

RF sensors as well as system integration to 

demonstrate the gains these sensors will 

enable for localization applications,‖ said 

Electrical and Computer Engineering 

Professor Tamal Mukherjee, who heads this 

research project.  

The primary focus of their research 

is applying personal navigation systems to a 

situation in which a soldier is dismounted. In 

this case, the navigation sensor is placed in 

the soldier‘s shoe or boot sole in order to 

determine his or her location with high 

accuracy. Other applications of this research 

include navigation for unmanned aerial 

vehicles (UAV), specifically the relative 

navigation for ―flocks‖ of small UAVs, 

allowing them to navigate together without 

colliding like a flock of birds.  

 

Shoe-Based Sensors: Working   

 

The team is building on a decade of 

research by ICES Director Gary Fedder and 

Mukherjee on chip-scale inertial sensors that 

meet the power and size requirements for 

portable applications. However, they suffer 

from a rapid growth in position error due to 

inherent bias drift and noise in the sensors. 

To limit this error growth, Fedder and 

Mukherjee are teaming with Electrical and 

Computer Engineering professors Dan 

Stancil and Jeyanandh Paramesh on 

developing a RF velocity sensor that detects 

when a shoe touches the ground. This is 

used for zero-updating (ZUPting) the 

navigation system that Robotics Institute 

professor and National Robotics 

Engineering Consortium researcher Alonzo 

Kelly is developing to bound this error 

growth. 
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Figure: - Smart Shoe 

 

As seen in the pictures on the 

following page, three kinds of shoe sensors 

are implanted in a shoe. The RF terrain-

relative velocity (TRV ) sensor mounted on 

the heel and toe is used for ZUPting the 

position computed from the accelerometers 

in the MEMS-based inertial measurement 

unit (IMU ). The magnetometers in the IMU 

are used for ZUPting the heading computed 

from the gyroscope on the IMU. Shoe 

relative sensors (SRS ) on one shoe form a 

constellation which can then be used to find 

the location of a moving shoe with respect to 

a stationary shoe. The team anticipates 

initial demos using the IMU and TRV 

sensor, with the SRS sensor used to meet the 

final project goal of accuracy down to 1 m 

after 10 hours in a GPS-denied environment. 

―This is a very challenging goal, one that 

took about a dozen years for GPS to get 

close to; we hope to get there in just 3 years‖ 

said Tamal Mukherjee. 
 

 

 

 

 
 

Figure: -    TRV Terrain-Relative 

Velocity Sensor 

 

Figure: - SRS Shoe Relative Sensors 
 

 
Figure: - IMU Inertial Measurementunit 
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SUMMARY 

 

Automotive sensors and actuators 

represent a major market for the MEMS 

technology. However, there are many 

development issues that must be brought 

into balance for a sensor technology to be 

commercially viable for many applications. 

This paper has examined the sensor 

development issues unique to the Defense 

industry. The future is bright for even 

greater penetration of these devices in 

Defense products.  
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