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Abstract - Malware poses a risk to Windows computers, and 

antivirus software frequently fails. This project detects malware 

using machine learning, more precisely a Decision Tree. Without 

opening the programs, it examines information from executable 

files [PE], such as headers, sections, import tables, and entropy. 

The Decision Tree uses the CSV files to learn and make 

predictions. The end product is a quick, dependable system that 

can instantly determine if a file is malicious or safe. 
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I. INTRODUCTION 

Detecting malware effectively requires methods that can 

adapt to new and evolving threats. By analysing features 

extracted from PE files, it is possible to identify malicious 

files based on patterns rather than relying solely on known 

signatures, which traditional antivirus solutions often miss 

[5]. Using machine learning, the model learns from both safe 

and harmful files, creating clear decision rules that highlight 

which characteristics are most important for classification. 

This approach not only improves detection accuracy but also 

ensures safety, as files can be analysed without being 

executed. The workflow leverages CSV files containing 

structured PE features, allowing seamless integration into 

standard machine learning pipelines while maintaining 

efficiency and interpretability, making it easier for analysts to 

understand and trust the results [1][3][6][8]. 

Malware has emerged as one of the most urgent cybersecurity 

threats due to the exponential growth of software systems. 

Data theft, resource damage, and unauthorized access are all 

possible outcomes of malicious executables. Conventional 

antivirus programs don't detect new or obfuscated malware 

because they rely on known signatures [5]. 

Machine learning offers a promising alternative by learning 

patterns from large datasets of both  malicious and legitimate 

files. By analysing structural properties of PE files, it is 

possible to classify new files  without executing them, which 

ensures safety and efficiency [1][3]. 

 

 

 

 

This study focuses on using the Decision Tree algorithm, 

which provides clear, interpretable rules for classification, 

making it suitable for understanding which features 

contribute most to malware detection. The workflow relies on 

CSV files containing extracted PE features, enabling 

straightforward integration with standard ML pipelines 

[6][8]. 

II. LITERATURE SURVEY 

 

Because of the ongoing rise in cyberthreats and the growing 

limitations of conventional antivirus software, malware 

detection has emerged as a crucial field of study. Signature-

based techniques, which compare files to a database of 

recognized malware patterns, were the mainstay of early 

malware detection systems. These techniques work well for 

threats that have already been identified, but they have trouble 

identifying recently created, obfuscated threats.  

The significance of intelligent detection methods that can 

adjust to changing malware behaviour is highlighted by 

recent studies. In order to successfully identify complex and 

unknown threats, Rajendran et al. [1] stressed that modern 

cybersecurity systems must move beyond fixed signatures 

and adopt learning-based approaches. Their research 

demonstrates that in dynamic cyber environments, data-

driven models greatly enhance detection capabilities. 

Patil and Deng [2] studied both the machine learning-based 

methods and deep learning for malware analysis, and showed 

that the static analysis of PE/EXE files can be used to reach 

high confident in detecting without executing potentially 

suspicious programs. Their results demonstrate that feature 

extraction from executables can be used to identify malicious 

software relatively easily compared to legitimate programs. 

Other researchers have been working on PE files analysis for 

malware detection. Jain and Sharma [8] demonstrated that PE 

file features, including headers, section information, and 

entropy values also present evident obverse between benign 

and malware. Statically analyzable structural features For 

these kinds of structure, they can be safely extracted and 

processed, thus static analysis is suitable to large-scale and 

real-time malware detection systems. 

Newaz et al. [3] experimentally compared various machine 

learning models and revealed that tree-based classifiers are 

highly efficient on structured feature data. They made it clear 
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that models such as Decision Trees can provide high level of 

accuracy while maintaining interpretability, a key aspect to 

security analysts that for them is necessary to understand the 

decisions from classification. 

Indumathi et al. [4] studied deep learning malware detection 

and obtained good classification performance. In their study, 

the authors also showed that deep learning models are 

computationally more expensive and require massive data 

which may restrict them to be used in lightweight detection 

systems. Such results advocate in favor of simpler supervised 

learning models in low-resource settings. 

Microsoft's documentation on the Portable Executable 

format [5] is a key resource for learning about the internal 

structure of Windows executables. It details how PE headers, 

import tables and section layouts can be examined to retrieve 

useful snippets of malicious behaviour before you run 

anything. 

Pedregosa et al. [6] presented scikit-learn, a framework used 

by many for machine learning in cybersecurity research. It 

also supports Decision Tree classifiers and evaluation 

metrics, making it applicable to CSV feature dataset-based 

malware detection. 

Additionally, studies published by IJRASET [7] and Newaz 

et al. [11] further confirm that machine learning-based static 

analysis provides a fast, safe, and scalable solution for 

malware detection. These works highlight the importance of 

feature selection and proper evaluation metrics to achieve 

reliable performance on imbalanced malware datasets. 

Overall, existing literature clearly supports the effectiveness 

of static PE file analysis combined with machine learning 

techniques for malware detection. While deep learning 

models show strong potential, Decision Tree classifiers 

remain a practical choice due to their simplicity, transparency, 

and low computational cost. These research findings strongly 

motivate the use of a Decision Tree–based approach for 

detecting malicious executables using CSV-formatted PE 

features. 

III. METHODOLOGY 

A. Data Collection 

The dataset comprises malicious and legitimate Windows PE 

files. Malicious files were sourced from publicly available 

malware repositories, while legitimate files were collected 

from verified Windows system directories and open-source 

software. Each executable was verified for integrity, labelled 

manually, and cross-checked [2][3]. 

B. Data Preprocessing 

1. Feature Extraction: PE headers, section 

characteristics and entropy values were extracted 

from each file. 

2. CSV Storage: All extracted features were saved in 

structured CSV files to facilitate machine learning 

processing. 

3. Normalization: Min-Max scaling was applied to 

numeric features to ensure uniformity and reduce 

bias during training. 

4. Train-Test Split: The dataset was divided into 

training and testing sets (typically 80%-20%) to 

evaluate model performance [6][8]. 

C. Confusion Matrix 

A confusion matrix provides an effective way to evaluate how 

accurately the Malware Detection System categorises the 

executable files (PE). Unlike the overall accuracy of the 

system, the confusion matrix separates the correct and 

incorrect classifications for each class. Thus, by examining 

the confusion matrix, we can make a better assessment of the 

Decision Tree model's accuracy in identifying malicious PE 

files versus benign ones [1][3]. 

A confusion matrix has four types of results: 

• True positives (TP): These represent malicious PE 

files that are accurately identified by the Decision 

Tree as a malware file. 

• True negatives (TN): They are executable files that 

have been confirmed to be executed, and classified 

as benign, an accurate representation of the truth.  

• False positives (FP): It represent legitimate files 

that have been incorrectly identified as malware. A 

large number of false positive errors may cause users 

to lose trust in the detection process and trigger 

superfluous alerts.  

• False negatives (FN): It represent malware files 

which have been incorrectly classified as benign, 

which presents the highest risk of compromise to a 

user's system as it allows malicious software to 

circumvent all means of protection against potential 

damages [2][8]. 
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Fig.1. Confusion matrix 
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Using the confusion matrix, important evaluation metrics 

such as Precision, Recall, and F1-score can be accurately 

calculated. These metrics are especially important for 

malware detection tasks, where datasets are often imbalanced 

and accuracy alone may be misleading [3][6]. In real-world 

cybersecurity systems, reducing false negatives is critical to 

ensure that malware is detected before it can cause harm 

[1][11]. 

D. Performance Evaluation 

To evaluate the performance of the models, we used common 

metric evaluation techniques. 

• Accuracy: Percentage of accurately classified 

documents 

• Precision: True positive (TP) to predicted positive 

(PP) ratio 

• Recall: TP to actual positive (AP) ratio 

• F1 Score: Average of precision and recall (harmonic 

mean) [1][3]. 

 

                       

Fig.2. Flowchart 

IV. Feature Extraction and Analysis 

Static analysis allows safe extraction of executable features 

without running the program. Key features analysed in this 

project include: 

This project will use static analysis instead of running an 

executable to safely extract all of the executable's executable 

features. The key features being analysed in this project are: 

1. PE Header Attributes: This includes the basic metadata 

for the executable, such as entry point, file size and structure. 

2. Sections: The PE file is separated into logical sections 

(Code, Data and resources). Sections allow us to identify how 

the executable is configured in the operating system. 

3. Import Tables: These lists include Windows API calls as 

well as libraries that the PE executable will use. 

4. Entropy: The amount of entropy in a PE file's sections will 

help to determine if the file has been packed/encrypted. 

 

Fig.3. EXE File analysis 

The extracted features were aggregated into CSV files. 

Feature importance analysis using the Decision Tree revealed 

that entropy values, and PE header anomalies were the most 

discriminative for detecting malware. 

E. Decision Tree Classifier 

The Decision Tree Algorithm was selected because it is 

simple to comprehend; it can utilize both numerical and 

categorical formats of data. The algorithm segments the 

dataset at intervals by using the values of the independent 

variables (features), therefore forming branches for every 

category until all items in the dataset have been categorized. 

Because of the splits and branches of the Decision Tree, it is 

visually intuitive for understanding the reasoning behind how 

the model arrives at an outcome. In addition to using 

categories, we made changes to settings that control the 

algorithm's growth to ensure more accurate predictions and 

reduce the risk of overfitting (the algorithm learning from the 

input dataset instead of identifying patterns within the 

dataset) by adjusting parameters such as the maximum depth 

of the tree and the minimum number of observations required 

in each branch. By altering these parameters, we increase the 
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model's ability to generalize from the training dataset to new 

datasets that the model has not seen before; therefore, 

yielding more accurate predictions of an outcome when using 

a Decision Tree Model for classifying outcomes on a new 

dataset. Decision Tree Models are useful for classifying 

malware because of their ability to classify other types of 

complex data while remaining interpretable for why the 

model categorized a file as malicious or safe. [1][3][8] 

 

Fig.4. Decision Tree Model 

V. RELATED WORK 

Previous studies have highlighted the effectiveness of 

combining static analysis with machine learning for malware 

detection. Early works focused on signature-based detection, 

which cannot handle zero-day or polymorphic malware 

[1][2]. 

Recent research emphasizes the use of PE structural features 

for classification. Studies have shown that Decision Trees, 

Random Forests, and Support Vector Machines can achieve 

high accuracy by learning from these features [3][4][8]. CSV 

based pipelines simplify the preprocessing and training 

workflow, enabling rapid experimentation and reproducibility 

[6][7]. 

Moreover, combining multiple static features such as header 

anomalies, and entropy improves model generalization for 

previously unseen malware variants [2][11]. 

VI. RESULTS 

The Decision Tree–based malware detection system 

demonstrated strong performance in classifying Windows 

Portable Executable (PE) files as benign or malicious. By 

using static analysis to extract features such as PE headers, 

section information, import tables, and entropy, the model 

was able to identify patterns that differentiate malware from 

legitimate programs without executing the files, ensuring 

safety during analysis [2][8]. Feature importance analysis 

revealed that anomalies in PE headers and high entropy 

values were the most discriminative indicators of malicious 

behaviour, consistent with findings from prior studies on PE 

structural features [3][1]. The Decision Tree classifier 

achieved high accuracy while remaining interpretable, 

allowing analysts to understand why a file was classified as 

malicious or safe [6][11]. Overall, the results indicate that this 

system provides a fast, reliable, and safe solution for real-time 

malware detection, making it suitable for deployment in 

Windows environments [8][4]. 

VII. CONCLUSION AND FUTURE WORK 

The system will use user-defined attributes to characterize 

executable files. This allows for separating trusted or safe 

applications from potentially dangerous or malicious ones 

without running the application. This greatly reduces the 

user's possibility of having their system compromised or 

infected by a malicious executable, while still providing 

excellent levels of performance. 

The analysis of the experimental results also indicates that PE 

header information and entropy values for the PE file format 

can both be significantly associated with malware or 

suspicious files. The Decision Tree also provides a high 

degree of accuracy and interpretability which would allow for 

this type of technology to be implemented in real-time 

malware scanning applications [1][3][8]. 

Future enhancements include: 

• Integrating dynamic analysis features (runtime 

behaviours, system calls, network traffic) to improve 

detection of packed or heavily obfuscated malware. 

• Using ensemble methods or deep learning to 

automatically learn complex feature representations. 

• Expanding the CSV-based pipeline to include hybrid 

datasets from multiple repositories for better 

generalization. 

• Developing a real-time detection system with 

automated dataset updates to handle evolving 

malware threats [2][4][11]. 
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