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Abstract— The purpose of the current study is to implement the 
concept of Graph Neural Networks (GNNs) in decreasing the number 
of congestions when implementing VLSI circuit placement and 
routing. In VLSI, like other fields, congestion estimation fields on 
rules-of-thumb and heuristic approaches, which are challenging to use 
with larger designs. Rather, GNNs can work on the circuit layout to 
create a graph, in which the components form the nodes, and their 
connections are the edges, and this is far more spatial. Because the 
GNN model involves utilization of the ISPD benchmark data 
congestion, it can be considered that the model can predict which areas 
house the most critical hotspots of activity during optimization without 
negatively influencing the other design parameters. The results 
indicated that GNNs sang on a scalable basis and were performing 
better than heuristics about the solution of modern VLSI problems 
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I. INTRODUCTION

Circuit designs the design of circuits is a crucial, though basic, 
problem in circuit design to establish the shortest path between 
computational logic blocks in a VLSI (Very-Large-Scale 
Integration) circuit. A graph theory problem that dates to the 
1950s, which addresses the shortest path problem, is the 
problem of identifying the most cost-effective route through 
two nodes (logic blocks) in a chip layout to reduce the 
wirelength, delay, and power. Particularly, it is applicable to 
VLSI design in which more efficient routing and placement will 
directly influence circuit performance, less congestion, and use 
of space.  

The more complicated the design of integrated circuits, the 
bigger the importance of a solution to the shortest path problem 
and what is even more important is that the algorithms 
employed to solve shortest path ought to be more  

efficient and performance intensive. Dijkstra algorithm, A 
search and other old-fashioned graph-based algorithms are 
highly efficient in such cases when the topology is relatively 
simple.  

The techniques are very popular in VLSI design since they 
provide the capability of locating a straight-line route between 
two nodes in a graph. The conventional algorithms might not 
however be optimal with respect to managing the dynamism of 
topology that are found in contemporary VLSI layouts. These 
algorithms are also inclined to concentrate on the discovery of 
one shortest route and thus, they are constrained in relation to 
the discovery of additional shortest routes or a consistent group 
of routes that would be crucial in congestion alleviation and the 
placement and routing optimization in complex design.  

In recent years, machine learning, particularly deep learning 
methods, has become a matter of concern to overcome the 
constrained problems in conventional methods as far as 
optimization in the VLSI design is concerned. Of them, Graph 
Neural Networks (GNNs) have proven to be one of the most 
promising, especially in problems with graph-structured data, 
like the shortest path problem.  

The fact that GNNs are more flexible than traditional ones is 
that it learns the association between the nodes and the edges 
of a graph and the dependencies between the components of the 
circuit must be known, comports the possibility to predict the 
congestion and optimize the routing plans. They are also 
Genetic Algorithms (GA), Simulated Annealing (SA), and 
Particle Swarm Optimization (PSO) among other heuristic 
algorithms in which the shortest path problem in VLSI routing 
was answered. Though these methods have a good future, they 
are limited by their ability to work with dynamic and large-scale 
designs and are generally not very computationally efficient.  
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Nevertheless, GNNs provide a more scalable answer and can 
acquire complex circuit design relations and offer effective and 
successful solutions. The other algorithm that has been used in 
routing optimization is the Harmony Search Algorithm (HSA) 
that is a worldwide optimization procedure yet is founded on 
musical improvisation. Since HSA and other heuristic-driven 
algorithms like GA and PSO have proven to be effective in 
certain applications, GNNs provide a data-driven, complex 
methodology which outperforms traditional algorithms because 
it adapts to complex circuit layouts and is successful in finding 
optimal routes or near-optimal routes. The increased 
complexity of integrated circuits and additional development of 
VLSI design makes the application of more sophisticated 
optimization techniques increasingly significant.  

The potentially promising approach to conventional algorithms 
is Graph Neural Networks (GNNs), a form of deep learning 
approach, capable of learning and adapting to the dynamic and 
complex nature of VLSI routing and placement. The paper 
discusses how the shortest path problem in VLSI design can be 
solved using Graph Neural Networks (GNNs), to be more 
efficient and accurate with routing and placement, to reduce 
congestion, and use the area to the full extent. 

II. LITERATURE REVIEW
GNNs have found much interest in VLSI design optimization 
since it can capture complex relationships on graphical-
structured data, such as circuit layouts. In this paper, several 
key works and developments will be summarized that 
implement the use of GNNs and other deep learning algorithms 
to optimize congestion, place various circuit components, and 
route in VLSI physical design. The authors of [1] investigated 
the VLSI routing problem that was solved using Graph Neural 
Network.  

Their analysis showed that GNNs were applicable in 
representing how routing wires and logic cells in a circuit 
interacted with each other. The developed model had 
capabilities of predicting the most optimum routes and this was 
made possible by incorporating the graph structure of the 
design which is promising as an alternative to the conventional 
routing algorithms whose performance and scalability is 
usually limited. It provided a foundation on which further 
studies could be conducted on GNNs in VLSI design, since it 
demonstrated how it could be successfully applied to 
overcoming complicated routing issues.  

The article [2] gives in-depth literature on the application of 
GNNs to maximize placements. The authors proposed a graph 
optimization problem-based GNN model of the placement 
problem, where nodes are the locations of computational units, 
and edges are their connectivity. The GNN model had the 
capacity to determine the interconnection between these blocks 
and predict placements that minimize congestion and maximize 
the used area. This algorithm outperformed old fashioned 

placement algorithms such as simulated annealing and force-
directed algorithms in accuracy and computational cost.  

In [2], the article gives the general outlook of the GNNs 
application in the placement of optimization. The authors 
presented the model of the GNN, according to which the tasks 
of the placement are solved as the graphical optimization 
problem, nodes of which are various positions of the calculation 
components. The later research has led to the application of 
GNNs in VLSI design estimation of congestion. The model 
proposed by the authors is developed based on GNN according 
to which the degree of congestion in different areas of the chip 
based on the location of the computational blocks is predicted. 
It was also trained with benchmark circuit dataset, and it was 
demonstrated that the number of seconds required to forecast 
congestion was much lower than the other more traditional 
means.   

The current paper demonstrated how GNNs could potentially 
be used in the maximization process of placements, and early 
congestion analysis that is vital in the successful execution of 
VLSI design. The authors of [4] used Graph neural networks 
and reinforcement learning to address the problem of placement 
and routing. Reinforcement learning was used in the system to 
make the GNN focus on and optimize the placement of the 
blocks and route paths, as part of the decision-making process. 
The paper has put emphasis on the combined effect of the 
GNNs and the reinforcement of learning to solve more 
cumbersome and bulky challenges of VLSI design.  

The algorithm was also significantly quicker in its execution, 
and produced almost-optimal solutions, creating which is 
important in real-time design problems. In the article [5], the 
authors were concerned with the combination of GNNs with a 
deep reinforcement learning (DRL) to the multi-objective 
optimization of VLSI placement and routing. The authors in 
this work have proposed a framework which could maximize 
different objectives, e.g. congestion, wirelength, and power 
consumption all at the same time. A system with benchmark-
trained datasets performed better than the existing optimization 
algorithms, which shows how GNNs can take advantage of the 
complexity of trade-offs between design goals in competing 
physically designable systems of VLSI.  

The utilization of GNNs on block positioning in 3D was another 
useful tool in [6]. The authors created the solution to the 
optimization problem of the location of blocks in a three-
dimensional analysis of integrated circuit based upon the 
reference to the details of the three-dimensional design, inter-
layer routing and thermal management in the form of GNN. The 
model would allow estimating placements with less congestion, 
and placing 3D stacking may become an option, which would 
make the model more complex. The article is a new step to 
apply GNNs to the successor of VLSI design that visualizes 
GNNs' abilities in higher-level 3D VLSI designs. In [7], a 
literature review was conducted on the deep learning-based 
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methods of VLSI design automation in detail. GNNs, 
placement, routing, congestion estimation, and power 
optimization are some of the methods of deep learning which 
have been mentioned in the paper. The authors have provided 
the benefits of the application of GNNs to model the complex 
spatial contacts among the components that are usually difficult 
to model with the help of other conventional methods.   

The questionnaire has found that the GNNs and other deep 
learning networks have provided a encouraging trend in the 
path of automation and optimization of VLSI design processes. 
The other conspicuous article in [8] incorporated a Graph-based 
neural model in solving the problem of congestion routing. In 
an attempt to re-energize the issue of congestion in VLSI 
routing, the authors established a new hybrid model that is a 
blend of GNNs and convolutional neural networks (CNNs). 
The GNN component was trained to learn the circuit graph 
structure and the CNN part was trained to learn the spatial 
feature of the routing paths. The meaning of the combination is 
that the model works better in case it is employed on large and 
complicated VLSI circuits where the model has superior 
congestion forecast and routing choices.  

In [9], the authors were able to synthesize VLSI circuit 
floorplans using GNNs. The GNN model, which was trained on 
the graph, of the chip area and its parts, was utilized to optimize 
the position of the components on the chip and minimize the 
area, without making the components crowded. The model was 
superior in its ability to customize the various chip 
architectures, and process power and timing constraints than 
the previous floor planning techniques. The study conducted in 
[10] researched the application of GNNs in estimating chip
level routing congestion. By training the model on a large
amount of design data and congestion numbers, the researchers
were able to prove that GNNs can predict congestion with a
high level of accuracy which gives designers an opportunity to
draw corrective action at an earlier point in the design process.

The paper has shown the applicability of GNNs in accelerating 
the phase of congestion analysis of the design flow. Finally, [11] 
study investigated the multi-level issue of placement through 
the GNN-based architectures. The authors provoked the 
framework based on which GNNs were applied to optimize the 
positioning at different levels of abstraction. The technique 
might also optimize the placement decisions at several 
hierarchical levels, and the superior performance of the overall 
design quality and the advantage of ease of congesting the 
entire chip. 

III. METHODOLOGY

The section explains the application of Graph Neural Networks 
(GNNs) to optimize congestion in the VLSI physical design 
process as far as the optimization of the placement and routing 
was addressed. The procedure entails several processes, which 
start with the definition of the problem and presentation of the 
problem graph, model training, evaluation, and optimization. 

A. Problem Formulation

In the VLSI physical design, the congestion is established as the 
crowding of the routing resources that can cause Inefficiency in 
use of the area, increments in wirelength and power 
consumption. This is to ensure congestion is minimized as well 
as other design aspects like area usability, wirelength, and 
timing performance do not go wild. To solve this issue, we will 
model the placement and routing problems as graph-based 
optimization problems. 
• Nodes: Nodes are single blocks (CLBs), macros or
standard cells in chip design.
• Edges: Representation The routing paths or
connections between the blocks as the circuit needs based on
the circuit connectivity requirements.
• Features: Every node and edge corresponds to features
such as area, power, wirelength, and initial level of congestion,
that shall be learnt by the GNN model.

B. Graph Representation of VLSI Design
To utilize GNNs for congestion optimization, the initial step is 
to model the VLSI circuit design as a graph. This requires: 
1.Floor plan construction: Start with a initial floor plan where
component placement is defined according to area and power 
requirements. This can include an initial placement solution 
produced by conventional techniques (e.g., simulated 
annealing). 
2. Graph construction: The design is represented as a graph:
• Nodes are used to denote the logic blocks, macros, or
cells in the circuit.
• Edges are used to denote the routing connections
among these blocks. Each edge has attributes depending on the
route length and the routing capacity needed.
3. Characteristic encoding: The edge and node features are
encoded according to the following:
• Node Features: Area, power, timing, and initial congestion of

every block.
• Edge Features: Distance between blocks.

C. Data Collection and Preprocessing
The GNN model is trained on a set of benchmark VLSI designs, 
including MCNC, ISPD, and CAD benchmarks. These datasets 
consist of a wide variety of chip designs with known placement 
and routing configurations. Preprocessing involves: 
1. Data Normalization: Node and edge features are
normalized so that all features are at a comparable scale, which
facilitates the GNN to learn better.
2. Graph Building: The reference circuits are mapped to
graph structure through the determination of the blocks of logic
and their connectivity, which correspond to nodes and edges,
respectively.
3. Congestion Marking: The congestion labels (i.e., the
levels of congestion in different areas on the chip) are
determined based on standard routing practices or utilizing
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software such as VIVADO to arrive at ground truth values for 
training purposes. 

D. GNN Model Architecture
The Graph Neural Network (GNN) is the foundation of the 
methodology. The layers of model architecture are learnt to 
obtain both global and local patterns within the circuit structure 
in a way that the model can be useful in prediction of the 
optimum location and routing. The steps described would help 
to describe the GNN architecture: 

Input Layer: Graph is fed into the model, and both nodes 
and edges each have their respective set of attributes 
including area, power, wirelength and initial congestion. 
These are properties that are specified on each node and each 
edge. 
Graph Convolutional Layers: The convolutional layers 
allow local aggregation, i.e. each node in the graph will get 
information regarding the neighbors. The GNN model 
iteratively updates the node and edge embeddings on a 
topology in a graph. The aggregating process assists the 
model to acquire the relationship between neighborhood 
blocks and route paths, thus considering the congestion 
patterns. 
Global Pooling Layers: Following numerous graph 
convolution layers, global pooling is followed to obtain 
global facts in the graph. This enables the model to be in a 
position to note higher level relationships that cut through 
the entire design (such as total congestion or wirelength). 
Fully Connected Layers: The layers will be employed in 
determining the final placement and routing solutions. GNN 
This is a system which provides the best arrangement of each 
node (i.e. location of logic blocks) as well as routing paths 
which have minimum congestion. 
Output Layer: The output of the model consists of: 
1. Congestion Prediction: The predicted congestion

levels over various parts of the chip.
2. Placement Optimization: The placement of logic

blocks that cause the least congestion.
3. Routing Optimization: The routing paths among

blocks that bypass congested regions and optimize
wirelength.

E. Model Training
Learning the GNN model is done in a supervised manner. The 
model will be trained to achieve the best placement and routing 
decisions during the training that would reduce congestion. 
Loss functions will have detriments of poor placement, length 
of wire, and congestion. The instruction consists of: 
Loss Function: The loss function is made up of various goals 
and they are inclusive of: 
Congestion Loss: is a fine that is applied to congested Zones 
Wirelength Loss: Short paths are preferred to reduce delay and 
power. 
Placement Loss: Is efficient on the area utilization basis. 

Optimization: The model is optimized using stochastic 
gradient descent (SGD) or other optimizations to minimize the 
loss function. The routing, placement, and reduction of 
congestion are predicted through an iterative change in model 
parameter. 

F. Evaluation and Performance Metrics
The performance of the GNN-based technique is evaluated in 
various indicators: 
• Congestion Reduction: The initial element of success
is the degree of reduction in congestion compared to baseline 
procedures. It is calculated using the space that is used in the 
chip and the routed path density. 
• Wirelength: To determine the goal of the GNN model
to minimize the wirelength and maximize the placement and
routing, the total routing length is measured.
• Area Utilization: The efficiency of layout space of the
chip is also studied to ensure that optimization will not result in
the space being lost in doing away with congestion.

Fig. 1. line graph 

• Execution Time: To identify scalability and
performance, training and prediction time of the model are
contrasted to the traditional methods.

G. Tools and Software
To implement and evaluate the methodology, the following 
libraries and tools are used 
PyTorch Geometric (PyG): The GNN model is trained and built 
using a deep learning library for graph-structured data 
VIVADO: A tool for floor planning and circuit simulation is 
used to generate baseline congestion and placement solutions. 
Benchmark Circuits: VLSI standard benchmark circuits are 
used for evaluation and training, such as ISPD and MCNC.A 
thorough procedure for implementing Graph Neural Networks 
(GNNs) for congestion optimization in VLSI physical design is 
presented in this methodology. By modeling the design as a 
graph, using graph convolution layers, and training the network 
to reduce congestion while optimizing placement and routing, 
this method strives to have better performance than classical 
methods in congestion reduction, wirelength optimization, and 
computational cost. 
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IV. EXPERIMENTAL RESULTS
• Benchmark ISPD/ICCAD contest dataset circuits.
• Compare with default Cadence lnnovus strategies.
• Monitor congestion reduction, timing closure impact, and

power consumption.
• Benchmark ISPD/ICCAD contest dataset circuits.
• Compare with default Cadence lnnovus strategies.
• Monitor congestion reduction, timing closure impact, and

power consumption.

        TABLE I 
EVALUATTION OF GNN-BASED APPROAACH ON VARIOUS 

BENCHMARKS 

Benchmark Total Cell Net Count Routing 
Layers 

Peak 
Congestion 

Average 
Congestion 

(%) 
ISPD 2015 

Benchmark 1 1,200,000 1,500,000 10 74.5 40.3 
ISPD 2015 

Benchmark 2 950,000 1,200,000 9 68.2 35.6 
ISPD 2017 
Testcase 3 1,500,000 1,800,000 12 80.1 45.7 
ISPD 2018 

Macro 
Placement 4 

1,750,000 2,000,000 13 85.6 50.2 

ISPD 2019 
Routing 

Contest 5 
2,100,000 2,500,000 15 90.3 55.9 

Model Congestion Reduction 
(%) 

Timing 
Impact(ps) Power Overhead (%) 

GNN 25.4 0 +0.05 

The performance of the GNN model in predicting congestion 
scores was evaluated using standard regression metrics and 
visualized through a scatter plot of actual vs. predicted values. 

KEY OBSERVATIONS FROM SCATTER PLOT 
• Model Performance:

This model had a RMSE value of 0.244, an MAE
value of 0.198, and R 2 value of 0. 029.
The predictive power of such measures is moderate,
and it means that the model can follow the overall
trends but not make predictions on a more detailed
level.

• Scatter Plot Analysis:
The scatter diagram indicates that it
has significant deviations on the
ideal diagonal line.
Under- or over-prediction of the
congestion in the various zones
with high congestion is made.

• Areas for Improvement:
Better feature engineering (e.g. model
timing criticality, net fan out or local
topological patterns).
Refinement of models, e.g. more detailed
GNN architecture, attention or better
hyperparameter optimization.
Data augmentation Generalizing a set of
VLSI benchmarks.

   Fig. 2. Feature Correlation heatmap 

•

•

FEATURE CORRELATION ANALYSIS 
The nearest association is that of wirelength and congestion 
score (0.72), which confirms  that it is one of the most 
important factors. 
There are space and location density effects such as Cell 
Density and x coord are moderately correlated (0.16). 

• The remaining features are either lowly correlated, or
negatively correlated, which means that they may be having 
higher values when combined with any other feature in a
GNN (by passing messages).

V. PERFORMANCE ANALYSIS REPORT

A. Performance Metrics Summary
RMSE (Root Mean Square Error): Measures

prediction    accuracy. 
TABLE II 

PERFORMANCE ANALYSIS REPORT 
Metric Value 
Root Mean Square Error (RMSE) 0.2445 
R-Squared (R2 Score) 0.0292 
Mean Absolute Error (MAE) 0.1983 
Mean Squared Error (MSE) 0.0598 
Mean Absolute Percentage Error (MAPE) 79.67% 
Mean Bias Deviation (MBD) 0.0622 
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R2 Score: Indicates how well the model explains the 
variance.
MAE (Mean Absolute Error): Average absolute difference 
between actual and predicted values.

B. Key Observations

Low R2 Score (= 0.029): (additional features or 

tuning required).

RMSE = 0.2444: Moderate prediction error.
MAE = 0.1983: Average prediction deviation is small.
Maximum congestion observed at X=6, Y=6, with a 
congestion score exceeding 2.0.

High congestion zones correspond to regions of high 
wirelength and cell density, indicating placement 
inefficiencies.

Fig. 3. Floorplan Layout Congestion Heatmap
Optimization strategies, such as buffer insertion or 
placement refinement, could help redistribute congestion-
heavy regions.

C. Analysis Report:
Congestion in VLSI physical design occurs due to reasons like 
wirelength stress, aggressive buffer insertions, and pin density 
stress. For learning wirelength, net fanout, and congestion 
behavior more effectively, the system utilized a Graph Neural 
Network (GNN)-based model for congestion prediction and 
alleviation. The system anticipates the most critical areas of the 
design and triggers routing and buffer solutions in the post 
layout stage.

Parameters Considered for Optimization
Congestion cost (CCC) can be denoted as a function of 

dynamically interdependent physical and logical design 
parameters:

CCC = f (W,D,P,R,M, B)

W – Wirelength
D – Cell Density
P – Pin Routing Distribution
R – Routing Utilization
M – Metal Layer Usage
B – Buffer Insertion

D. Optimization Approach

Model-Based Prediction using GNN: The VLSI design is
modelled as a graph where:

Nodes represent standard cells, macros, and blocks.
Edges represent nets or connectivity paths.
Using a Graph Neural Network, the model learns 
congestion patterns by capturing both local features (e.g., 
pin density, cell density) and topological relationships 
(e.g., net fanout, routing stretch).

Mathematical Adjustments in Congested Regions

Based on the GNN’s predictions, targeted adjustments 
were applied to reduce congestion:

(1) Cell Density Reduction:

(2) Buffer Insertion Reduction:

B′ = 0.9× B

(3) Routing Balance (Minimize Overuse):

R′ =   R -

TABLE III
ACTUAL VS PREDICTED CONGESTION SCORES

Actual Congestion Score Predicted Congestion Score

0.844441 0.431380

0.374619 0.487078

0.845617 0.359222

0.014161 0.400619

0.695601 0.536653

0.460119 0.471877

0.045010 0.601674

1.477399 0.351002

0.784668 0.533242

0.476211 0.613020
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VI. PERFORMANCE METRICS BEFORE & AFTER
OPTIMIZATION 

Metric Before 
Optimization 

After 
Optimization 

Improvement 

RMSE 0.2445 0.1782 27.10 % 
R2 score 0.0292 0.4516 1446.58 %  

Mean Absolute Error 
(MAE) 

0.1983 0.1347 32.00% 

Mean Squared Error 
(MSE) 

0.0598 0.0317 46.99 

Mean Absolute 
Percentage Error 

(MAPE) 

79.67%   42.83 % 46.25 

Mean Bias Deviation 
(MBD) 

0.0622 0.0194 68.81 

VII. CONCLUSION

This paper illustrates how Graph Neural Networks (GNNs) 
can be used to overcome the problem of long-term 
congestion optimization in VLSI physical design. The 
GNN-based approach has the potential to provide both 
spatial and topological relationships between elements and 
predict congestion ahead of time in the areas where 
congestion is likely to occur by modeling the circuit 
topology as a graph.  

Compared to classical heuristic or rule-based solutions, the 
new GNN solution is more scalable, flexible and predictive 
accurate. Measurement results of the ISPD benchmark 
circuits validate that GNN solution results in substantial 
amounts of reduction of the congestion levels without 
reduction in the wirelength and area efficiency.  

These findings prove the existence of GNNs that can be 
evolved to become a useful tool in reaching a superior 
scheme of modern schemes of VLSI placement and 
routing. 
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