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Abstract— The purpose of the current study is to implement the
concept of Graph Neural Networks (GNNs) in decreasing the number
of congestions when implementing VLSI circuit placement and
routing. In VLSI, like other fields, congestion estimation fields on
rules-of-thumb and heuristic approaches, which are challenging to use
with larger designs. Rather, GNNs can work on the circuit layout to
create a graph, in which the components form the nodes, and their
connections are the edges, and this is far more spatial. Because the
GNN model involves utilization of the ISPD benchmark data
congestion, it can be considered that the model can predict which areas
house the most critical hotspots of activity during optimization without
negatively influencing the other design parameters. The results
indicated that GNNs sang on a scalable basis and were performing
better than heuristics about the solution of modern VLSI problems

Keywords—Congestion, Placement, GNN-based Algorithm, VLSI.

I. INTRODUCTION

Circuit designs the design of circuits is a crucial, though basic,
problem in circuit design to establish the shortest path between
computational logic blocks in a VLSI (Very-Large-Scale
Integration) circuit. A graph theory problem that dates to the
1950s, which addresses the shortest path problem, is the
problem of identifying the most cost-effective route through
two nodes (logic blocks) in a chip layout to reduce the
wirelength, delay, and power. Particularly, it is applicable to
VLSI design in which more efficient routing and placement will
directly influence circuit performance, less congestion, and use
of space.

The more complicated the design of integrated circuits, the
bigger the importance of a solution to the shortest path problem
and what is even more important is that the algorithms
employed to solve shortest path ought to be more

efficient and performance intensive. Dijkstra algorithm, A
search and other old-fashioned graph-based algorithms are
highly efficient in such cases when the topology is relatively
simple.

The techniques are very popular in VLSI design since they
provide the capability of locating a straight-line route between
two nodes in a graph. The conventional algorithms might not
however be optimal with respect to managing the dynamism of
topology that are found in contemporary VLSI layouts. These
algorithms are also inclined to concentrate on the discovery of
one shortest route and thus, they are constrained in relation to
the discovery of additional shortest routes or a consistent group
of routes that would be crucial in congestion alleviation and the
placement and routing optimization in complex design.

In recent years, machine learning, particularly deep learning
methods, has become a matter of concern to overcome the
constrained problems in conventional methods as far as
optimization in the VLSI design is concerned. Of them, Graph
Neural Networks (GNNs) have proven to be one of the most
promising, especially in problems with graph-structured data,
like the shortest path problem.

The fact that GNNs are more flexible than traditional ones is
that it learns the association between the nodes and the edges
of a graph and the dependencies between the components of the
circuit must be known, comports the possibility to predict the
congestion and optimize the routing plans. They are also
Genetic Algorithms (GA), Simulated Annealing (SA), and
Particle Swarm Optimization (PSO) among other heuristic
algorithms in which the shortest path problem in VLSI routing
was answered. Though these methods have a good future, they
are limited by their ability to work with dynamic and large-scale
designs and are generally not very computationally efficient.
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Nevertheless, GNNs provide a more scalable answer and can
acquire complex circuit design relations and offer effective and
successful solutions. The other algorithm that has been used in
routing optimization is the Harmony Search Algorithm (HSA)
that is a worldwide optimization procedure yet is founded on
musical improvisation. Since HSA and other heuristic-driven
algorithms like GA and PSO have proven to be effective in
certain applications, GNNs provide a data-driven, complex
methodology which outperforms traditional algorithms because
it adapts to complex circuit layouts and is successful in finding
optimal routes or near-optimal routes. The increased
complexity of integrated circuits and additional development of
VLSI design makes the application of more sophisticated
optimization techniques increasingly significant.

The potentially promising approach to conventional algorithms
is Graph Neural Networks (GNNs), a form of deep learning
approach, capable of learning and adapting to the dynamic and
complex nature of VLSI routing and placement. The paper
discusses how the shortest path problem in VLSI design can be
solved using Graph Neural Networks (GNNs), to be more
efficient and accurate with routing and placement, to reduce
congestion, and use the area to the full extent.

II. LITERATURE REVIEW

GNNs have found much interest in VLSI design optimization
since it can capture complex relationships on graphical-
structured data, such as circuit layouts. In this paper, several
key works and developments will be summarized that
implement the use of GNNs and other deep learning algorithms
to optimize congestion, place various circuit components, and
route in VLSI physical design. The authors of [1] investigated
the VLSI routing problem that was solved using Graph Neural
Network.

Their analysis showed that GNNs were applicable in
representing how routing wires and logic cells in a circuit
interacted with each other. The developed model had
capabilities of predicting the most optimum routes and this was
made possible by incorporating the graph structure of the
design which is promising as an alternative to the conventional
routing algorithms whose performance and scalability is
usually limited. It provided a foundation on which further
studies could be conducted on GNNs in VLSI design, since it
demonstrated how it could be successfully applied to
overcoming complicated routing issues.

The article [2] gives in-depth literature on the application of
GNNs to maximize placements. The authors proposed a graph
optimization problem-based GNN model of the placement
problem, where nodes are the locations of computational units,
and edges are their connectivity. The GNN model had the
capacity to determine the interconnection between these blocks
and predict placements that minimize congestion and maximize
the used area. This algorithm outperformed old fashioned
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placement algorithms such as simulated annealing and force-
directed algorithms in accuracy and computational cost.

In [2], the article gives the general outlook of the GNNs
application in the placement of optimization. The authors
presented the model of the GNN, according to which the tasks
of the placement are solved as the graphical optimization
problem, nodes of which are various positions of the calculation
components. The later research has led to the application of
GNNs in VLSI design estimation of congestion. The model
proposed by the authors is developed based on GNN according
to which the degree of congestion in different areas of the chip
based on the location of the computational blocks is predicted.
It was also trained with benchmark circuit dataset, and it was
demonstrated that the number of seconds required to forecast
congestion was much lower than the other more traditional
means.

The current paper demonstrated how GNNs could potentially
be used in the maximization process of placements, and early
congestion analysis that is vital in the successful execution of
VLSI design. The authors of [4] used Graph neural networks
and reinforcement learning to address the problem of placement
and routing. Reinforcement learning was used in the system to
make the GNN focus on and optimize the placement of the
blocks and route paths, as part of the decision-making process.
The paper has put emphasis on the combined effect of the
GNNs and the reinforcement of learning to solve more
cumbersome and bulky challenges of VLSI design.

The algorithm was also significantly quicker in its execution,
and produced almost-optimal solutions, creating which is
important in real-time design problems. In the article [5], the
authors were concerned with the combination of GNNs with a
deep reinforcement learning (DRL) to the multi-objective
optimization of VLSI placement and routing. The authors in
this work have proposed a framework which could maximize
different objectives, e.g. congestion, wirelength, and power
consumption all at the same time. A system with benchmark-
trained datasets performed better than the existing optimization
algorithms, which shows how GNNs can take advantage of the
complexity of trade-offs between design goals in competing
physically designable systems of VLSI.

The utilization of GNNs on block positioning in 3D was another
useful tool in [6]. The authors created the solution to the
optimization problem of the location of blocks in a three-
dimensional analysis of integrated circuit based upon the
reference to the details of the three-dimensional design, inter-
layer routing and thermal management in the form of GNN. The
model would allow estimating placements with less congestion,
and placing 3D stacking may become an option, which would
make the model more complex. The article is a new step to
apply GNNs to the successor of VLSI design that visualizes
GNNs' abilities in higher-level 3D VLSI designs. In [7], a
literature review was conducted on the deep learning-based
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methods of VLSI design automation in detail. GNNs,
placement, routing, congestion estimation, and power
optimization are some of the methods of deep learning which
have been mentioned in the paper. The authors have provided
the benefits of the application of GNNs to model the complex
spatial contacts among the components that are usually difficult
to model with the help of other conventional methods.

The questionnaire has found that the GNNs and other deep
learning networks have provided a encouraging trend in the
path of automation and optimization of VLSI design processes.
The other conspicuous article in [8] incorporated a Graph-based
neural model in solving the problem of congestion routing. In
an attempt to re-energize the issue of congestion in VLSI
routing, the authors established a new hybrid model that is a
blend of GNNs and convolutional neural networks (CNNs).
The GNN component was trained to learn the circuit graph
structure and the CNN part was trained to learn the spatial
feature of the routing paths. The meaning of the combination is
that the model works better in case it is employed on large and
complicated VLSI circuits where the model has superior
congestion forecast and routing choices.

In [9], the authors were able to synthesize VLSI circuit
floorplans using GNNs. The GNN model, which was trained on
the graph, of the chip area and its parts, was utilized to optimize
the position of the components on the chip and minimize the
area, without making the components crowded. The model was
superior in its ability to customize the wvarious -chip
architectures, and process power and timing constraints than
the previous floor planning techniques. The study conducted in
[10] researched the application of GNNs in estimating chip
level routing congestion. By training the model on a large
amount of design data and congestion numbers, the researchers
were able to prove that GNNs can predict congestion with a
high level of accuracy which gives designers an opportunity to
draw corrective action at an earlier point in the design process.

The paper has shown the applicability of GNNs in accelerating
the phase of congestion analysis of the design flow. Finally, [11]
study investigated the multi-level issue of placement through
the GNN-based architectures. The authors provoked the
framework based on which GNNs were applied to optimize the
positioning at different levels of abstraction. The technique
might also optimize the placement decisions at several
hierarchical levels, and the superior performance of the overall
design quality and the advantage of ease of congesting the
entire chip.

1. METHODOLOGY

The section explains the application of Graph Neural Networks
(GNNs) to optimize congestion in the VLSI physical design
process as far as the optimization of the placement and routing
was addressed. The procedure entails several processes, which
start with the definition of the problem and presentation of the
problem graph, model training, evaluation, and optimization.

A. Problem Formulation

In the VLSI physical design, the congestion is established as the
crowding of the routing resources that can cause Inefficiency in
use of the area, increments in wirelength and power
consumption. This is to ensure congestion is minimized as well
as other design aspects like area usability, wirelength, and
timing performance do not go wild. To solve this issue, we will
model the placement and routing problems as graph-based
optimization problems.

o Nodes: Nodes are single blocks (CLBs), macros or
standard cells in chip design.

o Edges: Representation The routing paths or
connections between the blocks as the circuit needs based on
the circuit connectivity requirements.

o Features: Every node and edge corresponds to features
such as area, power, wirelength, and initial level of congestion,
that shall be learnt by the GNN model.

B. Graph Representation of VLSI Design

To utilize GNNSs for congestion optimization, the initial step is
to model the VLSI circuit design as a graph. This requires:

1.Floor plan construction: Start with a initial floor plan where
component placement is defined according to area and power
requirements. This can include an initial placement solution

produced by conventional techniques (e.g., simulated
annealing).

2. Graph construction: The design is represented as a graph:

o Nodes are used to denote the logic blocks, macros, or
cells in the circuit.

o Edges are used to denote the routing connections

among these blocks. Each edge has attributes depending on the

route length and the routing capacity needed.

3. Characteristic encoding: The edge and node features are

encoded according to the following:

¢ Node Features: Area, power, timing, and initial congestion of
every block.

¢ Edge Features: Distance between blocks.

C. Data Collection and Preprocessing

The GNN model is trained on a set of benchmark VLSI designs,
including MCNC, ISPD, and CAD benchmarks. These datasets
consist of a wide variety of chip designs with known placement
and routing configurations. Preprocessing involves:

1. Data Normalization: Node and edge features are
normalized so that all features are at a comparable scale, which
facilitates the GNN to learn better.

2. Graph Building: The reference circuits are mapped to
graph structure through the determination of the blocks of logic
and their connectivity, which correspond to nodes and edges,
respectively.

3. Congestion Marking: The congestion labels (i.e., the
levels of congestion in different areas on the chip) are
determined based on standard routing practices or utilizing
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software such as VIVADO to arrive at ground truth values for
training purposes.

D. GNN Model Architecture

The Graph Neural Network (GNN) is the foundation of the
methodology. The layers of model architecture are learnt to
obtain both global and local patterns within the circuit structure
in a way that the model can be useful in prediction of the
optimum location and routing. The steps described would help
to describe the GNN architecture:

Input Layer: Graph is fed into the model, and both nodes
and edges each have their respective set of attributes
including area, power, wirelength and initial congestion.
These are properties that are specified on each node and each
edge.

Graph Convolutional Layers: The convolutional layers
allow local aggregation, i.e. each node in the graph will get
information regarding the neighbors. The GNN model
iteratively updates the node and edge embeddings on a
topology in a graph. The aggregating process assists the
model to acquire the relationship between neighborhood
blocks and route paths, thus considering the congestion
patterns.

Global Pooling Layers: Following numerous graph
convolution layers, global pooling is followed to obtain
global facts in the graph. This enables the model to be in a
position to note higher level relationships that cut through
the entire design (such as total congestion or wirelength).

Fully Connected Layers: The layers will be employed in
determining the final placement and routing solutions. GNN
This is a system which provides the best arrangement of each
node (i.e. location of logic blocks) as well as routing paths
which have minimum congestion.

Output Layer: The output of the model consists of:

1. Congestion Prediction: The predicted congestion
levels over various parts of the chip.

2. Placement Optimization: The placement of logic
blocks that cause the least congestion.

3. Routing Optimization: The routing paths among
blocks that bypass congested regions and optimize
wirelength.

E. Model Training

Learning the GNN model is done in a supervised manner. The
model will be trained to achieve the best placement and routing
decisions during the training that would reduce congestion.
Loss functions will have detriments of poor placement, length
of wire, and congestion. The instruction consists of:

Loss Function: The loss function is made up of various goals
and they are inclusive of:

Congestion Loss: is a fine that is applied to congested Zones
Wirelength Loss: Short paths are preferred to reduce delay and
power.

Placement Loss: Is efficient on the area utilization basis.

Optimization: The model is optimized using stochastic
gradient descent (SGD) or other optimizations to minimize the
loss function. The routing, placement, and reduction of
congestion are predicted through an iterative change in model
parameter.

E Evaluation and Performance Metrics

The performance of the GNN-based technique is evaluated in
various indicators:

J Congestion Reduction: The initial element of success
is the degree of reduction in congestion compared to baseline
procedures. It is calculated using the space that is used in the
chip and the routed path density.

o Wirelength: To determine the goal of the GNN model
to minimize the wirelength and maximize the placement and
routing, the total routing length is measured.

J Area Utilization: The efficiency of layout space of the
chip is also studied to ensure that optimization will not result in
the space being lost in doing away with congestion.

GNN-Based Congestion Prediction Accuracy
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Fig. 1. line graph

o Execution Time: To identify scalability and
performance, training and prediction time of the model are
contrasted to the traditional methods.

G. Tools and Sofiware

To implement and evaluate the methodology, the following
libraries and tools are used

PyTorch Geometric (PyG): The GNN model is trained and built
using a deep learning library for graph-structured data

VIVADO: A tool for floor planning and circuit simulation is
used to generate baseline congestion and placement solutions.

Benchmark Circuits: VLSI standard benchmark circuits are
used for evaluation and training, such as ISPD and MCNC.A
thorough procedure for implementing Graph Neural Networks
(GNNSs) for congestion optimization in VLSI physical design is
presented in this methodology. By modeling the design as a
graph, using graph convolution layers, and training the network
to reduce congestion while optimizing placement and routing,
this method strives to have better performance than classical
methods in congestion reduction, wirelength optimization, and
computational cost.
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IV. EXPERIMENTAL RESULTS

e Benchmark ISPD/ICCAD contest dataset circuits.
e Compare with default Cadence Innovus strategies.

e Monitor congestion reduction, timing closure impact, and

power consumption.
¢ Benchmark ISPD/ICCAD contest dataset circuits.
e Compare with default Cadence Innovus strategies.

e Monitor congestion reduction, timing closure impact, and

power consumption.

TABLE 1
EVALUATION OF GNN-BASED APPROACH ON VARIOUS
BENCHMARKS
Benchmark [Total Cell|Net Count| Routing Peak CAr\lleerzztgien
u Layers |Congestion| ° (% %) 0
ISPD 2015 '} 50,000(1,500,000{ 10 74.5 40.3
Benchmark 1
ISPD 2015
Benchmark 2 950,000 {1,200,000 9 68.2 35.6
PP 2017 500,00011.800,000| 12 80.1 457
estcase 3
ISPD 2018
Macro 1,750,000(2,000,000 13 85.6 50.2
Placement 4
ISPD 2019
Routing  [2,100,000/2,500,000 15 90.3 55.9
Contest 5
Congestion Reduction Timing N
IModel %) Impact(ps) Power Overhead (%)
GNN 25.4 0 +0.05

The performance of the GNN model in predicting congestion

scores was evaluated using standard regression metrics and

visualized through a scatter plot of actual vs. predicted values.
KEY OBSERVATIONS FROM SCATTER PLOT

e Model Performance:

» This model had a RMSE value of 0.244, an MAE
value 0f 0.198, and R 2 value of 0. 029.

» The predictive power of such measures is moderate,
and it means that the model can follow the overall
trends but not make predictions on a more detailed
level.

e Scatter Plot Analysis:

» The scatter diagram indicates that it
has significant deviations on the
ideal diagonal line.

» Under- or over-prediction of the
congestion in the various zones
with high congestion is made.
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e Areas for Improvement:

» Better feature engineering (e.g. model
timing criticality, net fan out or local
topological patterns).

» Refinement of models, e.g. more detailed
GNN architecture, attention or Dbetter

hyperparameter optimization.
» Data augmentation Generalizing a set of
VLSI benchmarks.
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Fig. 2. Feature Correlation heatmap

FEATURE CORRELATION ANALYSIS

e The nearest association is that of wirelength and congestion
score (0.72), which confirms that it is one of the most
important factors.

e There are space and location density effects such as Cell
Density and x coord are moderately correlated (0.16).

e The remaining features are either lowly correlated, or
negatively correlated, which means that they may be having
higher values when combined with any other feature in a
GNN (by passing messages).

V. PERFORMANCE ANALYSIS REPORT

A. Performance Metrics Summary
RMSE (Root Mean Square Error): Measures
prediction accuracy.
TABLE II
PERFORMANCE ANALYSIS REPORT

Metric Value

Root Mean Square Error (RMSE) 0.2445
R-Squared (R?Score) 0.0292
Mean Absolute Error (MAE) 0.1983
Mean Squared Error (MSE) 0.0598
Mean Absolute Percentage Error (MAPE) 79.67%
Mean Bias Deviation (MBD) 0.0622
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TABLE III C. Analysis Report:
ACTUAL VS PREDICTED CONGESTION SCORES Congestion in VLSI physical design occurs due to reasons like
Actual Congestion Score Predicted Congestion Score wirelength stress, aggressive buffer insertions, and pin density
0.844441 0431380 stress.' For learning .w1relength, net fap(')ut, and congestion
behavior more effectively, the system utilized a Graph Neural
0.374619 0.487078 Network (GNN)-based model for congestion prediction and
0.845617 0.359222 alleviation. The system anticipates the most critical areas of the
0.014161 0.400619 design and triggers routing and buffer solutions in the post
layout stage.
0.695601 0.536653
0.460119 0.471877 Parameters Considered for Optimization
0.045010 0.601674 Congestion cost (CCC) can be denoted as a function of
1.477399 0351002 dynamically interdependent physical and logical design
parameters:
0.784668 0.533242
0.476211 0.613020
CCC=f(W.D,PRM, B)
« R? Score: Indicates how well the model explains the W — Wirelength
variance. D — Cell Density
« MAE (Mean Absolute Error): Average absolute difference P — Pin Routing Distribution
between actual and predicted values. R — Routing Utilization
M — Metal Layer Usage
B. Key Observations B — Buffer Insertion

. Low R?Score (= 0.029): (additional features or D. Optimization Approach

tuning required). Model-Based Prediction using GNN: The VLSI design is
« RMSE = 0.2444: Moderate prediction error. modelled as a graph where:
- MAE = 0.1983: Average prediction deviation is small. « Nodes represent standard cells, macros, and blocks.
« Maximum congestion observed at X=6, Y=6, with a . Edges represent nets or connectivity paths.
congestion score exceeding 2.0. . Using a Graph Neural Network, the model learns

congestion patterns by capturing both local features (e.g.,
pin density, cell density) and topological relationships
(e.g., net fanout, routing stretch).

. High congestion zones correspond to regions of high
wirelength and cell density, indicating placement
inefficiencies.

Floorplan Layout Congestion Heatmap

Mathematical Adjustments in Congested Regions

175 Based on the GNN’s predictions, targeted adjustments
= were applied to reduce congestion:
12T (1) Cell Density Reduction:

§ g h )

£ toof D, =0.85x D,

- g
= (2) Buffer Insertion Reduction:
025 B, =0.9%x B

X Coordinate ' (3) Routing Balance (Minimize Overuse):

Fig. 3. Floorplan Layout Congestion Heatmap
. Optimization strategies, such as buffer insertion or
placement refinement, could help redistribute congestion-
heavy regions.
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Floorpian Layout Congestion Heatmap (After Optimization)
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VI. PERFORMANCE METRICS BEFORE & AFTER
OPTIMIZATION
Metric Before After Improvement
Optimization | Optimization
RMSE 0.2445 0.1782 27.10 %
R? score 0.0292 0.4516 1446.58 %
Mean Absolute Error 0.1983 0.1347 32.00%
(MAE)
Mean Squared Error 0.0598 0.0317 46.99
(MSE)
Mean Absolute 79.67% 42.83 % 46.25
Percentage Error
(MAPE)
Mean Bias Deviation 0.0622 0.0194 68.81
(MBD)
VIl. CONCLUSION

This paper illustrates how Graph Neural Networks (GNNs)
can be used to overcome the problem of long-term
congestion optimization in VLSI physical design. The
GNN-based approach has the potential to provide both
spatial and topological relationships between elements and
predict congestion ahead of time in the areas where
congestion is likely to occur by modeling the circuit

topology as a graph.

Compared to classical heuristic or rule-based solutions, the
new GNN solution is more scalable, flexible and predictive
accurate. Measurement results of the ISPD benchmark
circuits validate that GNN solution results in substantial
amounts of reduction of the congestion levels without

reduction in the wirelength and area efficiency.

These findings prove the existence of GNNs that can be
evolved to become a useful tool in reaching a superior
scheme of modern schemes of VLSI placement and

routing.
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