

MCAIDS- Machine Code Analysis Intrusion Detection System

Sachin B. Jadhav
Department of CSE,

SIRT Bhopal,RGPV,India,

Abstract

 MCAIDS - Machine Code Analysis Intrusion

Detection System for blocking code-injection buffer

overflow attack messages targeting at various Internet

services such as web service. With the increasing

access of Internet,the Internet threat takes a form of

attack, targetting individuals users to gain control over

network and data. Buffer overlow is one of the most

occuring security vulnerability in computer’s world.

Buffer overflow attack typically contains executables

where as legitmate client request never contains

executables in most Internet services. MCAIDS blocks

attack by detecting the presense of code. MCAIDS uses

new data - flow analysis technique called code

abstraction. MCAIDS is signature free , thus it can

block new and unknown buffer overflow attack. This

MCAIDS simulate by using Network Simulater NS2 on

the linux platform to analyze the expected results.

Keywords - Buffer overflow, Buffer overflow attack,

Intrusion detection, Computer security, signature free.

“1 . INTRODUCTION”

Buffer overflow violates the boundary of

Computer security. Buffer overflow which is one of

the threats which occurs due to writing large amount

of data to fixed sized buffer and the data which

overruns is being adjusted to another memory region.

Although tons of research has been done to tackle

buffer overflow attacks, existing defences are still

quite limited in meeting four highly desired

requirements: (1) simplicity in maintenance; (2)

transparency to existing (legacy) server OS,

application software, and hardware; (3) resiliency to

obfuscation; (4) economical Internet-wide

deployment [1]. As a result, although several very

secure solutions have been proposed, they are not

pervasively deployed, and a considerable number of

buffer overflow attacks continue to succeed on a

daily basis.

 Existing defences are limited in meeting these

four requirements. Existing buffer overflow defences

are categorized into six classes. (A) Finding bugs in

source code. (B) Compiler extensions. (C) OS

modifications. (D) Hardware modifications. (E)

Defence-side obfuscation. (F) Capturing code

running symptoms of buffer overflow attacks [5], [6],

[7], [8]. We may briefly summarize the limitations of

these defences in terms of the four requirements as

follows: 1) Class B, C, D, and E defences may cause

substantial changes to existing (legacy) server

Operating Systems, application software, and

hardware, thus they are not transparent. Moreover,

Class E defences generally cause processes to be

terminated. As a result, many businesses do not view

these changes and the process termination overhead

as economical deployment. 2) Class F defences can

be very secure, but they either suffer from significant

runtime overhead or need special auditing or

diagnosis facilities, which are not commonly

available in commercial services. As a result, Class F

defences have limited transparency and potential for

economical deployment. 3) Class A defences need

source code, but source code is unavailable to many

legacy applications. Besides buffer overflow

defences, worm signatures can be generated and used

to block buffer overflow attack packets [9], [10],

[11]. Nevertheless, they are also limited in meeting

the four requirements, since they either rely on

signatures, which introduce maintenance overhead,

or are not very resilient to attack-side obfuscation.

To overcome above limitations the buffer overflow

attack blocker systems implementation will be

demonstrated in this paper.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

“2.NEED AND SIGNIFICANCE OF THE

WORK”

 This section demonstrate the need and

significance of the work. Here some basic definitions

have been provided about buffer overflow. This

section also demonstrate why buffer overflow occurs

and what is the impact of buffer overflow on the

Internet services.

2.1 Buffer

 In computer science, a buffer is usually a

contiguous computer memory area or block of fixed

size to store data or to hold some inputs or outputs.

This data can be integers, floating points, characters,

or even user defined data types.

2.2 Buffer overflow

 In most computer languages, a buffer is

represented as an array. If programs don’t check the

size of the user input for a buffer array and the size of

the input data is larger than the size of the buffer

array, then areas adjacent to the array will be

overwritten by the extra data. The lack of such

``bound checks’’ creates the breeding ground for

buffer overflow attacks. The general idea is to give

servers very large strings that will overflow a buffer.

It is a phenomenon to overflow a buffer so that it

overwrites the return address. When the function is

done it will jump to whatever address is on the stack.

We put some code in the buffer and set the return

address to point to it! This is a called Smashing the

stack. There are two ways to detect Buffer overflows:

one way is to look at the source code and another

way is to feed the application with huge amount of

data and check the abnormal behaviour.

2.3 Buffer-overflow attack

 A buffer-overflow attack is an attack that uses

memory-manipulating operations to overflow a

buffer which results in the modification of an address

to point to malicious or unexpected code [2].

2.4 Buffer overflow on stack

 In computer memory, a process is organized into

four regions: text, data, heap and stack. These

regions are located in different places and have

different functionalities. Figure 1 shows the

organization of a process in memory. Although all of

them are important, we only give a brief introduction

of the text, data and heap regions. We focus on the

stack region, which is the key region related to the

buffer overflow vulnerability discussed in this

project. The text region stores instructions and read-

only data. The data region consists of initialized and

uninitialized data.

 A stack is a widely used abstract data type in

computer science. A stack has the unique property of

last in, first out (LIFO), which means that the

element that is placed in last will be moved out first.

“Figure.1 Organization of Process in Memory”

 There are many operations associated with a

stack, of which the most important are PUSH and

POP. PUSH puts an element on the top of the stack

and POP takes an element from the top of the stack.

The kernel dynamically adjusts the stack size at run

time.

 Modern computer languages are high-level.

Such languages apply functions or procedures to

change a program’s execution flow. In a low-level

language (such as assembly), a jump statement

changes program flow. Unlike jump instruction,

which jumps to another place and never go back,

functions and procedures will return control to the

appropriate location in order to continue the

execution. The stack is used to achieve this effect.

More precisely, in memory, a stack is a consecutive

block that contains data, which can be used to

allocate the function’s local variables, pass function’s

parameters, and return a function’s result.

 In memory, the stack boundary is represented by

the Extended Stack Pointer (ESP) register. The ESP

points to the top of the stack. In most of

architectures, including Intel Architecture 32bit

(IA32), the ESP points to the most recently used

stack address. In other architectures, the ESP points

to the first address that is free. When a PUSH or POP

instruction is used to add or remove data,

respectively, the ESP moves to indicate where the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

new top of the stack is in memory. Based on the

different implementations, the stack can either grow

down toward the lower memory addresses or up

toward the higher memory addresses.

 Figure 2 demonstrates a simple C program, bo.c,

which contains a function called foo that illustrates

what happens in the stack when a function is called

Here, when foo is called, there are four steps that

need to be done in the stack.

(1)PUSH the parameters x and y of the function foo

backwards onto the stack.

(2)The return address, RET, is put into the stack,

Which contains the address of next machine

instruction to be executed. Once the execution of the

foo function has completed, execution returns to the

instruction address stored in RET. In our example,

the instruction address of return 0 is stored in RET.

(3)Finally, any local variable in foo (in the example

in Figure 2, array) is pushed onto the stack. Figure 3

shows the stack organization when foo is called.

“Figure 2. A Program Example with A Function”

 “Figure 3 Stack Organization of function foo”

 In languages like C and C++, there is no build-in

mechanism for buffer boundary checking and

consequently, the task of bounds-checking falls to

the programmer. If a C language developer allows

more data to be copied to an array than it can hold,

the data will fill the array and overwrite the contents

following the array. The program will compile but

might crash or otherwise behave badly when it is

executed.

 An attacker can sometimes take advantage of a

buffer overflow flaw. Since buffer overflow is the

most serious vulnerability in computer security,

many computer scientists have been working on it

trying to solve the problem. Presently, there are three

common ways to defend against buffer overflow

vulnerabilities and exploits: writing correct code,

non-executable buffers, and array bounds checking

by the compiler.

“3. LITERATURE SURVEY”

 In November 1988, the “Morris worm”, attacked

VAX and Sun machines and prevented a great

number of users from accessing machines via the

Internet. In July 2001, the “Code Red” worm

successfully exploited more than 300,000 computers

that used Microsoft’s IIS Web Server. In January

2003, another worm, “Slammer”, attacked Microsoft

SQL Server 2000 Slammer crashed parts of the

Internet in South Korea and Japan, interrupted

Finnish phone system, and slowed down the U.S.

networks for airline reservation as well as credit card

transaction [17]. All these attacks exploited buffer

overflow vulnerabilities. Although computer

technology has advanced, the buffer overflow

vulnerability remains a major problem. Moreover,

with the increasing number of computers used in

daily life, buffer overflow attacks have the potential

to do even greater damage.

 Therefore many persons have been written about

this. Several people have done precious work in this

area including Xinran wang, chi-chun pan, peng Liu,

and Sencun Zhu, They propose SigFree, an online

signature-free out-of-the-box application-layer

method for blocking code-injection buffer overflow

attack messages targeting at various Internet services

such as web service [1]. Krerk Piromsopa and

Richard J. Enbody propose a framework for

protecting against buffer overflow attack and many

more [2].

“4.OBJECTIVE”

 Buffer overflow problems are well known.

Several studies have been conducted to detect and

prevent buffer overflows. The purpose of this work is

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

to study security problems and to detect buffer

overflow attack using various techniques.

The following are the major objective:

1] To study the vulnerabilities and attacks such as

buffer overflow.

2] To study some of the existing techniques used for

detecting and preventing buffer Overflow.

3] To develop a new efficient techniques for

detecting and preventing the buffer overflow.

4] To analyze this techniques.

“5. PROPOSE METHODOLOGY”

 Existing prevention/detection techniques of

buffer overflows can be roughly broken down into

six classes: Class A: Finding bugs in source code.

Buffer overflows are fundamentally due to

programming bugs. Accordingly, various bug-

finding tools have been developed [1] ,[9] ,[10] ,[11].

The bug-finding techniques used in these tools,

which in general belong to static analysis, include but

are not limited to model checking and bugs-as-

deviant-behavior. Class A techniques are designed to

handle source code only, and they do not ensure

completeness in bug finding. In contrast, MCAIDS

will handle machine code embedded in a request

(message). Class B: Compiler extensions. “If the

source code is available, a developer can add buffer

overflow detection automatically to a program by

using a modified compiler” [1] , [3]. Class B

techniques require the availability of source code. In

contrast, MCAIDS does not need to know any source

code. Class C: OS modifications. Modifying some

aspects of the operating system may prevent buffer

overflows such. Class 1C techniques need to modify

the OS. In contrast, MCAIDS does not need any

modification of the OS. Class D: Hardware

modifications. A main idea of hardware modification

is to store all return addresses on the processor [1]

,[13]. In this way, no input can change any return

address. Class E: Defense-side obfuscation. Address

Space Layout Randomization (ASLR) is a main

component of PaX [1], [14]. Address-space

randomization can detect exploitation of all memory

errors [1], [15],[16]. Instruction set randomization

can detect all code-injection attacks, whereas

MCAIDS cannot guarantee detecting all injected

code. Nevertheless, when these approaches detect an

attack, the victim process is typically terminated.

Class F: Capturing code running symptoms of buffer

overflow attacks. Fundamentally, buffer overflow is

a code running symptom. If such unique symptoms

can be precisely captured, all buffer overflows can be

detected. Class B, Class C, and Class E techniques

can capture some-but not all-of the running

symptoms of buffer overflows. For example,

accessing non executable stack segments can be

captured by OS modifications; compiler

modifications can detect return address rewriting;

and process crash is a symptom captured by defense-

side obfuscation [1] .

 Class F techniques can block both the attack

requests that contain code and the attack requests that

do not contain any code, but they need the signatures

to be firstly generated. Moreover, they either suffer

from significant runtime overhead or need special

auditing or diagnosis facilities, which are not

commonly available in commercial services.

MCAIDS is signature free and does not need any

changes to real-world services.

5.1 Machine code analysis

 Although source code analysis has been

extensively studied , in many real-world scenarios,

source code is not available and the ability to analyze

binaries is desired. Machine code analysis has three

main security purposes: (P1) malware detection, (P2)

to analyze Obfuscated binaries and (P3) to identify

and analyze the code contained in buffer overflow

attack packets [1].

 The purpose of MCAIDS is to see if a message

contains code or not, not to determine if a piece of

code has malicious intent or not. MCAIDS

disassemble binary code. MCAIDS differs from P1

and P2 techniques.

5.2 Basic Definitions

 Definition 1 (Instruction sequence). An

instruction sequence is a sequence of CPU

instructions, which has one and only one entry

instruction and there exists at least one execution

path from the entry instruction to any other

instruction in this sequence. A fragment of a program

in machine language is an instruction sequence, but

an instruction sequence is not necessarily a fragment

of a program Those instruction sequences are not

fragments of a real program, although they may also

be executed in a specific CPU. we call them random

instruction sequences, whereas use the term binary

executable code to refer to a fragment of a real

program in machine language [1].

 Definition 2 (Instruction flow graph).

An instruction flow graph (IFG) is a directed graph G

= (V, E) where each node v Є V corresponds to an

instruction and each edge e = (vi, vj) Є E

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

corresponds to a possible transfer of control from

instruction vi to instruction vj [1].

 Definition 3 (extended IFG). An extended IFG

(EIFG) is a directed graph G = (V, E) which

satisfies the following properties: each node v Є V

corresponds to an instruction, an illegal instruction

(an “instruction” that cannot be recognized by CPU),

or an external address (a location that is beyond the

address scope of all instructions in this graph); each

edge e = (vi , vj) Є E corresponds to a possible

transfer of control from instruction vi to instruction

vj, to illegal instruction vj, or to an external address

vj [1].

5.3 Instruction sequence Distiller

 This section first describes an effective

algorithm to distill instruction sequences from

requests.

To distill an instruction sequence, we first

assign an address (starting from zero) to every byte

of a request, where address is an identifier for each

location in the request. We use the recursive traversal

algorithm, because it can obtain the control flow

information during the disassembly process.

Intuitively, to get all possible instruction sequences

from an N-byte request, we simply execute the

disassembly algorithm N times and each time we

start from a different address in the request. This

gives us a set of instruction sequences[1].

One drawback of the recursive traversal

algorithm is that the same instructions are decoded

many times .The main aim of this paper to

implement the memorization algorithm by using

some tool command language with proper data

structure to reduce running time.

5.3.1 Excluding Instruction Sequences

 Distilling instruction sequence may output many

instruction sequences at different entry points. Next,

we exclude some of them based on several heuristics.

Here, excluding an instruction sequence means that

the entry of this sequence is not considered as the

real entry for the embedded code (if any) [1].

Step 1: If instruction sequence Sa is a subsequence of

instruction sequence Sb, we exclude Sa. The logic

behind for excluding Sa is that if Sa satisfies some

characteristics of programs, Sb also satisfies these

characteristics with a high probability.

Step 2: If instruction sequence Sa merges to

instruction sequence Sb after a few instructions and

Sa is no longer than Sb, we exclude Sa. It is

reasonable to expect that Sb will preserve Sa’s

characteristics. Many distilled instruction sequences

are observed to merge to other instruction sequences

after a few instructions.

Step 3: For some instruction sequences, when they

are executed, whichever execution path is taken, an

illegal instruction is inevitably reached. We say an

instruction is inevitably reached if two conditions

hold. One is that there are no cycles (loops) in the

EIFG of the instruction sequence; the other is that

there are no external address nodes in the EIFG of

the instruction sequence.

5.4 Instruction Sequence Analyzer

 Normally, a random instruction sequence is full

of data flow anomalies, whereas a real program has

few or no data flow anomalies. However, the number

of data flow anomalies cannot be directly used to

distinguish a program from a random instruction

sequence because an attacker may easily obfuscate

his program by introducing enough data flow

anomalies. Here, we use the detection of data flow

anomaly in a different way called code abstraction.

We observe that when there are data flow anomalies

in an execution path of an instruction sequence, some

instructions are useless, whereas in a real program at

least one execution path has a certain number of

useful instructions. Therefore, if the number of useful

instructions in an execution path exceeds a threshold,

we conclude the instruction sequence is a segment of

a program.

Here we use the algorithm to check if the

number of useful instructions in an execution path

exceeds a threshold [1].

5.5 System Requirements

Operating System: Linux

Language : Tool command Language.

Development Tools: NS 2

“6. EXPECTED OUTCOME”

 Here, we first tune the parameter for MCAIDS

method based on some training data ,then evaluate

and compare the performance of these methods in

checking messages collected from various sources.

We use the threshold value to determine if a request

contains code or not. Here we set the threshold

values appropriately so as to minimize both detection

false positive rate and false negative rate. Here, we

choose HTTP replies rather than requests as normal

data for parameter tuning, because HTTP replies

contain more binaries.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

“7. CONCLUSION”

 We propose MCAIDS, an signature-free blocker

that can filter code-injection buffer overflow attack

messages, one of the most serious cyber security

threats. MCAIDS does not require any signatures,

thus it can block new unknown attacks. MCAIDS is

good for economical Internet-wide deployment with

little maintenance cost and low performance

overhead.

 REFERENCES

[1] Xinran Wang, Chi-Chun Pan, Peng Liu, and

Sencun Zhu , “SigFree: A Signature-Free Buffer

Overflow Attack Blocker”, IEEE Transactions

on dependable and secure computing, vol. 7,

No. 1, January-March 2010

[2] Krerk Piromsopa, Member, IEEE, and

Richard J. Enbody, “Buffer-Overflow

Protection: The Theory ,”Member, IEEE

[3] B.A. Kuperman, C.E. Brodley, H.Ozdoganoglu,

T.N. Vijaykumar,and A. Jalote, “Detecting and

Prevention of Stack Buffer Overflow Attacks,”

Comm. ACM, vol. 48, no. 11, 2005.

[4] Bindu Madhavi , Padmanabhuni and Hee

Beng Kuan Tan,“Defending against Buffer –

Overflow ulnerabilities”,Nanyang Technological

University,Singapore,

[5] J.Newsome and D. Song, “Dynamic Taint

Analysis for Automatic Detection, Analysis, and

Signature Generation of Exploits on Commodity

Software,” Proc. 12th Ann. Network and

Distributed System Security Symp. (NDSS),

2005.

[6] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,

L. Zhou, L. Zhang,and P. Barham, “Vigilante:

End-to-End Containment of Internet Worms,”

Proc. 20thACMSymp. Operating Systems

Principles (SOSP),2005.

[7] Z.Liang and R. Sekar, “Fast and Automated

Generation of Attack Signatures: A Basis for

Building Self-Protecting Servers,” Proc.12th

ACM Conf. Computer and Comm. Security

(CCS), 2005.

[8] J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt,

“Automatic Diagnosis and Response to Memory

Corruption Vulnerabilities,” Proc. 12th ACM

Conf. Computer and Comm. Security (CCS),

2005.

[9] D. Wagner, J.S. Foster, E.A. Brewer, and A.

Aiken, “A First Step towards Automated

Detection of Buffer Overrun

Vulnerabilities,”Proc. Seventh Ann. Network

and Distributed System Security Symp.(NDSS

’00), Feb. 2000.

[10] D. Evans and D. Larochelle, “Improving

Security Using Extensible Lightweight Static

Analysis,” IEEE Software, vol. 19, no. 1, 2002.

[11] H. Chen, D. Dean, and D. Wagner, “Model

Checking One Million Lines of C Code,” Proc.

11th Ann. Network and Distributed System

Security Symp. (NDSS), 2004

[12] Zhimin Gu Jiandong Yao Jun Qin,”Buffer

Overflow Attacks on Linux Principles Analyzing

and Protection”, Department of Computer

Science, Beijing Institute of Technology

(Beijing 100081)

[13] J. McGregor, D. Karig, Z. Shi, and R. Lee, “A

Processor Architecture Defense against Buffer

Overflow Attacks,” Proc. Int’l Conf.

Information Technology: Research and

Education (ITRE ’03),pp. 243-250, 2003

[14] Pax Documentation, http : //

pax.grsecurity.net/docs/ pax.txt, Nov. 2003.

[15] G. Kc, A. Keromytis, and V. Prevelakis,

“Countering Code- Injection Attacks with

Instruction-Set Randomization,” Proc. 10
th

ACM Conf. Computer and Comm. Security

(CCS ’03), Oct. 2003.

[16] E.Barrantes, D. Ackley, T. Palmer, D.

Stefanovic, and D. Zovi,“Randomized

Instruction Set Emulation to Disrupt Binary

Code Injection Attacks,” Proc. 10th ACM

Conf. Computer and Comm. Security (CCS

’03), Oct. 2003.

[17] Wheeler, D. “Preventing Today’s Top

Vulnerability.” http://www-106.ibm.com

/developerworks/linux/library/l-sp4.html

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

