
Measurement of Computing Times using the

Intrinsic Functions of Gfortran

M.A. Sandoval-Hernandez1, U.A. Filobello-Nino2, H. Vazquez-Leal2,3,*, G.C. Velez-Lopez4,

G.J. Morales-Alarcon5
,
 F. Martinez-Barrios1, J.C. Vichi-Mendoza1, J. Chong-Duran1,

C.E. Sampieri-González2, R. Castaneda-Sheissa2, J.E. Pretelin-Canela2, A.E. Gasca-Herrera2,

J.E. Perez-Jacome Friscione2, N. Bagatella-Flores6.
1 Centro de Bachillerato Tecnológico industrial y de servicios No. 190, Av. 15 Col. Venustiano Carranza 2da Sección,

Boca del Río, 94297, Veracruz, México.
2 Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N,

 Xalapa, 91000, Veracruz, México.
3 Consejo Veracruzano de Investigación Científica y Desarrollo, Av. Rafael Murillo Vidal No. 1735,

 Cuauhtémoc, Xalapa, 91069, Veracruz, México.
4 Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. María Tonantzintla,

72840, Puebla, México.
5 Instituto de Psicología y Educación, Universidad Veracruzana, Agustín Melgar 2,

 col. 21 de Marzo, Xalapa, 91010 Veracruz, México.
6 Facultad de Física, Universidad Veracruzana, Paseo No. 112. Desarrollo Habitacional Nuevo Xalapa,

Xalapa, 91097, Veracruz, México.

Abstract— The primary objective of this scientific article is to

emphasize the educational importance of evaluating computation

times of mathematical functions within didactic software,

particularly in the context of Gfortran's implementation. We

argue that understanding the computational efficiency of these

functions is crucial to enhance the teaching and learning of

mathematics.

Furthermore, we discuss various alternatives to reduce

computation times, particularly when dealing with polynomial

expressions. By providing a comprehensive analysis of these

alternatives, we aim to offer educators valuable insights into how

to optimize mathematical software to improve computational

efficiency. Overall, this article contributes to the ongoing

conversation on the significance of computation times in the

teaching and learning of mathematics and provides practical

solutions for optimizing the implementation of didactic software.

Keywords— Computing time, transcendental functions,

mathematical speech, mathematical functions, GFortran.

I. INTRODUCTION

Generally, in numerical analysis courses, error analysis is

important. The accuracy provided by any numerical algorithm

is in terms of absolute or relative error [1, 2]. However, in some

cases the accuracy obtained is expressed in terms of the

significant digits [3, 4].

The basic books of numerical analysis that are used in

universities do not mention about the time invested in

executing an algorithm. This happens because the books are

influenced by the school mathematical discourse (DME in

spanish). The DME has been described as a language that is

hegemonic, utilitarian, and lacks meaning, arguments, and

procedures centered on mathematical objects [5, 6]. In simpler

terms, it is a language that remains unchanged despite

innovations made in mathematics and teaching. This is

because the concepts taught are not modified, only the way

they are taught. In fact, many textbooks used in classrooms are

based on the DME framework [7, 8, 9].

Knowing the execution times invested by digital devices is

important because it allows algorithms to be optimized.

Computing times have many implications for power

consumption [10]. This is very important in embedded systems

which do not have a math coprocessor. For example, the

importance of knowing computation times is important in

digital signal processing [11]. In this case, the aim is to obtain

computation times as short as possible. Several factors

intervene to reduce these times that depend on how the

hardware is designed [12, 13]. It also depends on the arithmetic

that is used. In embedded systems where there is no math co-

processor, fixed-point arithmetic is used [14-17]. In [18] some

basics of fixed-point arithmetic are presented through didactic

examples.

Another alternative to reduce computing times is to use

Horner's rule to reduce the multiplications generated by large

exponents. Horner's rule is a computational procedure that is

highly effective in determining the numerical outcome of a

polynomial function. This algorithmic method involves a

stepwise approach to evaluate a polynomial by means of a

sequence of additions and multiplications, in which each term

of the polynomial is factored in a way that reduces the degree

of the polynomial by one [19,20]. By utilizing this strategy,

Horner's rule allows for the computation of a polynomial's

value in a quick and efficient manner, making it a valuable tool

in various scientific and mathematical contexts [21].

In [22] the Horner algorithm was used to reduce computing

times in polynomial expressions that were the result of solving

differential equations. Likewise, it can be shown that using

Horner's rule, a time reduction can be obtained in the

approximation of the Cumulative distribution function (CDF)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030182
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

291

www.ijert.org
www.ijert.org
www.ijert.org

obtained in [23] where there is a polynomial of order 9 against

the CDF obtained in [24] since a hyperbolic tangent is used

This paper is organized as follows. In Section II, we

introduce the some basics of Fortran. In section III presents the

discusion about of computing times for intrinsec matematical

functions for Fortran. Finally, a concluding remark is given in

Section IV.

II. SOME BASICS OF FORTRAN

 Fortran has a rich and extensive history, and it continues to

evolve to this day. The first proposal for the language was

created by J.W. Backus in 1953, and the first international

standard was approved in 1966. In 2018, the most recent major

standard revision, Fortran 2018, was published, introducing

new features. The next major revision, previously known as

Fortran 2020 and now referred to as Fortran 202X, is currently

under development [25-28].

 Fortran, which stands for Formula Translation, is a widely

used procedural, imperative programming language that is

particularly well-suited for scientific computing and numerical

computation. Since 2003, the standard version of Fortran has

also supported object-oriented programming. In addition,

Fortran 2008 introduced co-arrays that enable Single Program

Multiple Data (SPMD) parallel programming. To discuss the

Fortran language in general, this tag must be assigned to all

relevant questions. Other specific tags can be added for

compilers, language revisions, and particular aspects of usage

[26-28].

 Intrinsic functions are functions that are implemented

within the compiler. Some intrinsic functions are included in

the runtime library, such as the libgfortran library, so source

code for these functions may be available. Other intrinsic

functions may not actually exist as a function at all, and

instead, the compiler will insert assembly or machine code at

the location where the function is called [29].

Although intrinsic functions are not typically implemented in

Fortran itself, but in a systems programming language such as

C or C++, some intrinsic functions may call code that is written

in assembly language for a specific CPU architecture.

Additionally, many intrinsic functions call functions from the

standard C library, such as the GLIBC implementation [29].

Some intrinsic functions can theoretically be written in

Fortran, while others cannot. For example, functions with an

indeterminate number of arguments like "min" or type

transformation functions like "transfer" cannot be written in

Fortran. Many intrinsic functions use internal information that

is only available to the compiler, such as the content of the

array descriptor or the polymorphic object descriptor.

Table 1 shows some of the intrinsic mathematical functions.

Note that the arc functions have not been included. In all cases

it is possible to have the real type.

 TABLE I. FORTRAN INTRINSEC MATEMATICAL FUNCTIONS

Function Meaning Arg type Return type

ABS(x) absolute value of x INT/REAL INT/REAL

SQRT(x) square root of x REAL REAL

SIN(x) sine of x REAL REAL

COS(x) cosine of x REAL REAL

TAN(x) tangent of x REAL REAL

EXP(x) exponential of x REAL REAL

LOG(x) natural logarithm of x REAL REAL

SINH(x) hyperbolic sine of x REAL REAL

COSH(x) hyperbolic cosine of x REAL REAL

TANH(x) hyperbolic tangent of x REAL REAL

III. NUMERICAL SUMULATIONS AND DISCUSION

As previously mentioned, there is evidence to suggest that

the composition of academic textbooks is influenced by DME

[7]. This phenomenon may account for the lack of emphasis

on computation times in basic numerical analysis textbooks

commonly used in universities. Similarly, when examining the

teaching of precalculus [30] in high school, a greater emphasis

appears to be placed on the utilization of information

technology.

For example, the GeoGebra software is used to facilitate the

learning of mathematics such as geometry and the study of

functions. However, we consider that if some mathematical

software such as Maple, Matlab, C++, Fortran, Python, among

others, is used, it is possible to measure the time that the

computer takes to execute a built-in function, such as the

exponential function. This allows developing the critical

thinking of the student since in general they are never

questioned about the computing times invested by the didactic

tool that is being used for the educational purpose.

In the realm of mathematics education, the utilization of

educational technology has become increasingly prevalent.

One such example is the GeoGebra software, which has been

widely adopted as a tool to facilitate the learning of

mathematical concepts, such as geometry and the study of

functions. However, we believe that it is essential to expand

the scope of mathematical software used in the classroom to

include programs such as Maple, Matlab, C++, Fortran,

Python, and other related software applications.

By incorporating such software into the curriculum, it is

possible to measure the time that the computer takes to execute

a built-in function, such as the exponential function. This, in

turn, can be used to develop the critical thinking skills of the

student. It is crucial to prompt students to question the

computing times invested by the didactic tool being utilized

for educational purposes, which is often overlooked in

traditional learning environments.

Of the functions that are presented in table 1, the

computation times have been measured for the circular and

hyperbolic trigonometric functions, as well as the logarithm

and the exponential function. Figure 1 reports the computing

times for all circular trigonometric functions. In this figure it

can be seen that the computation times range from 10 to less

than 15 nanoseconds.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030182
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

292

www.ijert.org
www.ijert.org
www.ijert.org

Figure 1. CPU time for circular trigonometric functions.

 Figure 2 shows that the time used for the exponential

function is on average 11 ns while for the natural logarithm

function it is 15 ns.

Figure 2. CPU time for exponential and logarithm functions.

Figure 3 shows the computation times for the hyperbolic

trigonometric functions. It can be seen that in general the times

used to evaluate these functions is greater than in the case of

circular trigonometric functions. This is to be expected since

hyperbolic functions are found in terms of exponential

functions. However, if we wish to make a more significant

comparison, it will be possible to verify that the times used to

evaluate are greater in hyperbolic, logarithmic and

transcendental functions than in circular trigonometric

functions; this will happen if we use Taylor series expansions.

In the case of the Taylor series expansion for the exponential

and logarithm function, we find that the power series includes

both even and odd exponents, which is why the computation

times increase.

Figure 3. CPU time for hyperbolic trigonometric functions.

 Finally, throughout the entirely of the simulations conducted,

it was necessary to divide the given interval into one hundred

separate parts to achieve the desired level of precision.

Moreover, each individual point within this interval was

evaluated a total of one hundred thousand times to ensure

accuracy in the resulting data. This approach was taken to

ensure the reliability of the simulations and to provide

comprehensive and accurate insights into behavior of the

system under study. Overall, these measures were essential for

generating high-quality results and advancing our

understanding of the underlying mathematical principles at

play.

 It is left to the reader or student to determine the computation

times used by a computer when implementing a polynomial.

Likewise, you are also urged to carry out measurements if the

polynomials are modified using Horner's Rule [19, 20] or using

fixed-point arithmetic [18].

In this paper the computing system utilized in the

simulations comprised an Intel Core Pentium(R) Intel®

Core™ i7-7700 Central Processing Unit, operating at a

frequency of 3.60 GHz and with 8 processing cores. The

operating system employed was Linux Ubuntu 18.04.6 LTS,

and the compiler utilized for code compilation was GFortran

7.5.0. Additionally, the system was equipped with a graphics

card, specifically the NVIDIA GeForce GTX 1050

Ti/PCIe/SSE2, for improved graphics performance.

IV. CONCLUDING REMARKS

 The calculation of computation times is a crucial aspect of

evaluating mathematical functions, particularly those that are

intrinsic, such as polynomials. In this article, we aim to

emphasize the significance of this process and its potential

impact on the accuracy of the results obtained. By taking into

account the computation time required for a function to

execute, researchers and teachers can gain a deeper

understanding of the function's behavior and make more

informed decisions based on the resulting data. Therefore, it is

essential to consider computation times as a key factor in the

evaluation of mathematical functions.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030182
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

293

www.ijert.org
www.ijert.org
www.ijert.org

DECLARATION OF INTERESTS STATEMENT

 The authors declare that there are no conflicts of interest

regarding the publication of this paper.

ACKNOWLEDGMENTS

 Authors would like to thank Roberto Ruiz Gomez for his

contribution to this project. The authors are grateful to the

anonymous referee for a careful checking of details and helpful

comments that improved this paper.

REFERENCES
[1] Burden, Richard L., J. Douglas Faires, and Annette M.

Burden. Numerical analysis. Cengage learning, 2015.

[2] Chapra, Steven C., and Raymond P. Canale. Numerical methods for

engineers. Vol. 1221. New York: Mcgraw-hill, 2011.

[3] Barry, D. A., Culligan-Hensley, P.J. and Barry, S.J., Real values of the
W-function, ACM Transactions on Mathematical Software (TOMS),

ACM New York, NY, USA, vol. 21, no. 2, pp. 161–171, 1995.

[4] Barry, D.A., Barry, S.J. and Culligan-Hensley, P.J., Algorithm 743:
WAPR–A Fortran routine for calculating real values of the W-function,

ACM Transactions on Mathematical Software (TOMS), ACM New

York, NY, USA, vol. 21, no. 2, pp. 172–181, 1995.
[5] Soto, D., Gomez, K., Silva, H. y Cordero, F. Exclusión, cotidiano e

identidad: una problemática fundamental del aprendizaje de la

matemática. Comité Latinoamericano de Matemática Educativa, pp.
1041-1048, 2012.

[6] Soto, D. y Cantoral, R. Discurso matemático escolar y exclusión. Una

visión socioepistemológica, Bolema: Boletim de Educação Matemática,
vol. 28 no. 50, pp. 1525–1544,2014.

[7] Uriza, R. C. and Espinosa, G. M. and Gasperini, D. R. Análisis del

discurso matemático escolar en los libros de texto: una mirada desde la
teorı́a socioepistemológica, Avances de Investigación en Educación

Matemática, no. 8, pp. 9–28, 2015.

[8] Sandoval-Hernández, Mario, Hernandez-Mendez, Sergio, Torreblanca-
Bouchan, Salvador, Diaz-Arango, Gerardo, Actualización de contenidos

en el campo disciplinar de matemáticas del componente propedéutico

del bachillerato tecnológico: el caso de las funciones especiales. RIDE.
Revista Iberoamericana para la Investigación y el Desarrollo

Educativo 12.23 (2021).

[9] Sandoval-Hernández, M.A., Vázquez-Leal, H., Huerta-Chua, J. Castro-
González, F.J., Filobello-Nino, U.A. Didáctica del graficado de

funciones: el caso de las funciones piecewise. RIDE. Revista

Iberoamericana para la Investigación y el Desarrollo Educativo 12.24
(2022).

[10] Anton Cervin, Fix Point Implementation of Control Algorithms”, Lund

University. A G Przybył, Andrzej. "Fixed-point arithmetic unit with a
scaling mechanism for FPGA-based embedded

systems. Electronics 10.10 1164.(2021):

[11] Roman, Kuc. Introduction to Digital Signal Processing, 1982.

[12] J. Le Maire, N. Brunie, F. de Dinechin, J. M. Muller, Computing
floating-point logarithms with fixed-point operations. 2016 IEEE 23nd

Symposium on Computer Arithmetic (ARITH). IEEE, 2016.

[13] Nikola M. Nenadic, and Svetlana B. Mladenovic. Fast division on
fixedpoint DSP processors using Newton-Raphson method. EUROCON

2005-The International Conference on" Computer as a Tool". Vol. 1.

IEEE, 2005.
[14] Bishop, David. Fixed point package user’s guide. Packages and bodies

for the IEEE (2006): 1076-2008.

[15] Yates, Randy, Fixed-point arithmetic: An introduction, Digital Signal
Labs. vol. 81, no. 83, pp. 15, 2009.

[16] Pyeatt, Larry and Ughetta, William, ARM 64-Bit Assembly Language,

Newnes, 2019.
[17] Application Note 33, Fixed Point Arithmetic on the ARM, document

number: ARM DAI 0033A, September 1996,

https://developer.arm.com/documentation/dai0033/a/
[18] Sandoval-Hernández, M. A., Velez-López, G. C., Vázquez-Leal, H.,

Filobello-Nino, U. A., Morales-Alarcón, G. J., De-Leo-Baquero, E.,

Bielma-Pérez, A.C, Sampieri-González, C.E., Pérez-Jácome-Friscione,
J.E., Contreras- Hernández, A.D., Álvarez-Gasca, O., Sánchez-Orea, J.,

and Cuellar-Hernández, L. Basic Implementation of Fixed-Point

Arithmetic in Numerical Analysis. International Journal of Engineering
Research y Technology, 12. 01 (2023), 313-318. 2023.

[19] Uspensky, J. V., Maquieira, J. C., & Varela, J. P. Teoría de ecuaciones.

Limusa. 1987.
[20] Horner, W. G. A new method of solving numerical equations of all

orders, by continuous approximation. In Abstracts of the Papers Printed
in the Philosophical Transactions of the Royal Society of London (No.

2, pp. 117-117). London: The Royal Society. (1833, December).

[21] T. Fukushima, Precise and fast computation of Lambert W-functions
without transcendental function evaluations. Journal of Computational

and Applied Mathematics 244 (2013), 77-89, 2013.

[22] Vazquez-Leal, H., Sandoval-Hernandez, M. A., Filobello-Nino, U., &
Huerta-Chua, J. The novel Leal-polynomials for the multi-expansive

approximation of nonlinear differential equations. Heliyon, 6(4), e03695.

2020.

[23] Sandoval-Hernandez, M. A., Vazquez-Leal, H., Filobello-Nino, U., &

Hernandez-Martinez, L. New handy and accurate approximation for the

Gaussian integrals with applications to science and engineering. Open
Mathematics, 17(1), 1774-1793. 2019.

[24] Vazquez-Leal, H., Castaneda-Sheissa, R., Filobello-Nino, U.,

Sarmiento-Reyes, A., and Sanchez Orea, J. High accurate simple
approximation of normal distribution integral. Mathematical problems

in engineering, 2012.

[25] Backus, John. The history of Fortran I, II, and III. ACM Sigplan Notices,
165-180. 13.8 (1978):

[26] Fortran 2003– Last Working Draft. Gnu.Org. Retrieved May 10, 2014.

[27] Fortran 2018. ISO. Retrieved November 30, 2018.
[28] Adams, J. C., Brainerd, W. S., Martin, J. T., Smith, B. T., & Wagener, J.

L. Fortran 90 Handbook. New York: McGraw-Hill, 1992.

[29] Kong, Soonho, Sicun Gao, and Edmund M. Clarke. Floating-point Bugs
in Embedded GNU C Library. Carnegie-Mellon Univ Pittsburgh PA

School of Computer Science, 2013.

[30] Stewart J., Precálculo, Thomson, 2012

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030182
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

294

www.ijert.org
www.ijert.org
www.ijert.org

