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         Abstract—A continuously variable transmission (CVT) 

provides an infinite number of gear ratios between two finite 

limits. This allows the engine to run at its most efficient RPM 

independent of the car speed, making CVT the most efficient 

transmission system. The CVT is also fuel efficient, because it 

reduces the engine speed at high vehicle speed and allows the 

engine to run at its optimal point. 

Aiming at determining the behavior of the CVT transmission, a 

complete mathematical model have been constructed for the 

whole vehicle equipped with CVT, simulating the whole vehicle 

dynamics.  The model takes into consideration each component 

of the vehicle, including: the engine dry friction disc clutch, belt 

type CVT, car differential, wheels and body. In this paper, the 

slip between the belt and the pulleys and the CVT traction curve 

were considered. The kinematical, geometrical and momentum 

equations governing the performance of the whole system were 

formulated and solved. The governing differential equations 

were numerically solved In order to predict the behavior of the 

different mechanical parts of the system. The results of the 

simulation shows that the system becomes steady after a short 

period of time. The analysis of the system’s dynamical response 

demonstrates that the simulation model established represents 

the system efficiently. 

 

Keywords— Automatic Transmission; Continuously variable 

transmission; Mathematical Modeling; Transmission; ; V-belt 

CVT 

I.  INTRODUCTION  

Over the last decades, a growing attention has been focused on 

the environmental question. Governments are continuously 

forced to set standards and to adopt actions in order to reduce 

the polluting emissions and the green-house gasses. In order to 

fulfil these requirements, car manufacturers have been 

obligated to dramatically reduce vehicles' gas emissions. The 

continuously variable transmission (CVT) represents one of 

the most promising solution, which is able to provide an 

infinite number of gear ratios between two finite limits. The 

CVT optimizes the engine working conditions, gets the 

highest efficiency, and therefore, improves fuel saving and 

reduces greenhouse gases emissions 

 

 

 

With the lack of oil and the call for reducing the 

environmental pollutants, the number of cars equipped with 

CVT has significantly increased. Up to now, more than one 

billon cars have been equipped with continuously variable 

transmission all over the world. Especially the metal belt type 

continuously variable transmission is applied widely. CVT 

has wide change range of speed ratio and it can adjust the ratio 

continuously and automatically according to the situation of 

running to maintain the engine to work in economy mode or 

power mode all the time. For this reason, CVT equipped cars 

are more economical than cars equipped with planetary gear 

automatic transmissions. The key advantages of a CVT that 

interest vehicle manufacturers and customers can be 

summarized as: higher engine efficiency, higher fuel 

economy, smooth acceleration without shift shocks and 

Infinite gear ratios with a small number of parts. 

A continuously variable transmission (CVT) is an automatic 

transmission that can change seamlessly through an infinite 

number of effective gear ratios between maximum and 

minimum values by changing the diameters of input shaft and 

output shaft directly, instead of going through several gears to 

perform gear ratio change.  This contrasts with other 

mechanical transmissions that offer a fixed number of gear 

ratios. The most common type of CVT used is the pulley 

based CVT. The variable-diameter pulleys are main 

component of the pulley-based CVT. Each pulley is made of 

two 20-degree cones facing each other. A belt rides in the 

groove between them, as shown in Fig.1.  

 

Variable-diameter pulleys must always come in pairs, as 

shown in Fig.2, one of the pulleys, known as the  driving 

pulley, is connected to the crankshaft of the engine, and the 

second pulley is called the driven pulley. When one pulley 

increases its radius, the other decreases its radius to keep the 

belt tight. As the two pulleys change their radii relative to one 

another, they create an infinite number of gear ratios.  
 

Aiming to achieve an optimal CVT performance and a 

significant reduction of fuel consumption, it is fundamental to 

have a very good control strategy of the transmission, which 

in turns needs a reliable model of the CVT mechanical 

behavior.  
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Fig.1 Layout of CVT V-belt 

 

Fig.2 Pulley based CVT structure 

 
Gerbert [1, 2] worked on understanding the mechanics of 

traction belts, especially metal pushing V-belts and rubber V-

belts. He used quasi-static equilibrium analysis to develop a 

set of equations that capture the dynamic interactions between 

the belt and the pulley. Since the belt is capable of moving 

both radially and tangentially, variable sliding angle approach 

was implemented to describe friction between the belt and the 

pulley.  Gerbert [3] also analyzed the slip behavior of a rubber 

belt CVT. He also discussed slip during wedging due to poor 

fit between the belt and the pulley. 

 Kim and co-workers [4,5] investigated the metal belt 

behavior analytically and experimentally. They proposed a 

speed ratio–torque load–axial force relationship to calculate 

belt slip. They obtained the equations of motion using quasi-

static equilibrium conditions and reported that the gross slip 

points depend on the torque transmitting capacity of the driven 

side. Bonsen et al. [6] analyzed slip and efficiency in a metal 

pushing V-belt CVT. They stated that high clamping force 

reduces the efficiency of a CVT. However, high clamping 

forces are necessary to avoid excess slip between the belt and 

the pulley.  

Sferra et al. [7] developed a unique model of a metal V-belt 

CVT in order to simulate its transient behavior. The model 

included inertial and pulley deformation effects. Discrete and 

continuous shifting behaviors were simulated in order to 

analyze efficiency and power losses due to friction between 

the belt and the pulley halves. The results showed high loss of 

efficiency during shifting transients.  

Bullinger and Pfeiffer [8,9] developed a detailed elastic 

model of metal V-belt CVT system to determine its power 

transmission characteristics at steady state. Pulley, shaft, and 

belt deformations were taken into account. The frictional 

constraints were modeled using the theory of unilateral 

constraints.  

Sattler [10] analyzed the mechanics of a metal chain and V-

belt considering longitudinal and transverse stiffness of the 

chain/belt, and pulley misalignment and deformations. The 

pulley was assumed to deform in two ways, pure axial 

deformation and a skew deformation. The model was 

primarily used to study efficiency aspects of belt and chain 

CVTs. 

Carbone et al. [11] proposed a model that describes both the 

steady-state and the shifting dynamics of the V-belt CVT. 

The belt was modeled as a one-dimensional continuous body 

with zero radial thickness and infinite axial stiffness. Later, 

Carbone et al. [12] investigated the influence of pulley 

deformation on the shifting mechanism of a metal V-belt 

CVT. Coulomb friction hypothesis was used to model friction 

between different surfaces. Flexural effects of the belt were 

neglected; however, pulley bending was considered based on 

Sattler’s model [10]. 

Although there are many researches modeling and describing 

the dynamics of the CVT, the majority of these researches 

aimed only at modeling the CVT variator without modeling 

the complete vehicle system.  

In this paper, a complete model for the whole vehicle 

equipped with CVT, including all the vehicle components; 

car engine, friction disc clutch, CVT, car differential, wheels 

and car body has been constructed. 

This paper puts forward the mathematical model of CVT 

system including pulley the slip between the pulley and the 

CVT belt. The kinematical, geometrical and momentum 

equations governing the performance of the CVT system 

were formulated and solved. The numerical solution of these 

equations predicts the behavior of the different mechanical 

parts of the system. 

II. MATHEMATICAL MODEL  

The whole vehicle is modeled including the engine, the clutch, 

the CVT, the car differential and the wheels. As shown in Fig. 

3, the model is composed of engine, dry friction disc clutch, 

belt type CVT, car differential, wheels and body.  

 

The following dimensionless conversions will be used 

throughout the mathematical model: 

 

Dimensionless radius:       

Dimensionless time:  

Dimensionless angular speed:  

Dimensionless force:  

Dimensionless torque:  

Dimensionless moment of inertia:  

 

Where, Ω is the reference angular speed, c is the center 

distance between the two pulleys and σ is the belt mass 

density. 

A. The Engine Model 

Engine model is developed by applying Newton’s second law 

to the rotational dynamics of the engine: 

            

                                                                               (1)                                                                                                                                                       
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Fig. 3 Simplified model of transmission system 

 

 Where Te  is the engine  torque, Je is the rotary inertia of the 

engine , and e
. is the acceleration of the engine. The engine 

torque Te is assumed to be a function of the engine’s 

rotational speed e and the throttle angle opening . The 

relationship between Te and e is deduced from the engine’s 

performance map shown in Fig. 4, where there is a separate 

curve for each position of the accelerator. 

 

                                                       (2) 

 

Tabulated torques values are used to represent the 

relationship between engine torque, throttle opening and 

engine speed. These values are entered into Matlab curve 

fitting tool based on the engine performance map, as depicted 

in Fig. 5. The torque values are obtained by polynomial curve 

fitting in Matlab to get torque at any speed and throttle 

position. 

                                                                                                                      

 
 

Fig.4 Engine Performance Map [14] 

 

 

These torque values are used in Eq. (1) to get engine 

acceleration which is then integrated to obtain engine speed.  

 

To obtain the non-dimensional engine torque : 

                                          (3)                     

                                                                                                          

Fig.5 Curve Fitting of the Engine Performance Map 
 

B. The Clutch Model  
 

A dry friction clutch type is used in the model [13]. It consists 

of a housing, pressure plates, friction plates, a clutch disc with 

torsion “dampers” and a release mechanism. The clutch is 

normally closed as the diaphragm spring is pre-tensioned 

when assembled .The clutch disc is equipped with torsional 

dampers which are coil springs that connect various segments 

of the clutch disc. These coil springs aim at maximizing the 

comfort level for the driver, when opening and closing the 

clutch 

 

The clutch system is modelled as shown in Fig. 6. The clutch 

disc has inertia Jcl. The torque transmitted through the clutch is 

Tcl. The angular speed of the clutch disc is presented by cl. 

 

 
Fig. 6 Powertrain model 

 

The angular displacement of the damper springs is d. Where 

d =cl-t, where cl is the clutch angular displacement and 

t is the transmission angular displacement. The nonlinear 

stiffness of the damper coil springs k(d) is simplified into the 

form [13]: 

 

 k(d) =    

(4)                                                                  
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The differential equations governing the clutch dynamics can 

be expressed as: 

 
                                                                 (5)                                                                                                                                                                                                                      

 

                            (6)                                                                                                                                                

 

The torque through the clutch while slipping is given by: 

 

                     (7) 
                                                                                                     
In which  is the friction coefficient of the clutch surface 

material,  is the active radius of the clutch plates and the 

normal actuation force on the clutch plate is given by . 

 
The dimensionless clutch torque can be obtained by: 

 

            (8) 
                                                                                                             
Where: 
 

                                  (9) 
 

C. CVT and drive shafts: 

1) CVT Model Assumptions 
 

The model that will be presented is derived by making the 

following assumptions and simplifications:  

 

a) The metal belt is considered as a one-dimensional 

continuous body, with locally rigid motion. This 

means there is no longitudinal and transversal 

deformation, i.e. the belt is considered to be an 

inextensible strip with zero radial thickness and 

infinite axial stiffness.  

b) The bending stiffness of the belt is neglected.  

c) The Coulomb friction coefficient μ, acting between 

the segments and the pulleys, has a constant 

value.       
      

2) CVT system Mechanics 

In Fig.7 the entire CVT system is shown, where the driving, 

the driven pulley and the belt are presented. The moving half 

pulleys are subject to active axial forces which can be changed 

to obtain a variation of the belt’s pitch radii and thus modify 

the speed ratio. 

 
Fig.7 CVT Scheme 

 

In Fig.8, the kinematical and geometrical quantities involved 

are shown, and the plane rereis illustrated. The figure 

shows the sliding angle γ, the angular coordinate θ, the radial 

coordinate r, the radius of curvature ρ and the slope angle φ. 

Moreover, the tangent unit vector τ of the belt and the 

corresponding normal unit vector n are represented in 

addition to the radial and circumferential unit vectors er and 

eΘ . 
 

3) Geometric and Kinematic Equations   

 

By observing Fig.8, the following relations can be derived: 

 

 .     (10)                                                                                                                                                                                                 

(11)                                                                                                                                                          

 = .                                                              (12)                                                                                                                                          

  r.d= .tan()                                                                     (13)                                                                                                                                                                          

                                                  (14)                                                                                                                      
 

Where ωd is the local sliding angular velocity of the belt, and δl, 

δθ are the length and the angular extension of a material element 

of the belt respectively. Equation (13) correlates the radial 

velocity of the belt with its sliding tangential velocity, while (14) 

relates the half-opening angle βs in the sliding plane with the 

sliding angle γ. 

 
Fig.8 Kinematical and Geometric Quantities  

 

4) Continuity Equation 

According to [11], the continuity equation can be written as: 

  

+ =0                                  (15) 

                                                                                                                                                                                                                                                   

This equation is based on the assumption that the belt is 

inextensible, that the longitudinal and transverse 

deformations are neglected and that the elongation of the belt 

is also neglected.  

5) Momentum Equations 

The forces involved in the equilibrium of the belt involves the 

tension of the belt (F), the linear pressure acting on the belt 

sides (P), the friction force (fa), and the inertia force of the 

belt element due to its acceleration (σ  d ).This is 

visualized in Fig.9. The friction force fa =p. And the net 

tension of the belt; F=T-P. 
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Where T is the tension of the band and P is the compressive 

forces between metal segments   

According to [11], the following assumptions are made to 

calculate the equilibrium: 

 

a) It is possible to calculate the local angular 

acceleration θ of the considered belt’s material 

element with the pulley’s angular velocity ω.  

b) From Eq. (12), it follows that  ≈ r ≈ R, therefore all 

these three parameters are written as R.  

c) The term  is neglected with respect to ω2R, i.e.  

 

d) .  

e) The belt’s axial and tangential acceleration are 

neglected. 

 

With these assumptions, the two Momentum Equations are: 

 

    (16) 

                                                                                         

                                           (17)                                                                                                                                   

  

 
Fig.9 Forces acting on belt 

 

6) Dimensionless Equations 

 

A new angular coordinate   is defined as the angular 

coordinate of the real or imaginary point at which the sliding 

velocity’s component of the belt in rere plane is purely 

radially directed. Equations (10) and (15) can be reformulated 

as: 

= (18)                                                                                                                                                                    

Vr+ =0                                                                              (19) 

                                                                                                                                                           

Where Vr   is the radial sliding velocity of the belt= r ., and V 

is the tangential sliding velocity of the belt= r d .All the 

previously derived relations can be rephrased in 

dimensionless form once the following dimensionless 

quantities can be defined: 
 

Dimensionless radial velocity: w=                            (20) 

Local sliding coefficient: 

sc=d/(21 

Dimensionless belt’s tension: K=                      (22) 

                                                                                                 

Dimensionless linear pressure:  =                      (23)                                                                                                               

 

Dimensionless belt radial velocity:    =           (24)                                                                                   

 

Dimensionless belt tangential velocity:    =           

(25) 

 

Rewriting the previously derived relations in terms of the 

new dimensionless terms to get simpler form; (13) can be 

written into: 

 

tan=                                                                                 (26)                                                                                                                                                              

 

Equations (16) and (17) can be rephrased as follows: 

 

First Momentum Equation:  

                                                                                                                                                                   

=                                                           (27)                                                                                                                                                   

 

Second Momentum Equation: 

=                                                          (28) 

                                                                                                                                      

Continuity Equation: 

                                                                        (29)                                                                                                                                                                               

 

Kinematic Equation: 

                                                                      

(30) 

                                                                                                                                                                              

Geometric Equation: 

tan(s)=tan().cos()                                                         (31)                                                                                                                                               

                                                                                                                                                    

7) Graphical Representation of and
 

 is defined as the traction coefficient and the force ratio is 

defined as: 

 

 = =                                                                   (32)   

                                                                                                                                                                                                                                 

The values of and  [11] are entered into Matlab curve 

fitting tool, in order to illustrate the relation between and 

for w<0 and w>0, as shown in Fig.10. The values of the 

ratio S / [ )] =  

versus the force ratio [11], were obtained by polynomial 

curve fitting in Matlab to represent the relationship between 

and as shown in Fig.11. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS020030

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 02, February-2016

57



0 0.5 1 1.5 2 2.5 3
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25





W< 0

W> 0

 
                Fig.10 Traction coefficient  versus force ratio  (=0.1, =18°) 
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               Fig.11 Dimensionless Ratio  versus force ratio  (=0.1, =18°)  

 

8) Slip in a Continuously Variable Transmission 

 

The clamping force should be large enough to prevent the slip 

between the belt and the pulleys. On the other hand, a large 

clamping force reduces the efficiency of the Continuously 

Variable Transmission (CVT). Hence, it is important to 

estimate and control the right amount of slip. 

 

The traction curve shown in Fig.12 [6], gives the relation 

between the transmitted torque and the slip. The traction 

coefficient  is defined as [16]: 

 

p=        ,     s =                     (33)                                                                                        

 

In which Tp is the primary pulley torque, Ts is the secondary 

pulley torque, Rs is the secondary running radius of the belt 

on the pulley, Rp is the primary running radius of the belt on 

the pulley, Fs is the secondary clamping force, and Fp is the 

primary clamping force. p and s are assumed to have the 

same value, i.e. (p= s= The second variable in the 

traction curve is the slip in the variator; slip is defined as: 

 

 

          s=                                                           (34) 

                                                                                                                           

Where,  is the angular speed of the secondary axle,  is 

the angular speed of the primary axle and n is the geometrical 

ratio, which is defined by:  

 

                                                                            (35) 

 

Using the experimental data of [6], the traction coefficient  

is obtained as a function of the percentage slip s, for different 

drive ratios.  
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Fig. 12 Traction coefficient λ as a function of slip measured at 300rad/s, for 

ratios low (0.4), Medium (1.1) and overdrive (2.26) [6] 

 

9) Derivation of the equation of the angular speed of the 

CVT primary and secondary pulley 

 

From Fig.3 we can obtain the dynamic equation of the 

angular speed of the CVT secondary pulley as follows: 

 
                                                (36) 

                                                                                                                                              

To obtain the governing equation of the primary pulley 

angular speed: 

 

First, by differentiating the slip equation (34), we have: 

 

                                          (37)                                                                                                                              

     

Then, by substituting  from (36) and substituting   

from the slip equation (34); (37) becomes: 

 

          (38)                                                                                                  

 

Therefore, 

 

  -                    (39)     
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And in dimensionless form: 

 

  - ( 

                                (40)                                                                 

 

In order to obtain : 

 

By differentiation the traction coefficient equation (33) w.r.t 

time we get: 

 

                                                          (41) 

 

From the clutch model equation, (6) and from (41), we have: 

  

                                          (42)                                                                                                                             

 

But, .  Let      

 

Therefore, 

 

                                                                     (43)                                                                                                                                                 

 
From the traction coefficient equation (33): 

 

                                                                (44)                                                                                                                                                                                                                                                                   

Substituting from (44) into (42) we get, 

       

                                            (45) 

                                                                                                                              
Substituting from (45) into (34) we get, 

 

 =                                 (46)                                                                                                  

 
In dimensionless form: 

 

                               (47)                                                                                                         

 

10) Calculation of dimensionless primary and secondary 

radius  

 

The values of the radii of the primary and secondary pulleys 

are functions of the ratio between the belt length and the 

center distance of the two pulleys. The length of the belt can 

be calculated from the following relation: 

 

L =  +  sin-1   + 

                                                     (48)  

                                                          

 

Dividing the previous equation by the center distance, we 

have: 

                                                               

(49) 

The belt length in dimensionless form is given by: 

 

                                                      (50) 

Assuming the value of  and getting the roots of the non-

linear equation of y using Matlab, the values of  and   

can be calculated. 

 

11) Evaluation of the values of and
 

The non-dimensional ratiois  obtained by using the 

versus slip relation, in Fig.12, knowing the value of speed 

ratio ‘n’ and the allowed value of slip percentage. And  is 

obtained from the relation between and in Fig.10, 

according to the sign of dimensionless radial velocity . 

 

Where: 

 

(51)                    

The ratio  is obtained from the relation between and in 

Fig.11, according to the sign of the dimensionless radial 

velocity . 

 

12) Evaluation of the primary and secondary torques 

Since, 

 
Hence, 

                                       (52)                                                                                                                                      

Since, 

 
Hence, 

                                  (53) 

                                                                                                              
From (33) we have,  

                                                      (54)                                                                                                                                                                           

Substituting from (54) into (52): 

                                                                                                          

(55)                                                             
Substituting From (53) into (55) 
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                     (56)                                                                                                          

From (56): 

(57)                       

                                                                                                   

   

From Eq. (56) into Eq. (53) 

 

                                                            (58) 

Hence, 

(59)              

                                                                                                   

                                                       (60)                                                                                                                                           

And,  
                                                        (61)                                                                                                                                                  

 

D. Car Differential, wheels and Resistive Load 
 

The car differential splits the engine torque on the left and 

right transmission branches while allowing for different 

revolution speeds on the two shafts. The two powered wheels 

(usually the front wheels) are described with a single inertia 

Jw. A resistance load Torque is acting on the vehicle and 

impeding its motion. This resistive torque consists of 

aerodynamic drag resistance, rolling resistance, gradient 

resistance and inertia resistance. 

1) Aerodynamic Drag Resistance 

 The force due to aerodynamic drag depends mainly on the 

shape of the vehicle, the density of the surrounding air, and 

the velocity of the vehicle. The equation for the aerodynamic 

drag force is: 

 

Drag Force =                                        (62)                                                                                                                                              

 

Where: 

CD = Coefficient of aerodynamics resistance  

(drag coefficient)  

A= Car frontal area [m2 

ρair = Air density [kg/m3]  

u = Car velocity [m/s] 
 

2) Rolling resistance 

Rolling resistance= G. f. cos                                   (63)

                                                                                                                                     

Where:

f = coefficient of rolling resistance  

G= car weight [N]  

m = car mass [kg]  

g = Acceleration due to gravity  

 =the angle of road inclination  

 

 
 

3) Gradient resistance 

The gradient resistance depends on the angle of the road 

inclination and the weight of the car. The gradient resistance 

is given by: 

Gradient resistance= ± G sin                                           (64) 
 

                                                                                                                                        

Where: 

±

 

4) Inertia Resistance 

When the car changes its velocity (accelerate or decelerate), it 

needs a force, this force is represented by the car resistance to 

change its speed (inertia force). This force depends on the 

mass of the car and the value of the car acceleration. 

 

Inertia Resistance= ± (m+meq). a                                        (65) 

                                                                                                                                     

Where: 

a = car acceleration [m/s2] 

meq =equivalent mass of rotating parts [kg] 

 

 
Where: 

= The equivalent rotary inertia of wheels  

 = The equivalent rotary inertia of car differential  

 = Transmission efficiency 

 = Differential gear ratio 

 = tire radius [m] 

 

± :  

 

5) The Total Resistive Force 

 

The total resistance = Drag Force + Rolling resistance + 

Gradient resistance+ Inertia Resistance 

 

Hence, 

The total resistance =  + G. f. cos ± G sin  ± 

(m+ meq). a   

   

Resistive Torque= Tv =   . Resistive Force 
 

Tv = * (   + G. f. cos ± G sin ± (m + meq). a)                                                                                          

(66)                                                              

In dimensionless form: 

 

      (67) 

 

 

                                                                                             

Where: 
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A1=  , A2= , A3=  + 

  

 

From Fig.3 we can obtain the dynamic equation of the 

vehicle angular speed as follows: 

 
                                          (68)                                                                                                                               

 

E. Evaluation of the load torque on CVT    
 

can be obtained from the following relation : 

 

III. NUMERICAL SOLUTION, RESULTS AND DISCUSSION  
 

From (1), (5), (36), (40) and (68), the governing ordinary 

differential equations of the vehicle mathematical model can 

be written as follows: 

 

   

   

   

  - 

 (  

 
 

In which, Je, is the rotary inertia of engine; Jcl, is the rotary 

inertia of clutch; Js is the rotary inertia of the secondary 

pulley of CVT; Jr is the rotary inertia of the car differential; 

and Jw is the rotary inertia of the wheels. And Be, Bcl, Bs and 

Br represent the equivalent damping coefficient of each axis 

respectively  

A. The initial Conditions 

At the beginning of the motion when t*=0, the initial 

conditions are: 
 

   

 
       

  

B. Numerical Solution 

The ordinary differential equations were numerically solved 

using ode23 MATLAB solver. The ode23 solver uses second 

and third order Runge-Kutta-Fehlberg integration with 

variable step size. The angular speeds of each component of 

the model were integrated with time. The results are plotted 

in Fig.13 
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From Fig.13, the following results are obtained: 

 

a) The dimensionless angular speed of engine   , 

initially starts at  (equivalent to an 

angular speed of 210 rad/s). It then decreases 

until it becomes steady at a dimensionless 
angular speed of 0.82, after a time of 
approximately 5 seconds (equivalent to a non-

dimensional time = 1050). 

b) The dimensionless angular speed of clutch   , 

starts at . It then decreases until it 

becomes steady at a dimensionless angular 

speed of 0.78, after a time of approximately 1 

second. 

c) The dimensionless angular speed of CVT primary 

pulley   , starts at . It then decreases 

until it becomes steady at a dimensionless 

angular speed of about 0.75, after an actual time 

of approximately 1 second. 

d) The dimensionless angular speed of CVT secondary 

pulley   , starts at . It then 

decreases until it becomes steady at a 

dimensionless angular speed of about 0.7, after 

a time of approximately 14 seconds. 

e) The dimensionless angular speed of vehicle   , 

starts at . It then 

decreases until it becomes steady at a 

dimensionless angular speed of about 0.3, after 

a time of approximately 0.7 seconds. 
 

IV.  CONCLUSIONS 

In this paper, a mathematical model for a complete vehicle 

equipped with CVT is constructed. The model simulates the 

whole vehicle dynamics. A separate model for every 

component of the vehicle; the engine, clutch, CVT, car 

differentials, wheels and car body, was constructed.  

The slip between the belt and the pulley along with the CVT 

traction curve were taken into consideration in the 

mathematical model. The kinematic and geometric equations 

were formulated for the whole system. 
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The differential equations for the angular velocities for every 

component in the system were formulated. These equations 

were numerically solved in order to predict the behavior of 

the system. Plotting the angular speeds with time, the 

numerically simulated results show that the system becomes 

steady after a short period of time. The graphical 

representation of the system’s dynamical response 

demonstrates that the simulation model established represent 

the system efficiently. 
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