
Malware Detection using Machine Learning

Mr. Lochan Gowda M

Asst. Professor

Department of CSE, SJBIT

Likhitha Y A, Likitha M, Mythri R V

Department of Computer Science and Engineering,

SJB Institute of Technology,

Bengaluru, India

Abstract - Malware poses a risk to Windows computers, and

antivirus software frequently fails. This project detects malware

using machine learning, more precisely a Decision Tree. Without

opening the programs, it examines information from executable

files [PE], such as headers, sections, import tables, and entropy.

The Decision Tree uses the CSV files to learn and make

predictions. The end product is a quick, dependable system that

can instantly determine if a file is malicious or safe.

Keywords: Executable files [PE], machine learning, malware, and

decision trees.

I. INTRODUCTION

Detecting malware effectively requires methods that can

adapt to new and evolving threats. By analysing features

extracted from PE files, it is possible to identify malicious

files based on patterns rather than relying solely on known

signatures, which traditional antivirus solutions often miss

[5]. Using machine learning, the model learns from both safe

and harmful files, creating clear decision rules that highlight

which characteristics are most important for classification.

This approach not only improves detection accuracy but also

ensures safety, as files can be analysed without being

executed. The workflow leverages CSV files containing

structured PE features, allowing seamless integration into

standard machine learning pipelines while maintaining

efficiency and interpretability, making it easier for analysts to

understand and trust the results [1][3][6][8].

Malware has emerged as one of the most urgent cybersecurity

threats due to the exponential growth of software systems.

Data theft, resource damage, and unauthorized access are all

possible outcomes of malicious executables. Conventional

antivirus programs don't detect new or obfuscated malware

because they rely on known signatures [5].

Machine learning offers a promising alternative by learning

patterns from large datasets of both malicious and legitimate

files. By analysing structural properties of PE files, it is

possible to classify new files without executing them, which

ensures safety and efficiency [1][3].

This study focuses on using the Decision Tree algorithm,

which provides clear, interpretable rules for classification,

making it suitable for understanding which features

contribute most to malware detection. The workflow relies on

CSV files containing extracted PE features, enabling

straightforward integration with standard ML pipelines

[6][8].

II. LITERATURE SURVEY

Because of the ongoing rise in cyberthreats and the growing

limitations of conventional antivirus software, malware

detection has emerged as a crucial field of study. Signature-

based techniques, which compare files to a database of

recognized malware patterns, were the mainstay of early

malware detection systems. These techniques work well for

threats that have already been identified, but they have trouble

identifying recently created, obfuscated threats.

The significance of intelligent detection methods that can

adjust to changing malware behaviour is highlighted by

recent studies. In order to successfully identify complex and

unknown threats, Rajendran et al. [1] stressed that modern

cybersecurity systems must move beyond fixed signatures

and adopt learning-based approaches. Their research

demonstrates that in dynamic cyber environments, data-

driven models greatly enhance detection capabilities.

Patil and Deng [2] studied both the machine learning-based

methods and deep learning for malware analysis, and showed

that the static analysis of PE/EXE files can be used to reach

high confident in detecting without executing potentially

suspicious programs. Their results demonstrate that feature

extraction from executables can be used to identify malicious

software relatively easily compared to legitimate programs.

Other researchers have been working on PE files analysis for

malware detection. Jain and Sharma [8] demonstrated that PE

file features, including headers, section information, and

entropy values also present evident obverse between benign

and malware. Statically analyzable structural features For

these kinds of structure, they can be safely extracted and

processed, thus static analysis is suitable to large-scale and

real-time malware detection systems.

Newaz et al. [3] experimentally compared various machine

learning models and revealed that tree-based classifiers are

highly efficient on structured feature data. They made it clear

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 14 Issue 12 , December - 2025

IJERTV14IS120481 Page 1

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

that models such as Decision Trees can provide high level of

accuracy while maintaining interpretability, a key aspect to

security analysts that for them is necessary to understand the

decisions from classification.

Indumathi et al. [4] studied deep learning malware detection

and obtained good classification performance. In their study,

the authors also showed that deep learning models are

computationally more expensive and require massive data

which may restrict them to be used in lightweight detection

systems. Such results advocate in favor of simpler supervised

learning models in low-resource settings.

Microsoft's documentation on the Portable Executable

format [5] is a key resource for learning about the internal

structure of Windows executables. It details how PE headers,

import tables and section layouts can be examined to retrieve

useful snippets of malicious behaviour before you run

anything.

Pedregosa et al. [6] presented scikit-learn, a framework used

by many for machine learning in cybersecurity research. It

also supports Decision Tree classifiers and evaluation

metrics, making it applicable to CSV feature dataset-based

malware detection.

Additionally, studies published by IJRASET [7] and Newaz

et al. [11] further confirm that machine learning-based static

analysis provides a fast, safe, and scalable solution for

malware detection. These works highlight the importance of

feature selection and proper evaluation metrics to achieve

reliable performance on imbalanced malware datasets.

Overall, existing literature clearly supports the effectiveness

of static PE file analysis combined with machine learning

techniques for malware detection. While deep learning

models show strong potential, Decision Tree classifiers

remain a practical choice due to their simplicity, transparency,

and low computational cost. These research findings strongly

motivate the use of a Decision Tree–based approach for

detecting malicious executables using CSV-formatted PE

features.

III. METHODOLOGY

A. Data Collection

The dataset comprises malicious and legitimate Windows PE

files. Malicious files were sourced from publicly available

malware repositories, while legitimate files were collected

from verified Windows system directories and open-source

software. Each executable was verified for integrity, labelled

manually, and cross-checked [2][3].

B. Data Preprocessing

1. Feature Extraction: PE headers, section

characteristics and entropy values were extracted

from each file.

2. CSV Storage: All extracted features were saved in

structured CSV files to facilitate machine learning

processing.

3. Normalization: Min-Max scaling was applied to

numeric features to ensure uniformity and reduce

bias during training.

4. Train-Test Split: The dataset was divided into

training and testing sets (typically 80%-20%) to

evaluate model performance [6][8].

C. Confusion Matrix

A confusion matrix provides an effective way to evaluate how

accurately the Malware Detection System categorises the

executable files (PE). Unlike the overall accuracy of the

system, the confusion matrix separates the correct and

incorrect classifications for each class. Thus, by examining

the confusion matrix, we can make a better assessment of the

Decision Tree model's accuracy in identifying malicious PE

files versus benign ones [1][3].

A confusion matrix has four types of results:

• True positives (TP): These represent malicious PE

files that are accurately identified by the Decision

Tree as a malware file.

• True negatives (TN): They are executable files that

have been confirmed to be executed, and classified

as benign, an accurate representation of the truth.

• False positives (FP): It represent legitimate files

that have been incorrectly identified as malware. A

large number of false positive errors may cause users

to lose trust in the detection process and trigger

superfluous alerts.

• False negatives (FN): It represent malware files

which have been incorrectly classified as benign,

which presents the highest risk of compromise to a

user's system as it allows malicious software to

circumvent all means of protection against potential

damages [2][8].

Predicted

Class

 Malicious

 Legitimate

Actual

Malicious

True Positive

[TP]

False Negative

[FN]

Actual

Legitimate

False Positive

[FP]

True Negative

[TN]

Fig.1. Confusion matrix

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 14 Issue 12 , December - 2025

IJERTV14IS120481 Page 2

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Using the confusion matrix, important evaluation metrics

such as Precision, Recall, and F1-score can be accurately

calculated. These metrics are especially important for

malware detection tasks, where datasets are often imbalanced

and accuracy alone may be misleading [3][6]. In real-world

cybersecurity systems, reducing false negatives is critical to

ensure that malware is detected before it can cause harm

[1][11].

D. Performance Evaluation

To evaluate the performance of the models, we used common

metric evaluation techniques.

• Accuracy: Percentage of accurately classified

documents

• Precision: True positive (TP) to predicted positive

(PP) ratio

• Recall: TP to actual positive (AP) ratio

• F1 Score: Average of precision and recall (harmonic

mean) [1][3].

Fig.2. Flowchart

IV. Feature Extraction and Analysis

Static analysis allows safe extraction of executable features

without running the program. Key features analysed in this

project include:

This project will use static analysis instead of running an

executable to safely extract all of the executable's executable

features. The key features being analysed in this project are:

1. PE Header Attributes: This includes the basic metadata

for the executable, such as entry point, file size and structure.

2. Sections: The PE file is separated into logical sections

(Code, Data and resources). Sections allow us to identify how

the executable is configured in the operating system.

3. Import Tables: These lists include Windows API calls as

well as libraries that the PE executable will use.

4. Entropy: The amount of entropy in a PE file's sections will

help to determine if the file has been packed/encrypted.

Fig.3. EXE File analysis

The extracted features were aggregated into CSV files.

Feature importance analysis using the Decision Tree revealed

that entropy values, and PE header anomalies were the most

discriminative for detecting malware.

E. Decision Tree Classifier

The Decision Tree Algorithm was selected because it is

simple to comprehend; it can utilize both numerical and

categorical formats of data. The algorithm segments the

dataset at intervals by using the values of the independent

variables (features), therefore forming branches for every

category until all items in the dataset have been categorized.

Because of the splits and branches of the Decision Tree, it is

visually intuitive for understanding the reasoning behind how

the model arrives at an outcome. In addition to using

categories, we made changes to settings that control the

algorithm's growth to ensure more accurate predictions and

reduce the risk of overfitting (the algorithm learning from the

input dataset instead of identifying patterns within the

dataset) by adjusting parameters such as the maximum depth

of the tree and the minimum number of observations required

in each branch. By altering these parameters, we increase the

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 14 Issue 12 , December - 2025

IJERTV14IS120481 Page 3

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

model's ability to generalize from the training dataset to new

datasets that the model has not seen before; therefore,

yielding more accurate predictions of an outcome when using

a Decision Tree Model for classifying outcomes on a new

dataset. Decision Tree Models are useful for classifying

malware because of their ability to classify other types of

complex data while remaining interpretable for why the

model categorized a file as malicious or safe. [1][3][8]

Fig.4. Decision Tree Model

V. RELATED WORK

Previous studies have highlighted the effectiveness of

combining static analysis with machine learning for malware

detection. Early works focused on signature-based detection,

which cannot handle zero-day or polymorphic malware

[1][2].

Recent research emphasizes the use of PE structural features

for classification. Studies have shown that Decision Trees,

Random Forests, and Support Vector Machines can achieve

high accuracy by learning from these features [3][4][8]. CSV

based pipelines simplify the preprocessing and training

workflow, enabling rapid experimentation and reproducibility

[6][7].

Moreover, combining multiple static features such as header

anomalies, and entropy improves model generalization for

previously unseen malware variants [2][11].

VI. RESULTS

The Decision Tree–based malware detection system

demonstrated strong performance in classifying Windows

Portable Executable (PE) files as benign or malicious. By

using static analysis to extract features such as PE headers,

section information, import tables, and entropy, the model

was able to identify patterns that differentiate malware from

legitimate programs without executing the files, ensuring

safety during analysis [2][8]. Feature importance analysis

revealed that anomalies in PE headers and high entropy

values were the most discriminative indicators of malicious

behaviour, consistent with findings from prior studies on PE

structural features [3][1]. The Decision Tree classifier

achieved high accuracy while remaining interpretable,

allowing analysts to understand why a file was classified as

malicious or safe [6][11]. Overall, the results indicate that this

system provides a fast, reliable, and safe solution for real-time

malware detection, making it suitable for deployment in

Windows environments [8][4].

VII. CONCLUSION AND FUTURE WORK

The system will use user-defined attributes to characterize

executable files. This allows for separating trusted or safe

applications from potentially dangerous or malicious ones

without running the application. This greatly reduces the

user's possibility of having their system compromised or

infected by a malicious executable, while still providing

excellent levels of performance.

The analysis of the experimental results also indicates that PE

header information and entropy values for the PE file format

can both be significantly associated with malware or

suspicious files. The Decision Tree also provides a high

degree of accuracy and interpretability which would allow for

this type of technology to be implemented in real-time

malware scanning applications [1][3][8].

Future enhancements include:

• Integrating dynamic analysis features (runtime

behaviours, system calls, network traffic) to improve

detection of packed or heavily obfuscated malware.

• Using ensemble methods or deep learning to

automatically learn complex feature representations.

• Expanding the CSV-based pipeline to include hybrid

datasets from multiple repositories for better

generalization.

• Developing a real-time detection system with

automated dataset updates to handle evolving

malware threats [2][4][11].

REFERENCES

[1] Rajendran, M. I. N. Mohamed, J. K. Jagadeesh, and B. Sampathkumar,

“Cybersecurity Threat Detection Using Deep Learning,” IEEE Access,

2024.

[2] R. Patil and W. Deng, “Malware Analysis using Machine Learning and

Deep Learning Techniques,” International Journal of Computer

Applications, 2020.

[3] S. Newaz, H. M. Imran, and X. Liu, “Experimental Analysis of

Malware Detection and Classification,” Journal of Cyber Security

Technology, 2023.

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 14 Issue 12 , December - 2025

IJERTV14IS120481 Page 4

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

[4] Indumathi, R. Krishna Prasanna, G. Chamundeeswari, M. Preetha, and

T. K. Tamilvani, “Detection of Malware Using Deep Learning,”

International Journal of Engineering Research & Technology (IJERT),

2021.

[5] Microsoft, “Portable Executable (PE) Format Documentation,”

Microsoft Docs.

[6] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,”

Journal of Machine Learning Research, 2011.

[7] “Malware Detection Using Machine Learning Techniques,” IJRASET.

[8] V. Jain and A. K. Sharma, “Static Analysis of PE Files for Malware

Detection,” IEEE Xplore, 2018.

[9] “Flask Web Framework Documentation,”

https://flask.palletsprojects.com/en/latest/.

[10] “SQLite Database Documentation,” https://www.sqlite.org/docs.html.

[11] Sabila Newaz, Hasan Md Imran, Xingya Liu, “Detection Of Malware

Using Deep Learning”, 2021 IEEE 4th International Conference on

Computing, Power and Communication Technologies (GUCON),

University of Malaya, Kuala Lumpur, Malaysia, Sep 24-26, 2021.

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 14 Issue 12 , December - 2025

IJERTV14IS120481 Page 5

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

