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Abstract— Wireless Sensor Networks (WSNs) are key for the 

applications that involve long-term and low-cost monitoring and 

actuating. In these applications such as battle field  ,security 

surveillance, the sensor nodes use batteries as the sole energy 

source, thus the  energy efficiency becomes critical issue. We 

observe that many WSN applications require  sensor nodes to 

achieve fault tolerance and Quality of Service (QoS) of the 

sensing. where the same redundancy may not be necessary for 

multihop communication because of the  traffic conditions and 

the stable wireless links. here we present a novel sleep-

scheduling technique called  Backbone Scheduling (BS). BS is 

designed for WSNs has redundant sensor nodes. BS forms 

multiple overlapped  backbones which work alternatively in 

order to prolong the network lifetime. In BS, traffic is only 

forwarded by backbone sensor nodes  and the rest of the sensor 

nodes turn off their radios to save energy. The particular 

rotation of multiple backbones makes sure that the energy 

consumptions of all sensor nodes is equally balanced, which is 

fully utilizes the energy and achieves a effectively better 

network lifetime compared to the existing techniques. The 

scheduling problem of BS is formulated as the Maximum 

Lifetime Backbone Scheduling (MLBS) problem. Since the 

MLBS  is NP-hard, we propose approximation algorithm based 

on the Schedule Transition algorithm (STA). Theoretical 

analyses and simulation studies verify that BS is superior to the 

existing techniques. 

 

Keywords— Wireless sensor networks (WSNs), backbone 

scheduling, sleep scheduling,  energy-delay tradeoff, connected 

dominating set, complexity analysis.  

 

I. INTRODUCTION 

 The Wireless Sensor Networks (WSNs), an key technology 

for various applications which involve long-term and  low-

cost monitoring, such as battlefield , building inspection, 

security inspection, etc. In WSN, the battery is   the sole 

energy source . Sensor nodes are allowed to work on 

batteries for several months to a few years without replacing. 

Thus, the energy efficiency becomes a critical issue . Among 

the functional components of a sensor node  radio consumes 

a major portion of the energy. However Various techniques 

are proposed to minimize its energy consumption. here, we 

focus on Backbone Scheduling (BS), which dynamically 

turns off the radio of the sensor nodes to save energy. 

Backbone Scheduling lets a fraction of some of the sensor 

nodes in the network to turn on their radio to forward the 

messages, which forms a backbone; the rest of the sensor 

nodes in the network turn off their radio to save energy. 

technique does not affect communication quality because of 

redundancy. because of redundancy, we mean that some 

sensor nodes turn off theirradio in a WSN does not affect the 

connectivity of the WSN.Thus  redundancy results in more 

than the available necessary wireless links. Thus it is possible 

to construct communication backbones to save energy. we 

use Connected Dominating Set (CDS) algorithms to 

construct such backbones.a single backbone does not prolong 

the network lifetime. An intuitive idea is to construct a 

multiple disjointed CDSs and let them work alternatively. 

This approach has been studied in and is formulated as a 

Connected Dominating Partition (CDP). Fig. 1 shows an 

example of two disjoint backbones. here we propose Virtual 

Backbone Scheduling (BS), a novel algorithm that enables 

fine grained sleep scheduling. BS schedules multiple  

backbones so that the network energy consumption is evenly 

distributed to all sensor nodes in the network. In this way, the 

energy of all of the sensor nodes in the network is fully 

utilized, which in turn prolongs the network lifetime.  Thus 

The figures shows a WSN of five sensor nodes and one sink. 

The stack beside each node in the network represents its 

initial energy. Assuming that all sensor nodes consumes a 1 

unit of energy per unit of time, each sensor node can 

continuously work for 3 units. Since only one disjointed 

CDS, which is{sink; 0; 1}, {sink; 0; 3}, or {sink; 1; 3}, can 

be constructed  the network lifetime is 3 units of time. where  

BS schedules {sink; 0; 1} to work for 1, {sink; 0; 3} for 1, 

and {sink; 1; 3} for 2 units of time, which achieves a  total 

network  lifetime of totally 4 units of time. The backbones 

are over lapping . This example demonstrates that the 

scheduling on a finer granularity can exploit the redundancy 

in the available network and achieve a longer network 

lifetime than the CDP-based approach. Nowadays, Duty-

Cycling (DC) has become an integral technique for WSNs. 

BS combines BS with DC by letting backbone sensor nodes 

work in a duty cycle. Fig. 3 gives the duty cycle produced by 

BS of the two backbones in Fig. 1. In order to find the 

optimal schedule that maximizes the network lifetime by 

using BS, we are  formulating the Maximum Lifetime 

Backbone Scheduling (MLBS) problem. We prove that it is 

usually NP-hard. We  present two centralized approximate 

algorithms to the MLBS problem. We  design a distributed 

implementation of BS. We usually demonstrate, through 

extensive analyses and simulations, that our proposed 

solutions periodically increases the network lifetime 

compared to the  existing approaches. Our contributions in 

this paper are as follows 
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 We propose BS, a combined backbone scheduling 
and duty-cycling method for WSNs with   the 
redundancy. BS employs a fine-grained sleep 
scheduling method,  significantly prolongs the 
network lifetime. We formulate the MLBS  and 
prove its NP-hardness;  

 

 
 

 
Fig. 1. An example of rotating two disjoint backbones in a (duty-cycled) 

WSN. The sink has an unconstraint energy supply and is implicitly included 
in all backbones. 

 

 We design two centralized approximate algorithms 

and a functional implementation of BS. 

 
 

Fig. 2. A simple network consisting of five sensor nodes and a sink, where 

each sensor node has 3 units of energy. 1 unit of energy is consumed per 
unit of time. This graph only has one disjoint CDS formed by {sink; 0; 1}, 

{sink; 0; 3}, or {sink; 1; 3}. The network lifetime is 3 units of time using the 
CDP approach. 

 

 We conduct extensive analyses and execution studies 
to check the performance of BS. 

 

The rest of the paper is organized as follows. Section II 

presents the construction of CDS and Section III network 

model and problem definition. Section IV presents a  

scheduling transition algorithm-based approximation 

algorithm, section V performance evalution finally section VI 

concludes the paper.  

 

II.   CONSTRUCTION OF CDS 

The algorithm first finds a CDS and then 

prunecertain redundant nodes in the CDS. The initial CDS 

Uconsists of all nodes in the WSN which have at least two 

non-adjacentneighbors. A node u in U is considered as locally 

redundantif it has either a neighbor in the U with larger ID 

whichdominates all other neighbors of u in the network, or 

two adjacentredundant nodes from U. This algorithm applies 

only towireless  networks whose unit-disk graph is usually not 

acomplete graph. the approximation factor of this 

algorithmremains unspecified. Obviously, the MCDS of any 

wirelessad hoc network whose unit-disk graph is not a 

complete graphconsists of at least two nodes. On contrary, any 

CDScontains atmost n nodes.Thus, the approximation factor 

of the abovealgorithm is at most
2

n
n where n is the number of 

nodes.Next,we show that the approximation factor of the 

abovealgorithm is exactly
2

n
. 

 
 

Fig. 3. Combining BS and DC to further prolong the network lifetime. 

 

This means that the above algorithmdoes perform 

extremely poor over certain instances.When n is even, we  

consider the instance illustratedin Figure 4(a). These nodes are 

evenly distributed over thetwo horizontal sides of a unit-

square. in which Each node has exactlym neighbors, one in the 

opposite horizontal side and the restin the same horizontal 

side. Any MCDS consists of a pair ofnodes lying in a vertical 

segment.  the CDS outputby the algorithm in consists of all 

nodes. usually for eachnode u, the unique neighbor lying in 

the opposite horizontalside is not adjacent to all other 

neighbors of u in the network.  Theinitial CDS U consists of 

all the available nodes. no singleneighbor of the node u can 

dominate all other neighbors of u.Furthermore, if a pair of 

neighbors of u are usually adjacent, theymust be lie in the 

same horizontal side as u; and thereforeneither of node  is 

adjacent to the unique neighbor of u lyingin the opposite 

horizontal side. So no other node is locallyredundant. 

Consequently the output CDS still consists of allnodes. 

  
(a)                                              (b)  

 
Fig.4. instance for  which the CDS output consists of all nodes but the MCDS 

consists of only two nodes. 

 

When n is odd, we consider the instance illustrated 

inFigure4(b). The node with the largest ID in the particular 

network,which is denoted by u* 
, is the center of the left 

vertical side of a unit-square, and all other n-1 nodes are 

  

*  u  
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evenly distributed. The two nodes at the left two corners of the 

unitsquare forms the MCDS. On the other hand, the CDS 

output by the algorithm. In fact, following the same argument 

as in the even case, all other nodes other than u* are in the 

initial CDS U. The node u
* is also in the initial CDS U as well. 

Since u* is not adjacent to the two nodes at the right corners of 

the unit-square, all the nodes other than u* are not locally 

redundant. The u* itself is also not locally redundant. 

Therefore, the output CDS still consists of all nodes.  

The implementation of the above algorithm given in  

runs in two phases. In the first phase, each node will first 

broadcasts to its neighbors the entire set of its neighbors, and 

after receiving this adjacency information from all neighbors it 

declares itself as a dominator if and only if it has two 

nonadjacent neighbors. These dominators form the initial 

CDS. In the second phase, a dominator declares itself as a 

dominatee if it is locally redundant. Note a dominator can find 

whether it is locally redundant from the adjacency information 

of all its neighbors.the total message complexity is )( no  and 

the time complexity at each node is )( 2o . A more accurate 

message complexity is ))(( m  where m is the number of 

edges in the graph, as each edge contributes two messages in 

the first phase. The )( 2o  time complexity, however, is not 

correct. In fact, in order to decide whether it is locally 

redundant in the second phase, a node u in the initial CDS may 

have to examine as many as )( 2o  pairs of neighbors, and for 

each pair of neighbors, as much as )(o   time may be taken 

to find out whether such pair of neighbors in which together 

dominates all other neighbors of u. Therefore, the time 

complexity at each node may be as high as )( 3o , instead of 

)( 2o  . Note that m and   can be as many as )( 2no  and 

)(no  respectively. Thus, the message complexity and the time 

complexity of the distributed algorithm are )( 2no  and 

)( 3no  respectively. The instances shown in Figure 3 do 

require such complexities 

 

III. NETWORK MODEL AND PROBLEM 

DEFINITION 

In this section, we discuss the network model and the 

assumptions. We then define the MLBS problem and prove its 

NP-hardness. 

 

A.   Model and Assumptions 

We must have the following assumptions about the 

WSNs that we consider. Sensor nodes are randomly placed in 

the field and are immobile thereafter. A battery is  the sole 

energy source. There is only one sink in the network, which it 

is always active and has an infinite power supply. All sensor 

nodes have an identical communication range (links are 

bidirectional). The power consumption of aeach sensor node is 

comprised of three parts: sensing, computing, and radio. in a 

typical sensor node, the radio is the most power-consuming 

part and may even dominate the energy consumption. 

Therefore, we only consider the scheduling of the radio. 

Sensor nodes are duty-cycled and have the same duty cycle. 

We define T continuous cycles as a round, where T _ 1.where 

T is a tunable parameter. At the beginning of each round, a 

backbone is selected to work in duty-cycle. Nodes that are not 

in the backbone will turn off their radios.thereforeThe lifetime 

of a sensor node is the time span from when it starts working 

to when its energy is depleted. The lifetime of a network is the 

minimum available lifetime of all of the sensors in the 

network. Because backbones rotate after each round,  

lifetimeiscounted in rounds. We also assume that the traffic 

load inthe network is light. This assumption implies that 

thecontentions and the interference of the wireless channel 

arelight too. Additionally, because we assume that sensor 

nodesare static,thus the route failure is rare . Actually, recent 

workshows that the delivery ratio of a WSN in a real-world 

indoorenvironment can be as high as 99 percent in 

acontinuous operation of four weeks to a few months without 

replacing. Based on thesearguments, we will not consider the 

loss of the controlpackets in the design. 

 

 

B.   The Maximum Lifetime Backbone Scheduling Problem 

and its NP-Hardness  

In order to find the optimal scheduling, we formulate the 

Maximum Lifetime Backbone Scheduling problem. Its 

definition is as follows. A schedule in BS is a set of backbones 

working sequentially in every round. Formally, we need to 

find a set of backbones, },.....,,{ 21 PBBBB   and each 

backbone Bi works for Ti rounds. A schedule is, therefore, 

represented by a set of tuples, },,,...,,{ 11  PP TBTB that 

satisfy the following constraints: 

 Connectivity. All BBi   is a connected subgraph 

of the network, and all other nodes are, at most, 1-

hop away from a node in iB . In other words, they 

are CDSs of the network. 

 Energy constraints. The amount of energy consumed 
by any of the  sensor node in the network at the end 
of the lifetime the network  does not exceed its initial 
value. 

 The lifetime of a schedule is usually  the lifetime of 

the network using this schedule we want to turn on and 

off the radio of the sensor nodes. The objective of the 

MLBS problem is to find that schedule that achieves the 

maximum  networklifetime.The MLBS problem is NP-

hard. 

  

III.    A  SCHEDULING  ALGORITHM BASED 

APPROXIMATION ALGORITHM 

Our first centralized  algorithm isbased on a new 

concept called Scheduling  Transition algorithm(STA). A STA 

is used to model a schedule in a WSN. Fig. 5gives an example. 

As shown in theabove figure, where the horizontal  

axisrepresents the time scale, counted in rounds. In every 

round,possible states are listed vertically they are  represented 
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byellipses. The number of possible states for each round 

isequal to the number of backbones.in which Each state 

contains abackbone and the corresponding energy levels. The 

state and the backbone have a one-to-onemapping. An initial 

state is placed at round 0 and isstarting point.Unidirected 

transition edges connect states inone round to those in the next 

round. No the  backward edges areallowed. Each edge 

represents the time elapse of 1 round.Since energy is used in 

each of the round, each edge alsorepresents the consumption 

of energy. We also assume that thesensor nodes in the 

backbone network consume a fixed amount ofenergies in each 

round; all the edges represent the same amountof energy 

consumption. The residual energy of all nodes isobtained by 

subtracting each of these  values from the starting state ofeach 

transition edge. No transition is allowed if the energy ofany 

sensor node of a state is depleted.that It is clear that adirected 

path from the initial state corresponding to a schedule.Thus, 

the MLBS problem is thus to find the longest path inthe STA 

 

 

 
 

Fig. 5. The illustration of a SA. The initial state is attached  is a common 
starting point for the scheduling. 

A.   Time Span of an STA 

The length of the horizontal direction of an STA isthe 

maximum number of available rounds that the network can 

runwithout depleting the energy of any of the particular sensor 

node, which isdenoted as C. Given a network with a fixed 

topology and afinite amount of initial energy in each sensor 

node, themaximum round number is usually derived by 

dividing the sum ofthe initial energy of all nodes in the 

network by the minimum amount ofenergy consumed in each 

round. 

First, we assume that each backbone node consumes 

afixed amount of energy _ in each corresponding round. 

Because the MCDS isthe lower bound of the number of sensor 

nodes in aCDSof theWSN, the number of sensor nodes in any 

backbone is largerthan that of theMCDS.Suppose that the size 

of theMCDSis n,then the minimum energy consumption in 

each round is atleast n . Denote IE as the initial energy 

of the sensor node inthe network. Then, the total amountof 

energy that can be usedis IEV , where V  is the number of 

sensor nodes in thenetwork. The maximum round number C is 

given by 1 

 




n

IEV
C                                             (1) 

Because n is in )(VO and  is a constant, C is in )(IEO

.Usually, the capacity of the batteries is limited, so e cantreat 

IE as a constant; C then becomes a constant too. 

 

B.   Energy Level 

The reason behind the introducing concept of energy 

level inorder to facilitate clean criteria for the search in the 

SA. Wedefine the energy level _ of a WSN of V   sensor 

nodes as atuple of all of the residual energy values of all of the 

sensornodes in the WSN. Suppose that each sensor node iv  

in aWSN has r

iE i units of residual energy, then the energy 

levelof this network is 
r

V

rr
EEE ,.....,, 21

. 

We further define the )(lessthan  relation between 

twoenergy levels as follows: two energy levels,
1 and 

2

,satisfy 
21   , only if, for each },...,2,1{ vi  and

 
2

1

1
;

r

i

r

i EE there is 
21 r

i

r

i EE  .

21   if 
21   , and there is at least one I such that

21 r

i

r

i EE  . 

An energy level is zero if at least one element must be as zero. 

Zeroenergy levels are less than any nonzero levels, and must 

indicatethe end of the available network lifetime.thusThe 

terminating state of anypath in the STA contains a zero energy 

level.where The energylevel of the initial state of the SA is 

formed by the initialenergy of all of the sensor nodes in the 

WSN. 

 

C. The STA-Based Algorithm  

The approximate algorithm is based on the dynamic 

programming. Its pseudocode is listed in Algorithm 1. The 

search starts from the initial state. After a backbone transition, 

the state’s energy levels are computed from those of the 

starting state of the transition. Each state keeps the larger 

energy levels. A path terminates when its associated energy 

level is zero. When all paths terminate, the longest path is 

found.   

Algorithm 1.STA-based algorithm  

1) 1.IntCUR_ROU

ND=0; 2.Repeat  
3. For each state Sdo 

4. Get the associated energy level of S;  

5. Prune the resultant energy levels using the min() 
function;  

6. Select the energy level with maximal minimum 
energy value.  

7. Set S’s energy level to the energy level with the 
maximum summation amoung the resultant 
energy  

levels;  

2) 8.End for  
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9. CUR_ROUND=CUR_ROUND+1;  
10. Until all the energy levels of the states in 

CUR_ROUND are zero:  

11. Return the schedule represented by the path ending in 
CUR_ROUND 

 

 
 

Fig. 6. The corresponding VSG (right) of a network of three sensor nodes 
(left). The virtual nodes of different ancestors are connected with an 

increasing index order. As a result, virtual node 2 of sensor node B is isolated 

because it has more energy and cannot be connected to the virtual nodes of A 
or C. 

 

IV.  PERFORMANCE EVALUATION 

We use simulations to evaluate the performance of 

BS.that The proposed algorithms are implemented in a 

customized simulator . The simulator implemented the CDS 

construction algorithms that are used in this paper and has 

been used in previous work . We present the results of the 

network lifetime and the energy balance of the network. The 

simulation results of the message delivery delay and the 

microscopic behaviors of ILR are in Section 6 of the online 

supplementary file. 

The networks are modeled as unit disk graphs. 

Sensor modes are randomly placed in a particular square area. 

The sink is placed at the center of the network. All sensor 

nodes have the same transmission range in the network. The 

number of sensor nodes is varied to model different network 

density and scale. We assume that the sensor nodes in the 

backbone consume 1 unit of energy per round. 

We compare BS with the CDP-based method . We 

use Rules 1 and 2 and Rule K to construct a backbones. The 

exhaustive search for the optimal network lifetime is too time-

consuming  for small networks of 10 to 20 nodes.therefore, the 

optimal values are not presented.  for All results are obtained 

by averaging the results of 100 runs in random graphs with the 

same settings.  

 

 
Fig. 7. Lifetime of networks with uniformly distributed initial energy in the 

interval [50 J; 100 J], using MP together with Rules 1 and 2 and Rule K 

 

  

A. Network Lifetime 

In this section, we present the results of the network 

lifetime achieved by algorithms. Two configurations are used: 

identical initial energy and imbalanced initial energy. Sensor 

nodes are deployed in a 500 _ 500 area. The transmission 

range is fixed to 250 so that all of the networks generated are 

fully connected with the network. The number of nodes in the 

network ranges from 10 to 100 with a step . Since the area of 

the network is usually  fixed, these settings vary the density of 

the sensor nodes. 

fig. 7 presents the results in networks with uniformly 

distributed initial energy level. Each sensor node is assigned 

an initial energy drawn uniformly from[50; 100].therefore  the 

lifetime is determined by the node with the minimum 

energy,therefore  the achieved lifetime when all nodes work is 

nearly halved, as shown in the line labeled “original.” The 

lifetimes of all schemes in the assessment decreases 

periodically. However, our proposed schemes still achieve 

much longer network lifetimes. The lifetime increases with 

network density because CDSs in denser networks are smaller 

and tend to be disjoint. 
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V.    CONCLUSION 

WSNs require energy-efficient communication to be 

able to work for a long period of time without human 

intervention. In this paper, we present a combined 

backbonescheduling and duty-cycling method called BS. BS 

improves upon state-of-the-art techniques by taking advantage 

of the redundancy in WSNs. We formulate the MLBS problem 

to find the optimal schedule and prove its NP-hardness.  

centralized approximation algorithms with different  

Complexities and performances are presented. We also 

conduct extensive theoretical analyses and simulation studies 

to verify the performance of BS 
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