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Abstract: Carbon Nano Tubes have significant mechanical and
electrical properties which have been subjected to many
theoretical and experimental studies. Experimental studies
are quite cumbersome and expensive, hence researchers are
moving towards theoretical study of CNT. In this connection,
modeling and analysis of CNT has given a tremendous help
because of its result approximate to exact result. For modeling
of CNT in FEM software, we need different dimensional
parameter. In this paper, effort has been made to extract
different dimensional parameter for CNT which can be used
to model the CNT in FEM Software.
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1. INTRODUCTION

Nanotechnology refer to the understanding and control of
matter at the atomic levels, at the length scale of
approximately 1 to 100 nanometers, where unique
phenomena enable novel applications. Nanotechnologies
are the design, characterization, production and application
of structure, devices and systems by controlling shape and
size at nanometer scale.

One of the fundamental components in nanotechnology is
Carbon Nanotubes made of Carbon atoms arranged in a
hexagonal lattice, whose diameter ranges from one to tens
of nanometer and that are from hundreds up to thousands
nanometers in lengths.

CNTs have incredible physical properties, both mechanical
and electrical, and they are the basis of most of the new
nano technological innovations. FEM and Molecular
mechanics share a common ground of energy
minimization, with respect to the nodes and to the discrete
atoms, respectively.

2. MATHEMATICAL MODEL OF CNT

A SWCNT can be thought of as a sheet of graphite (a
hexagonal lattice of carbon) rolled into an endless cylinder.
It can be constructed by wrapping up a single sheet of
graphite such that two equivalent sites of the hexagonal
lattice coincide. The wrapping vector, C, which defines the
relative location of the two sites, is specified by a pair of
integer (n,m) that relate C to the two unit vectors, a; and a
and is given by the following equation.

Ch =na; +may o)

Where al and a2 are unit vector,

_ 3 V3
a1 = ='.,§'G'CC~ facc,?

) 3 V3
a2 — ='.,§'G'CC~ _Tacc;‘

Where acc =distance between nearest neighbour carbon
atom.

Let a be the unit length of grapheme honeycomb lattice,
then
a—= | a, | =| a» | =\'I3QC‘C‘

@)

A tube is called “armchair” if n equals m and “zigzag” in
the case m=0. All other tubes are of the “chiral” type and
have a finite wrapping angle 6 with 0°< 6 <30°

Fig1

If we equate the length of chirality vector to the
circumference of the tube, we will get the diameter of the
tube.

Ch = 27r = 7d,

d t — (_.'h J]T
®
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The magnitude of the chirality vector can also be
determined in terms of the two lattice parameters, n and m,
and the nearest-neighbor carbon distance:

Chl* = Ch-Ch = (nay + may)- (nay + may)

= n%ay -0y + miay - ag + nmay - 0y

2 2 9
= n? (\/ﬁacc) +m? (\/ga.m) +2nm (iagc)

= (\/gacc)g (n* +nm+m?)
(4)

For an arm chair CNT (n,n) , Ch = 3nacc;
For a zigzag CNT Ch= +3nacc

Thus the diameter of the tube associated with an arbitrary
chirality vector can be defined as

d t — Ch JE

d, = \/(Vﬁacc)z (n? 4+ nm +m?)
T
V3a.v/n? + nm +m?

T

The chiral angle ,©, determines the degree of helicity to the
lattice, with a zig-zag (n; 0) lattice defined as ©=0.This
value can also be determined in terms of the lattice
parameters.

Tangent of the chiral angle ©

STVE m az,
2a2.(2n + m)
V3m
(2n + m)
V3m
(2n + m) 5)

tanf =

i[x
S
I

arctan

For Arm chair CNT, m=n; (5 — arctan (1/’\]3) = 3[}0,
For ZigZag CNT, m=0; (& — arctan(0) = ()° ,
For Chiral CNT; () < @ < 30°.

* STRIP OF A GRAPHENE SHEET ROLLED INTO A TUBE

n,0)/ ZIG ZAG

The translational vector T perpendicular to the chiral
vector Ch is expressed as

T=[2m+ n)a; - 2n + m)a,]/ dx
Otherwise
T = [Ilal + fzaz]f;dR .

(6)
Where

Hh=0C2m+n)dg,

tL=-02n+m) dg,

dg = d, if n - m 1s not a multiple of 3d,
dg = 3d, if n - m 1s a multiple of 3d

Where, d is is the highest common divisor of n and m.

The translational vector is
T=[2m+n)a; - 2n + m)a,]/ dx .
(6)

The length of translational vector is the NT unit cell length
L along the nanotube axis direction:

L=|T] = oo+ nm+ )" dy = 3G, dy.

7)
For arm chair CNT
m=n, d=n, dy=3d=3n, and
L=3C,/3n) = 3mBace 13n) = VBace
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For ZigZag CNT
m=0, d=n, dg=d=n,and
L =\3C,/n=3nacc In=3acc

Number of hexagons N in a nanotube unit cell is

N=2n"+nm+ m*)/dy .
(8)
For arm chair CNT ,
N=6n"/3n=2n

For ZigZag CNT, m=0
_ 2 _
N=2n"/n=2n.

3. FINITE ELEMENT METHOD

CNTs carbon atoms are bonded together with covalent
bonds forming an hexagonal lattice. These bonds have a
characteristic bond length a C—C and bond angle in the 3D
space. The displacement of individual atoms under an
external force is constrained by the bonds. Therefore, the
total deformation of the nanotube is the result of the
interactions between the bonds. By considering the bonds
as connecting load-carrying elements, and the atoms as
joints of the connecting elements, CNTs may be simulated
as space-frame structures.

rhon aom-» node

. ca
C-C bond =+beam element

Fig3

By treating CNTs as space-frame structures, their
mechanical behavior can be analyzed using classical
structural mechanics methods.

3.1 Finite element modeling with Representative Volume
Element (RVE)

In RVE approach, a single nanotube with surrounding
matrix material is modeled, with properly applied boundary
and interface conditions to account for the effects of the
surrounding materials it is possible to study the

nanocomposite based on the single Representative volume
element. This RVE model can be employed to study the
interactions of the nanotube with the matrix. It is possible
to model and evaluate the effective material properties of
the nanocomposite.

According to the shape of the cross section, three types of
representative volume elements are possible : cylindrical,
square, and hexagonal RVEs shown in

Fig. 4 . Specifically, the cylindrical RVE is used to model
carbon nanotubes with different diameters. The square
RVE is applied when carbon nanotubes are arranged evenly
in a square pattern, while the hexagonal RVE is adopted
when carbon nanotubes are in a hexagonal pattern.
Compared to the square RVE, the cylindrical RVE tends to
overestimate the effective Young’s module of carbon
nanotube/polymer composites. This can be explained by
the fact that a cylindrical RVE overestimates the volume
fraction of carbon nanotube due to the negligence of the
small amount of polymer matrix.

Fig.4 Three types of Representative Volume Elements (RVEs) (a)
Cylindrical RVE (b) Square (c) Hexagonal
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