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Abstract - In this article the mass loading effect due to 
accelerometer on the natural frequency of cracked beam in free-
free configuration has been investigated. Free-free configuration 
is selected as it is easier to replicate these boundary conditions in 
both experiment and analytical model. Also it is customary to 
validate the geometric model by comparing results with 
experiment in free-free condition. Natural frequencies obtained 
using accelerometer and FFT analyze are lower than obtained 
analytically or numerically using software based modal analysis. 
The difference could be attributed to the change in the boundary 
conditions, variation in geometric model simulating the real 
system, change in material properties and effect of accelerometer 
mass with its location on the beam. Therefore, can natural 
frequency alone be a detection parameter is an elusive question 
as on date. Nevertheless research is going on for qualitative 
assessment of health monitoring of the structure with natural 
frequency as the detection parameter due to its ease in 
measuring. Present work develops an analytical formulation to 
compute modal properties of a mass loaded beam, cracked beam 
and finally mass loaded cracked beam. The beam is considered as 
Euler-Bernoulli beam with additional mass effect is modeled by 
considering jump in shear force at the location. Crack is modeled 
as a mass less rotational spring and its flexibility parameter is 
obtained invoking concepts of fracture mechanics. Effects of 
additional mass location, crack depth and crack location on the 
modal properties are investigated.  

Keywords— Mass loading, modal analysis, FEM, free- free, 

cracked beam  

                               I  INTRODUCTION  

In an attempt to extend the possibility of using modal 
parameters like natural frequency for detection of crack in the 
turbine blade, the process is validated firstly for simple beam. 
The intent eventually is to perform various analyses on the 
turbine blade model using ANSYS software so as to study 
mistuning effect due to cracking of blade. 

As sensitivity of the natural frequency to the loss of 
stiffness needs to be ascertained and measured accurately for 
it to be become indicator for presence of crack and 
subsequently for location and severity of the crack. All the 
parameters which might affect the natural frequency need to 
be considered. One such parameter for small and slender 
structure is a mass of an accelerometer itself that lowers the 
measured natural frequencies. Therefore, in this research 
paper two modeling techniques analytical and numerical using 
ANSYS s/w are discussed so as to consider loading effect of 
an accelerometer mass on the natural frequencies of the beam. 
It is found that the mass of an accelerometer affected the 
natural frequencies according to its location and the ratio of its 
mass to the mass of beam. The effect was studied by 

performing experiment using two beams of different mass 
whereas material is same and accelerometer of same mass. 

For validation of the geometric model before its use for 
further analyses, results of software based modal analysis have 
to agree closely with the experimental modal analysis of the 
physical or real system. It is therefore must to simulate the 
effect of additional mass of accelerometer in analytical and 
numerical i.e. software based modal analysis.  

Many researchers have used the vibration response to 
detect cracks in a structure.  Dado et.al [1] have tried to figure 
out not only the presence of crack by studying change in 
modal parameters but also the crack characterization like its 
depth and location. These detection schemes are based on the 
fact that the presence of a crack in a structure reduces the 
stiffness of the structure, hence reducing the natural 
frequencies.  

Gounaris and Dimarogonas [2] have developed the Euler–
Bernoulli beam cracked element based on the fracture 
mechanics approach. They have used coefficients of the 
compliance matrix that are computed based on available 
expressions of the stress intensity factor (SIF) and associated 
expressions of the strain energy density function (SEDF) by 
using the linear elastic fracture mechanics (LEFM) approach.  

Ostachowicz and Krawczuk [3] have considered effect of 
two open cracks upon natural frequencies of flexural vibration 
of cantilever beam. They have observed that when two cracks 
are near to each other then drop in natural frequency is more 
and if two cracks distances from each other then frequency 
tend to be similar to single crack beam.  

On the similar line of various researchers the loss of 
stiffness in the vicinity of the crack is estimated by calculating 
the additional flexibility coefficients from the relation between 
strain energy release rate, stress intensity factors using 
Castigliano‟s theorem and Paris Law. Then the stiffness 
matrix is obtained by taking inverse of the flexibility 
coefficient matrix as reported by Kotambkar [4]. 

In many situations, the mass of accelerometer is ignored in 
the analytical and numerical modeling process based on a 
usual assumption that the accelerometer mass is negligible 
compared to that of the structure under test. However, when 
lighter structures are investigated this effect can be significant 
and it may be necessary to eliminate this undesirable side 
effect before the measured data are used for future analyses. 
Cakar and Sanliturk [5] discussed the new method based on 
Sherman Morrison identity for elimination of mass loading 
effect of accelerometer from the measured FRF. 
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Wang [6] has done a comprehensive study of Euler-
Bernoulli beam loaded with lumped mass of both translational 
and rotary inertias. Frequency sensitivity is performed with 
respect to location of lumped mass.  

Low [7] has done a comparative study of eigenfrequency 
analysis for an Euler-Bernoulli beam carrying concentrated 
mass at an arbitrary location. The differential equation of 
motion along with corresponding boundary conditions and 
compatibility condition is converted to dimensionless 
frequency equation. The model does not consider rotary 
inertia of the beam and additional mass placed on it.   

The study to determine the effect of accelerometer mass on 
natural frequencies was triggered when it was observed that 
the first bending mode natural frequency of the turbine blade 
in free-free condition obtained experimentally did not match 
with the modal analysis result obtained by ANSYS software. 
Although for geometric model validation, modal analysis 
results in free-free condition has to agree closely with 
experimental values. It was concluded that the value of 
material parameters i.e. density and modulus of elasticity 
considered during modal analysis have to be accurate and 
effect of accelerometer as an additional mass also needs to be 
taken in consideration. It was decided to carry out the 
experiment and modal analysis using ANSYS on simple 
rectangular cross sectional beam with and without crack so as 
to study effect of crack on natural frequencies with due 
consideration to additional mass effect of accelerometer.  

Thus this paper discusses the findings of an attempt done 
to consider effect of additional mass of accelerometer in the 
modal analysis of the beam with and without crack using 
ANSYS 11.0. There are two ways to model the additional 
mass in ANSYS using point mass element mass21 [8].  

 

II. ANALYSIS OF MASS LOADING EFFECT ON 

BEAM IN FREE-FREE CONDITION  

 

In order to validate the finite element model of the beam it 
has become customary to compare it with experimental 
measurement of natural frequency of the system under study 
in free-free condition as these boundary conditions can be 
replicated during experiment without any difficulty. Fig 1 
below shows the mass loaded beam in free-free end 
conditions. 

 

Figure 1: Beam in free-free condition with accelerometer mass  

      The beam is assumed to be divided into two segments 
at the mass location. Two different coordinate systems are 
taken at each end of the beam for reducing the number of 
integration constants. There are four constants for each 
segments resulting into total eight constants for the beam.  
Whereas there are four boundary conditions i.e. zero moment 
and force at each of the two free ends are used.   

The equations of motion of free vibration for the beam is 
given by 

    

                       

Above equation is well known as Euler-Bernoulli equation 
for a uniform cross section beam, for which, the solution 
exists in the form. 

                                                   (2)          

where the mode shape function Y(x) is expressed as  

(3) 

  with    

                                                                                    (4) 

 

Such that natural frequency, can be obtained as 

                                                                                    (5) 

 

 

At the left end of the beam i. e. at 1
x 0  and right end of 

the beam i.e. at 2 at  x Lx 0   , the displacement fields 

1y (x, t)  and 2y (x, t) satisfies the boundary conditions  

Bending moment (BM): 

2

2

y
EI 0

x





  and   Shear Force (SF): 

2

2 y
EI 0

x x

  
 

  
 which allows the mode shape for the left 

segment „a‟ to be reorganized as  

 (6) 
 

and for the right segment „b‟ can be reorganized as 
 

(7) 
 

The four equations due to compatibility conditions for 
displacement, slope, BM and SF at the location of additional 
mass for the beam is as follows. Due to the presence of 
additional mass there is sudden   rise in shear force. [9] 

, 

, 

   

and 

                 (8)              

 
Substituting Eqs.  6-7 into the compatibility equations in 

Eq. 8, one gets the frequency equation in determinant form as  
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a
P cosh L cos L      , in which a / L  is non 

dimensional mass location parameter 

, 

                                              and 

 

                                                                      , in which  

, 

                                                                       and 

m / AL                                          (10) 

Where   is ratio of additional mass to mass of the beam

                                                                                                       

The numerical simulations are done by solving 
characteristic equation obtained from the determinant in (9) to 
find the natural frequency ( L ). The modulus of elasticity E is 

considered as 200 GPa and material density was measured 
7835 Kg/m3. The results of simulations with sample beam of 
size 610.3 x 25.3 x 3.4 mm are presented in table 1. 

 

TABLE 1: EFFECT OF MASS (  = 0.065) LOADING LOCATION ON FIRST THREE 

BENDING MODES 

βL values 

SN a/L Mode  I Mode II Mode III 

1 0.05 4.58985 7.72128 10.8987 

2 0.1 4.65753 7.83232 10.994 

3 0.15 4.70428 7.84705 10.8719 

4 0.2 4.72741 7.78027 10.7473 

5 0.25 4.72726 7.69779 10.777 

6 0.3 4.70895 7.65988 10.905 

7 0.35 4.68136 7.68328 10.9944 

8 0.4 4.65405 7.75018 10.9286 

9 0.45 4.63462 7.82191 10.7721 

10 0.5 4.62765 7.8532 10.6952 

 

 
It is observed from the table 1 that natural frequency of all 

the modes is sensitive to additional mass and its location. The 
drop in natural frequency due to additional  mass  is more if 
the location of the mass is near to the anti node of the mode 
and it is unaffected if the location is at the node of the mode.  
There are two anti nodes for half the beam considered due to 
symmetry in Mode I, one at free end and other at the middle 
of beam due to which drop observed is more as shown in fig 2 
below. 

 

 

Figure 2: Effect of mass loading on Mode-I 

 

Similar trend is observed in higher modes II and III.  Figs. 
3 and 4 show mass loading location effect on natural 
frequency of second and third mode  

 

Figure 3: Effect of mass loading on Mode-II 

 

 

Figure 4: Effect of mass loading on Mode-III 
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III. ANALYSIS OF CRACK EFFECT ON BEAM IN FREE-FREE 

CONDITION  

 
In order to find out drop in natural frequency of the beam 

in free-free condition due to crack alone, the analysis is 
carried out by considering crack of varying depth at different 
locations.  Fig 5 below shows the cracked beam.  

 

 

 

 

 

 

 

 
Figure 5: Beam with crack 

 
Similar approach is used for modeling the effect of crack 

except the four equations due to compatibility conditions for 
displacement, slope, BM and SF at the location of crack for 
the blade given below. Due to the presence of crack there is 
sudden jump in slope. [10][11] 

 

1 2
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y y ,  

 f
1 2 2
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EIcy y y ,  

 
1 2

'' ''
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y y 
 and  

                    
1 1

1 2 

''' '''
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y y 
                      

(11)             (11) 
 

Where cf is local flexibility coefficient obtained from 
fracture mechanics based strain energy density function  

 
2 3

4 5 6
f (h /H) 0.6384 1.035 n 3.7201 n 5.1773*n

7.553*n 7.332*n 2.4909*n
     

  
     (12) 

f

2

2

1 b*h *E
k

c 72* *n *f (h / H)
 


                       (13) 

 
The frequency determinant can be obtained as given in Eq. 

14 below  

 

 

      (14) 

 

 

Where fEIc / L   is dimensionless crack flexibility 

coefficient  

The blade crack severity ratio h / H  which is crack 

depth to thickness of blade is introduced.  The ratio varying 
from 0 to 0.5 has been used at different locations and 
accordingly flexibility „cf‟ due to crack and 

f
EIc / L  values are obtained. The material for the beam is 

considered to be steel with modulus of elasticity 200 GPa and 
density was measured to be 7835 Kg/m3. The results of 
simulations is presented in tables 2-5 for some typical 
locations x/L = 0.05, 0.15, 0.3 and 0.5.  

TABLE 2: CRACK EFFECT ON NATURAL FREQUENCIES ( L VALUES) FOR 

CRACK LOCATION X/L = 0.05 

Mode 
L values 

 = 0  =0.1  =0.2  =0.3  =0.4  =0.5 

1 4.73004 4.73004 4.73003 4.73002 4.73001 4.72998 

    2 
 

7.8532 7.85318 7.85312 7.85301 7.85284 7.85257 

3 10.9956 10.9955 10.9952 10.9947 10.9939 10.9926 

 

TABLE 3: CRACK EFFECT ON NATURAL FREQUENCIES ( L VALUES) FOR 

CRACK LOCATION  X/L = 0.15 

Mode 

L values 

 = 0  =0.1  =0.2  =0.3  =0.4  =0.5 

1 4.73004 4.72994 4.72963 4.72909 4.7282 4.72685 

2 

 
7.8532 7.85236 7.84994 7.84559 7.83849 7.82761 

3 10.9 956 10.993 10.9854 10.9719 10.9499 10.9165 

 

TABLE 4: CRACK EFFECT ON NATURAL FREQUENCIES ( L VALUES) FOR 

CRACK LOCATION X/L = 0.30 

Mode 

L values 

 = 0  =0.1  =0.2  =0.3  =0.4  =0.5 

1 4.73004 4.72919 4.72677 4.72242 4.71536 4.70463 

    2 

 
7.8532 7.85056 7.843 7.82958 7.80816 7.7764 

3 10.9956 10.9944 10.9909 10.9847 10.975 10.9608 

 

TABLE 5: CRACK EFFECT ON NATURAL FREQUENCIES ( L VALUES) FOR 

CRACK LOCATION X/L = 0.50 

Mode 

L values 

 = 0  =0.1  =0.2  =0.3  =0.4  =0.5 

1 4.73004 4.72826 4.72319 4.71413 4.69957 4.67774 

2 
 

7.8532 7.8532 7.8532 7.8532 7.8532 7.8532 

3 10.9956 10.9924 10.9832 10.9669 10.9411 10.9032 

 

It is quite clear from the Tables (2-5) that all the natural 
frequencies of all the modes are sensitive to the presence of 
crack. As the severity of crack increase, there is further drop 
in the natural frequency.  
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a a b b b b

a a b b

a a b b
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Figure 6: Crack severity effect on Mode-I 

 

The figure 6 depicts effect of crack severity at different 
locations on Mode-I. It is observed that as the location of 
crack moves towards mid of the beam, the rate at which 
natural frequency drops gets increased. 

 

Figure 7: Crack severity effect on Mode-II 

 

The fig 7 depicts effect of crack severity at different 
locations on natural frequency of Mode-II. It is noted that the 
drop is almost negligible when crack location is at free ends or 
at middle of the beam, rather it is unaffected for mid-location. 
If the crack location is nearer to anti node of the mode, the rate 
of drop in natural frequency increases with crack severity.  

 

The figure 8 shows effect of crack severity at different 
locations on natural frequency of Mode III. It is observed that 
for crack location at free ends, natural frequency is unaffected 
whereas for all other locations, drop in natural frequency 
increases with increase in crack severity. 

 

 

Figure 8: Crack severity effect on Mode-III 

The figure 8 shows effect of crack severity at different 
locations on natural frequency of Mode III. It is observed that 
for crack location at free ends, natural frequency is unaffected 
whereas for all other locations, drop in natural frequency 
increases with increase in crack severity. 

IV. ANALYSIS OF ADDITIONAL MASS AND CRACK EFFECT 

ON BEAM IN FREE-FREE CONDITION  

 
In order to study the effect of mass loading on the natural 

frequencies of cracked beam as shown in the Fig.9, the 
previous two models i.e. beam with mass loading and cracked 
beam are combined appropriately and the determinant form of 
frequency equation is given below (Eq. 15).  

 

 

 

 

 

 
Figure 9: Cracked beam with mass loading. 
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(15)   

Where bT cosh L(1 )   , bU cos L(1 )   ,         

bV sinh L(1 )   , bW sin L(1 )    

The frequency equation will give characteristic root as 

L which is function of crack severity and location of crack 

as well as additional mass and its location. The numerical 
simulation is done with typical mass m = 0.027 Kg located at 

c/L =0.05 and crack of severity ratio  = 0 to 0.5 at varying 

location x/L = 0.05, 0.15, 0.3 and 0.5 and results are presented 
in tables (6-9). 

Y3 Y1 X1 Y2 X2 X3 

c b a 
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TABLE 6:  NATURAL FREQUENCIES ( L VALUES) FOR CRACK LOCATION     

X/L = 0.05 

Mode 

L values 

 = 0  =0.1  =0.2  =0.3  =0.4  =0.5 

1 4.58985 

 
4.58984 4.58983 4.58982 4.5898 4.58984 

2 

 

7.72128 

 
7.72121 7.72111 7.72094 7.72069 7.72121 

3 10.8987 

 
10.8986 10.8983 10.8978 10.897 10.8958 

 

 
TABLE 7: NATURAL FREQUENCIES ( L VALUES) FOR CRACK LOCATION      

X/L  = 0.15 

Mode 

L values 

 = 0  =0.1  =0.2  =0.3  =0.4 
  

=0.5 

1 4.58985 

 
4.58975 4.58949 4.58902 4.58825 4.58707 

2 

 

7.72128 

 
7.72049 7.7182 7.71408 7.70737 7.69709 

3 10.8987 

 
10.8961 10.8887 10.8753 10.8536 10.8206 

 

 

TABLE 8: NATURAL FREQUENCIES ( L VALUES) FOR CRACK LOCATION    

X/L = 0.3 

Mode 

L values 

 = 0  =0.1  =0.2  =0.3  =0.4  =0.5 

1 4.58985 
 

4.58909 4.58693 4.58304 4.57674 4.56716 

2 

 

7.72128 
 

7.71865 7.71112 7.69775 7.67638 7.64467 

3 10.8987 
 

10.8974 10.8936 10.8869 10.8763 10.861 

 
 

TABLE 9: NATURAL FREQUENCIES ( L VALUES) FOR CRACK LOCATION   

X/L = 0.5 

Mode 

L values 

 = 0  =0.1  =0.2  =0.3  =0.4 
  

=0.5 

1 4.58985 

 4.58816 4.58334 4.57473 4.56089 4.54013 

2 

 

7.72128 

 7.72127 7.72124 7.72118 7.72109 7.72095 

3 10.8987 

 10.8955 10.8862 10.8699 10.844 10.806 

 

 

It is observed that drop in natural frequency due to crack is 
accentuated due to effect of additional mass. The drop is 
sensitive to the location of crack when it is near to the anti 
node of the mode. From the table 9, it is clear that the second 
mode natural frequency for crack location at mid of beam 
span is showing some sensitivity to crack severity whereas it 
remains unaffected (Table 5) in the absence of additional 
mass. The drop in natural frequency with crack severity at 

different locations with and without mass loading effect is 
shown in the figs. 10-12. 

 

Figure 10: Effect of crack severity at different locations with and without 

additional mass on natural frequency of Mode-I 

 

 

Figure 11: Effect of crack severity at different locations with and without 

additional mass on natural frequency of Mode-II 

 

 

Figure 12: Effect of crack severity at different locations with and without 
additional mass on natural frequency of Mode-III 

 

It is quite evident from the figs 10-12 that there is definite 
ratio by which all the modes natural frequency get shifted 
from without mass loading effect to with mass loading effect. 
The ratio does not influence the trend in drop of natural 
frequency due to crack severity.  
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V. EXPERIMENT:  

Figure 13 shows schematic of experimental set up used 
which consists of two sample beams of dimensions Lx B x H 
in mm (SB1: 610.3 x 25.3 x 3.4; and SB2: 452 x 39.4 x5.7), 
accelerometer (B & K make, weigh 27 gm), FFT analyzer (DI 
2200). The sample beams were suspended with threads in 
free-free condition. Accelerometer fitted with magnetic base 
was mounted on the beam and the response was sent to FFT 
after initial disturbance given to the beam. The first three 
bending mode natural frequencies were measured. The density 
of mild steel was measured to be 7835 Kg/m3.  

 

 

 

 

 

 

 

 

 

 

Figure 13: Experimental set up for measuring natural frequencies. 

The table 10 shows the first three bending mode natural 
frequencies in Hz obtained experimentally in free-free 
condition. 

 

TABLE 10: EXPERIMENTAL NATURAL FREQUENCIES OF SB1 AND SB2 

Mode 
Frequency in Hz 

SB1 SB2 

1 43.500 144.25 

2 118.250 386.25 

3 250.500 765 

 
 
A crack of 0.4 mm width and 2 mm depth was cut in the 

(SB2) beam, henceforth referred as SBC2 ( Sample beam with 
crack) using EDM Wire Cut Machine. The crack location was 
decided so that it didn‟t coincide with any one of the nodes of 
the first three modes of vibration as observed in (FEA) modal 
analysis.  

Table 11 depicts comparison between measured natural 
frequencies for un-cracked (SB2) and cracked beam (SBC2).  

TABLE 11: EXPERIMENTAL NATURAL FREQUENCIES OF UN-CRACKED SB2 

AND CRACKED SBC2 BEAM 

Mode 
Frequency in Hz 

SB2 SBC2 

1 144.25 143.875 

2 386.25 382.175 

3 765 760 

 

 

VI. NUMERICAL SIMULATION USING ANSYS 

 
The numerical investigation is carried out using modal 

analysis module of ANSYS software. The finite element 
model is created using solid 45, brick element with 8 nodes 
having all the three translational degrees of freedom and mass 
of accelerometer is simulated using mass21 element. The fig. 
below shows the FE model of the beam (SB1) with 
distributing mass load on nodes that are coming in contact of 
circular magnetic base of accelerometer by using CERIG 
command. The command created constrained region between 
master and slave nodes thus ensuring connectivity between the 
two as rigid link. The global size of the brick element is 6.8 
mm for all the analysis result presented here, however, the FE 
model shown in Fig. 14 is with element size 3.4.  The number 
of elements is 360 with size 6.8 mm and it is 1440 with size 
3.4 mm.  The frequency values converge with element size 6.8 
mm itself and hence this size is kept.  

 

 

 

 

 

 

 

 
 

 

 

 

Figure 14: FE model of  SB1 with mass loading using CERIG 

The results of modal analysis are presented in the table 12 
below.  

TABLE 12: COMPARISON OF FIRST THREE MODE FREQUENCIES WITH 

EFFECT OF CONCENTRATED AND DISTRIBUTED MASS FOR SB1 

Frequency in Hz of beam SB1 

Without mass  

effect 

Mass concentrated 

on one node 

Mass distributed 

over nodes 

46.920 43.672 43.635 

129.42 123.33 123.05 

253.98 245.85 244.86 

 
It is obvious from the values depicted in Table 12 that both 

the methods of simulating the accelerometer mass load effect 
gives pretty much the same result. Thus the method of adding 
mass at one node is used for the analysis.  

The comparison between natural frequency for the first 
bending mode of vibration of the sample beam (SB1), 
obtained by FEA and analytical model is given in the table 13. 
In both the models accelerometer mass effect with its location 
has been considered.   
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TABLE 13:FIRST BENDING MODE FREQUENCY OF SB1 WITH FEA AND 

ANALYTICAL MODEL 

Sr.  No. 
Location of 

mass a/L 

Natural  frequency in Hz 

FEA Analytical 

1 0.1 45.974 45.988 

2 0.2 47.364 47.379 

3 0.3 46.995 47.009 

4 0.4 45.907 45.920 

5 0.5 45.389 45.400 

 

The values of natural frequencies by both the methods are in 
close agreement. 

Further, modal analysis is carried out for sample beam 
SB2 by considering crack similar to what is cut with EDM in 
the actual beam. The geometric model is as shown in the fig. 
15 

 

Figure 15: ANSYS model of a beam (SBC2) with crack 
 

The finite element model is shown in the fig. 16, due to 
presence of crack in the model, numbers of finite elements and 
nodes increases significantly.  

 
 

Figure 16: ANSYS FE model of a beam (SBC2) with crack 

The result of modal analysis is presented in the table 14 
along with experimentally obtained natural frequency values. 

TABLE 14: COMPARISON OF NATURAL FREQUENCIES OF UN-CRACKED (SB2) 

AND CRACKED BEAM (SBC2) (EXPERIMENTAL, FEA W AND W/O 

ACCELEROMETER MASS) 

 

Mode 

Freq. in Hz Without crack  Freq. in Hz With crack 

Experi

mental 

FEA 

w/o 

A.M. 

FEA 

w. A.M. 

Experim

ental 

FEA 

w/o 

A.M. 

FEA 

w. 

A.M. 

1. 144.25 144.91 144.58 143.875 143.90 143.59 

2. 386.25 399.79 389.75 382.175 392.95 383.34 

3. 765 784.70 771.84 760 777.77 764.25 

 

(w/o: without, w.: with, A. M.: Accelerometer Mass) 

Thus with simulating mass loading effect with ANSYS, 
natural frequency values of all the three mode are coming 
close to the measured values.  

VII. CONCLUSIONS 

The natural frequency for all the modes is reducing with 
rise in mass loading whereas its location affects the drop more 
if close to the anti node of the mode. The drop in natural 
frequency due to crack in the beam gets amplified due to mass 
loading effect. Therefore to estimate the drop in natural 
frequency due to crack alone, it is essential to know the extent 
of frequency drop caused by mass loading. The correction 
factor due to mass loading can be obtained from software 
based modal analysis and used to modify experimentally 
measured value of natural frequency. 
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