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Abstract— The primary objective of this scientific article is to 

emphasize the educational importance of evaluating computation 

times of mathematical functions within didactic software, 

particularly in the context of Gfortran's implementation. We 

argue that understanding the computational efficiency of these 

functions is crucial to enhance the teaching and learning of 

mathematics. 

Furthermore, we discuss various alternatives to reduce 

computation times, particularly when dealing with polynomial 

expressions. By providing a comprehensive analysis of these 

alternatives, we aim to offer educators valuable insights into how 

to optimize mathematical software to improve computational 

efficiency. Overall, this article contributes to the ongoing 

conversation on the significance of computation times in the 

teaching and learning of mathematics and provides practical 

solutions for optimizing the implementation of didactic software. 

 

Keywords— Computing time, transcendental functions, 

mathematical speech, mathematical  functions, GFortran. 

 

I.  INTRODUCTION  

Generally, in numerical analysis courses, error analysis is 

important. The accuracy provided by any numerical algorithm 

is in terms of absolute or relative error [1, 2]. However, in some 

cases the accuracy obtained is expressed in terms of the 

significant digits [3, 4].  

The basic books of numerical analysis that are used in 

universities do not mention about the time invested in 

executing an algorithm. This happens because the books are 

influenced by the school mathematical discourse (DME in 

spanish). The DME has been described as a language that is 

hegemonic, utilitarian, and lacks meaning, arguments, and 

procedures centered on mathematical objects [5, 6]. In simpler 

terms, it is a language that remains unchanged despite 

innovations made in mathematics and teaching. This is 

because the concepts taught are not modified, only the way 

they are taught. In fact, many textbooks used in classrooms are 

based on the DME framework [7, 8, 9]. 

Knowing the execution times invested by digital devices is 

important because it allows algorithms to be optimized. 

Computing times have many implications for power 

consumption [10]. This is very important in embedded systems 

which do not have a math coprocessor. For example, the 

importance of knowing computation times is important in 

digital signal processing [11]. In this case, the aim is to obtain 

computation times as short as possible. Several factors 

intervene to reduce these times that depend on how the 

hardware is designed [12, 13]. It also depends on the arithmetic 

that is used. In embedded systems where there is no math co-

processor, fixed-point arithmetic is used [14-17]. In [18] some 

basics of fixed-point arithmetic are presented through didactic 

examples. 

Another alternative to reduce computing times is to use 

Horner's rule to reduce the multiplications generated by large 

exponents. Horner's rule is a computational procedure that is 

highly effective in determining the numerical outcome of a 

polynomial function. This algorithmic method involves a 

stepwise approach to evaluate a polynomial by means of a 

sequence of additions and multiplications, in which each term 

of the polynomial is factored in a way that reduces the degree 

of the polynomial by one [19,20]. By utilizing this strategy, 

Horner's rule allows for the computation of a polynomial's 

value in a quick and efficient manner, making it a valuable tool 

in various scientific and mathematical contexts [21]. 

In [22] the Horner algorithm was used to reduce computing 

times in polynomial expressions that were the result of solving 

differential equations. Likewise, it can be shown that using 

Horner's rule, a time reduction can be obtained in the 

approximation of the Cumulative distribution function (CDF) 
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obtained in [23] where there is a polynomial of order 9 against 

the CDF obtained in [24] since a hyperbolic tangent is used 

This paper is organized as follows. In Section II, we 

introduce the some basics of Fortran. In section III presents the 

discusion about of computing times for intrinsec matematical 

functions for Fortran. Finally, a concluding remark is given in 

Section IV.  

  

II. SOME BASICS OF FORTRAN   

    Fortran has a rich and extensive history, and it continues to 

evolve to this day. The first proposal for the language was 

created by J.W. Backus in 1953, and the first international 

standard was approved in 1966. In 2018, the most recent major 

standard revision, Fortran 2018, was published, introducing 

new features. The next major revision, previously known as 

Fortran 2020 and now referred to as Fortran 202X, is currently 

under development [25-28]. 

    Fortran, which stands for Formula Translation, is a widely 

used procedural, imperative programming language that is 

particularly well-suited for scientific computing and numerical 

computation. Since 2003, the standard version of Fortran has 

also supported object-oriented programming. In addition, 

Fortran 2008 introduced co-arrays that enable Single Program 

Multiple Data (SPMD) parallel programming. To discuss the 

Fortran language in general, this tag must be assigned to all 

relevant questions. Other specific tags can be added for 

compilers, language revisions, and particular aspects of usage 

[26-28]. 

     Intrinsic functions are functions that are implemented 

within the compiler. Some intrinsic functions are included in 

the runtime library, such as the libgfortran library, so source 

code for these functions may be available. Other intrinsic 

functions may not actually exist as a function at all, and 

instead, the compiler will insert assembly or machine code at 

the location where the function is called [29]. 

Although intrinsic functions are not typically implemented in 

Fortran itself, but in a systems programming language such as 

C or C++, some intrinsic functions may call code that is written 

in assembly language for a specific CPU architecture. 

Additionally, many intrinsic functions call functions from the 

standard C library, such as the GLIBC implementation [29]. 

Some intrinsic functions can theoretically be written in 

Fortran, while others cannot. For example, functions with an 

indeterminate number of arguments like "min" or type 

transformation functions like "transfer" cannot be written in 

Fortran. Many intrinsic functions use internal information that 

is only available to the compiler, such as the content of the 

array descriptor or the polymorphic object descriptor. 

Table 1 shows some of the intrinsic mathematical functions. 

Note that the arc functions have not been included. In all cases 

it is possible to have the real type. 

  

 

 

 

 

 

 
 

 

  TABLE I. FORTRAN INTRINSEC MATEMATICAL FUNCTIONS 
 

Function Meaning Arg type Return type 

ABS(x) absolute value of x INT/REAL INT/REAL 

SQRT(x) square root of x REAL REAL 

SIN(x) sine of x REAL REAL 

COS(x) cosine of x REAL REAL 

TAN(x) tangent of x REAL REAL 

EXP(x) exponential of x REAL REAL 

LOG(x) natural logarithm of x REAL REAL 

SINH(x) hyperbolic sine of x REAL REAL 

COSH(x) hyperbolic cosine of x REAL REAL 

TANH(x) hyperbolic tangent of x REAL REAL 

 

III. NUMERICAL SUMULATIONS AND DISCUSION  

As previously mentioned, there is evidence to suggest that 

the composition of academic textbooks is influenced by DME 

[7]. This phenomenon may account for the lack of emphasis 

on computation times in basic numerical analysis textbooks 

commonly used in universities. Similarly, when examining the 

teaching of precalculus [30] in high school, a greater emphasis 

appears to be placed on the utilization of information 

technology.  

For example, the GeoGebra software is used to facilitate the 

learning of mathematics such as geometry and the study of 

functions. However, we consider that if some mathematical 

software such as Maple, Matlab, C++, Fortran, Python, among 

others, is used, it is possible to measure the time that the 

computer takes to execute a built-in function, such as the 

exponential function. This allows developing the critical 

thinking of the student since in general they are never 

questioned about the computing times invested by the didactic 

tool that is being used for the educational purpose. 

In the realm of mathematics education, the utilization of 

educational technology has become increasingly prevalent. 

One such example is the GeoGebra software, which has been 

widely adopted as a tool to facilitate the learning of 

mathematical concepts, such as geometry and the study of 

functions. However, we believe that it is essential to expand 

the scope of mathematical software used in the classroom to 

include programs such as Maple, Matlab, C++, Fortran, 

Python, and other related software applications. 

By incorporating such software into the curriculum, it is 

possible to measure the time that the computer takes to execute 

a built-in function, such as the exponential function. This, in 

turn, can be used to develop the critical thinking skills of the 

student. It is crucial to prompt students to question the 

computing times invested by the didactic tool being utilized 

for educational purposes, which is often overlooked in 

traditional learning environments. 

Of the functions that are presented in table 1, the 

computation times have been measured for the circular and 

hyperbolic trigonometric functions, as well as the logarithm 

and the exponential function. Figure 1 reports the computing 

times for all circular trigonometric functions. In this figure it 

can be seen that the computation times range from 10 to less 

than 15 nanoseconds. 
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Figure 1. CPU time for circular trigonometric functions. 

 

 

     Figure 2 shows that the time used for the exponential 

function is on average 11 ns while for the natural logarithm 

function it is 15 ns. 

 

 
Figure 2. CPU time for exponential and logarithm functions. 

 
 

Figure 3 shows the computation times for the hyperbolic 

trigonometric functions. It can be seen that in general the times 

used to evaluate these functions is greater than in the case of 

circular trigonometric functions. This is to be expected since 

hyperbolic functions are found in terms of exponential 

functions. However, if we wish to make a more significant 

comparison, it will be possible to verify that the times used to 

evaluate are greater in hyperbolic, logarithmic and 

transcendental functions than in circular trigonometric 

functions; this will happen if we use Taylor series expansions. 

In the case of the Taylor series expansion for the exponential 

and logarithm function, we find that the power series includes 

both even and odd exponents, which is why the computation 

times increase. 

 

 
  

Figure 3. CPU time for hyperbolic trigonometric functions. 

 

  Finally, throughout the entirely of the simulations conducted, 

it was necessary to divide the given interval into one hundred 

separate parts to achieve the desired level of precision. 

Moreover, each individual point within this interval was 

evaluated a total of one hundred thousand times to ensure 

accuracy in the resulting data. This approach was taken to 

ensure the reliability of the simulations and to provide 

comprehensive and accurate insights into behavior of the 

system under study. Overall, these measures were essential for 

generating high-quality results and advancing our 

understanding of the underlying mathematical principles at 

play. 

  It is left to the reader or student to determine the computation 

times used by a computer when implementing a polynomial. 

Likewise, you are also urged to carry out measurements if the 

polynomials are modified using Horner's Rule [19, 20] or using 

fixed-point arithmetic [18]. 

In this paper the computing system utilized in the 

simulations comprised an Intel Core Pentium(R) Intel® 

Core™ i7-7700 Central Processing Unit, operating at a 

frequency of 3.60 GHz and with 8 processing cores. The 

operating system employed was Linux Ubuntu 18.04.6 LTS, 

and the compiler utilized for code compilation was GFortran 

7.5.0. Additionally, the system was equipped with a graphics 

card, specifically the NVIDIA GeForce GTX 1050 

Ti/PCIe/SSE2, for improved graphics performance. 

 

 

IV. CONCLUDING REMARKS 

    The calculation of computation times is a crucial aspect of 

evaluating mathematical functions, particularly those that are 

intrinsic, such as polynomials. In this article, we aim to 

emphasize the significance of this process and its potential 

impact on the accuracy of the results obtained. By taking into 

account the computation time required for a function to 

execute, researchers and teachers can gain a deeper 

understanding of the function's behavior and make more 

informed decisions based on the resulting data. Therefore, it is 

essential to consider computation times as a key factor in the 

evaluation of mathematical functions. 

 

 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030182
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

293

www.ijert.org
www.ijert.org
www.ijert.org


DECLARATION OF INTERESTS STATEMENT 

   The authors declare that there are no conflicts of interest 

regarding the publication of this paper. 

 

 

ACKNOWLEDGMENTS 

    Authors would like to thank Roberto Ruiz Gomez for his 

contribution to this project. The authors are grateful to the 

anonymous referee for a careful checking of details and helpful 

comments that improved this paper. 

 
 

REFERENCES 
[1] Burden, Richard L., J. Douglas Faires, and Annette M. 

Burden. Numerical analysis. Cengage learning, 2015. 

[2] Chapra, Steven C., and Raymond P. Canale. Numerical methods for 

engineers. Vol. 1221. New York: Mcgraw-hill, 2011. 

[3] Barry, D. A., Culligan-Hensley, P.J. and Barry, S.J., Real values of the 
W-function, ACM Transactions on Mathematical Software (TOMS), 

ACM New York, NY, USA, vol. 21, no. 2, pp. 161–171, 1995. 

[4] Barry, D.A., Barry, S.J. and Culligan-Hensley, P.J., Algorithm 743: 
WAPR–A Fortran routine for calculating real values of the W-function, 

ACM Transactions on Mathematical Software (TOMS), ACM New 

York, NY, USA, vol. 21, no. 2, pp. 172–181, 1995. 
[5]  Soto, D., Gomez, K., Silva, H. y Cordero, F. Exclusión, cotidiano e 

identidad: una problemática fundamental del aprendizaje de la 

matemática. Comité Latinoamericano de Matemática Educativa, pp. 
1041-1048, 2012. 

[6] Soto, D. y Cantoral, R. Discurso matemático escolar y exclusión. Una  

visión socioepistemológica, Bolema: Boletim de Educação Matemática, 
vol. 28 no. 50, pp. 1525–1544,2014. 

[7] Uriza, R. C. and Espinosa, G. M. and Gasperini, D. R. Análisis del 

discurso matemático escolar en los libros de texto: una mirada desde la 
teorı́a socioepistemológica, Avances de Investigación en Educación 

Matemática, no. 8, pp. 9–28, 2015.  

[8] Sandoval-Hernández, Mario, Hernandez-Mendez, Sergio, Torreblanca-
Bouchan, Salvador, Diaz-Arango, Gerardo,  Actualización de contenidos 

en el campo disciplinar de matemáticas del componente propedéutico 

del bachillerato tecnológico: el caso de las funciones especiales. RIDE. 
Revista Iberoamericana para la Investigación y el Desarrollo 

Educativo 12.23 (2021). 

[9] Sandoval-Hernández, M.A., Vázquez-Leal, H., Huerta-Chua, J. Castro-
González, F.J., Filobello-Nino, U.A. Didáctica del graficado de 

funciones: el caso de las funciones piecewise. RIDE. Revista 

Iberoamericana para la Investigación y el Desarrollo Educativo 12.24 
(2022).  

[10] Anton Cervin, Fix Point Implementation of Control Algorithms”, Lund 

University. A G Przybył, Andrzej. "Fixed-point arithmetic unit with a 
scaling mechanism for FPGA-based embedded 

systems. Electronics 10.10  1164.(2021): 

[11] Roman, Kuc. Introduction to Digital Signal Processing, 1982.  

[12] J. Le Maire, N. Brunie, F. de Dinechin, J. M. Muller, Computing 
floating-point logarithms with fixed-point operations. 2016 IEEE 23nd 

Symposium on Computer Arithmetic (ARITH). IEEE, 2016. 

[13] Nikola M. Nenadic, and Svetlana B. Mladenovic. Fast division on 
fixedpoint DSP processors using Newton-Raphson method. EUROCON 

2005-The International Conference on" Computer as a Tool". Vol. 1. 

IEEE, 2005. 
[14] Bishop, David. Fixed point package user’s guide. Packages and bodies 

for the IEEE (2006): 1076-2008. 

[15] Yates, Randy, Fixed-point arithmetic: An introduction, Digital Signal 
Labs. vol. 81, no. 83, pp. 15, 2009. 

[16] Pyeatt, Larry and Ughetta, William, ARM 64-Bit Assembly Language, 

Newnes, 2019. 
[17] Application Note 33, Fixed Point Arithmetic on the ARM, document 

number: ARM DAI 0033A, September 1996, 

https://developer.arm.com/documentation/dai0033/a/ 
[18] Sandoval-Hernández, M. A., Velez-López, G. C., Vázquez-Leal, H., 

Filobello-Nino, U. A., Morales-Alarcón, G. J., De-Leo-Baquero, E.,  

Bielma-Pérez, A.C, Sampieri-González, C.E., Pérez-Jácome-Friscione, 
J.E., Contreras- Hernández, A.D., Álvarez-Gasca, O.,  Sánchez-Orea, J., 

and Cuellar-Hernández, L. Basic Implementation of Fixed-Point 

Arithmetic in Numerical Analysis. International Journal of Engineering 
Research y Technology, 12. 01 (2023), 313-318. 2023. 

[19] Uspensky, J. V., Maquieira, J. C., & Varela, J. P. Teoría de ecuaciones. 

Limusa. 1987. 
[20] Horner, W. G. A new method of solving numerical equations of all 

orders, by continuous approximation. In Abstracts of the Papers Printed 
in the Philosophical Transactions of the Royal Society of London (No. 

2, pp. 117-117). London: The Royal Society. (1833, December). 

[21] T. Fukushima, Precise and fast computation of Lambert W-functions 
without transcendental function evaluations. Journal of Computational 

and Applied Mathematics 244 (2013), 77-89, 2013.  

[22] Vazquez-Leal, H., Sandoval-Hernandez, M. A., Filobello-Nino, U., & 
Huerta-Chua, J. The novel Leal-polynomials for the multi-expansive 

approximation of nonlinear differential equations. Heliyon, 6(4), e03695. 

2020.  

[23] Sandoval-Hernandez, M. A., Vazquez-Leal, H., Filobello-Nino, U., & 

Hernandez-Martinez, L. New handy and accurate approximation for the 

Gaussian integrals with applications to science and engineering. Open 
Mathematics, 17(1), 1774-1793.  2019.  

[24] Vazquez-Leal, H., Castaneda-Sheissa, R., Filobello-Nino, U., 

Sarmiento-Reyes, A., and Sanchez Orea, J. High accurate simple 
approximation of normal distribution integral. Mathematical problems 

in engineering, 2012.  

[25] Backus, John. The history of Fortran I, II, and III. ACM Sigplan Notices, 
165-180.  13.8 (1978):  

[26] Fortran 2003– Last Working Draft. Gnu.Org. Retrieved May 10, 2014.   

[27] Fortran 2018. ISO. Retrieved November 30, 2018. 
[28] Adams, J. C., Brainerd, W. S., Martin, J. T., Smith, B. T., & Wagener, J. 

L. Fortran 90 Handbook. New York: McGraw-Hill, 1992.   

[29] Kong, Soonho, Sicun Gao, and Edmund M. Clarke. Floating-point Bugs 
in Embedded GNU C Library. Carnegie-Mellon Univ Pittsburgh PA 

School of Computer Science, 2013. 

[30] Stewart J., Precálculo,  Thomson, 2012 

 

 

  
 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030182
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

294

www.ijert.org
www.ijert.org
www.ijert.org

