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Abstract 

The inverted pendulum system, which has been 

focused by control engineering, is among the most 

important and classical problems. While designing a 

fuzzy controller for such system, two main problems 

are controlled namely “rule number explosion” and 

“uncertainty” in the system. As remedy to these 

problems, a fusion function based on LQR control is 

applied before fuzzy controller that reduces number 

of inputs. The second problem “uncertainty” is taken 

care by type-2 fuzzy controller, as the degree of 

fuzziness is greater than conventional fuzzy 

controller.  Therefore, both the schemes are 

combined to make the controller more efficient and 

robust. MATLAB simulation and comparison shows 

that the control effect is perfect. 

Keywords-  Fusion Function, Fuzzy Control, 

Double Inverted  Pendulum  (DIP),  LQR  Control,  

IT2FS, Uncertainty 

1.     Introduction 

The inverted pendulum in control engineering is an 

important classical problem that reflects many crucial 

questions during its control process. This system is 

typically non-linear, complicated, high-ordered and 

highly uncertain. Here, we are using double inverted 

pendulum system, which has even more control 

targets that tests the controller on a higher level. 

The advantage of using fuzzy logic bound system 

over classical control system is that they tend to have  

smoother control, require little mathematical 

knowledge of model behavior, noise immunity and 

uncertainty handling. These use expert knowledge for 

obtaining results. Due to such characteristics, it has 

become very popular in very short time. It is being 

used in vast area of research and applications that 

shows its versatility and power. 

In general, we can say that uncertainty is caused by 

the lack of information i.e. incomplete, fragmentary, 

partially reliable, imprecise, vague and sometimes 

contradictory nature of information. Fuzzy reasoning 

allows us to handle this uncertainty. So, using type -1 

fuzzy sets is a sensible option to use, when 

uncertainty is involved (Zadeh, 1975 [1]). However, 

using accurate membership function for something 

uncertain is not reasonable. So, to handle such 

uncertainties, type-2 fuzzy sets are used (Mendel, 

2001 [2]). As we know that uncertainties cannot be 

separated from real systems, the research of novel 

methods to handle incomplete or less reliable 

information is of great interest (Mendel, 2001 [3]). 

This makes type-2 fuzzy logic controller as a good 

sensible choice. 

It is not a trivial task to apply fuzzy control strategy 

to large-scale complex system. These require 

different and special approaches for modeling and 

control. An exponential increase in the number of 

control rules is observed with the increase in number 

of inputs. If we assume that we have t input variables 

and we have defined d fuzzy sets for each variable, 

then the total number of rules reaches to d
t
. This 

problem is referred as “rule explosion” problem. 

Now, high number of controller input dimensions and 

excessive inference rule, reduces inference speed and 

correctness. So it becomes difficult to design and 

degrade controller’s performance. The reduction of 

fuzzy controller’s dimensions and number of fuzzy 

inference rules is of great research interest. To tackle 

this problem, Raju and Zhou [4, 5] used the idea of 

hierarchical structure in designing a fuzzy system, in 
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which the input variables are given to low 

dimensional fuzzy logic units (FLUs) and their 

outputs are fed as input variables to fuzzy logic units 

(FLUs) in next layer. 

Joo [6] proposed a method where he considered the 

fuzzy rules as fuzzy rule vectors to convert the given 

multi input fuzzy system to two layered hierarchical 

fuzzy systems. In [7-10], using genetic algorithms, 

corr. parameters for the sensory fusion function 

method are found automatically. Fusion function can 

be achieved by many ways. In [11, 12], LQR gains 

are used to reduce the fuzzy controller’s rule base and 

simultaneously importing LQR controller’s features 

in the control action of a double inverted pendulum.  

Similarly, in [13] this idea was implemented to 

design a DSP chip based real-time motion control for 

rotary inverted pendulum system.  

In our work, an attempt for the reduction of inference 

engine for large scale system is made by using a LQR 

based fusion function and it is combined with a type 

2 fuzzy controller system such that the uncertainties 

in the model are well handled. Finally, a comparison 

has been made between our controller and LQR 

fuzzy controller by Wang and Sheng [12]. Paper is 

organized as mathematical Formulation of double 

inverted pendulum system in section 2, theory behind 

and procedure involved in design of fusion function 

based on LQR in section 3,basic theory of  Interval 

type-2 fuzzy logic in section 4. In section 5, type-2 

fuzzy controller design is described and results found 

are given with discussion in section 6. Finally, the 

conclusion and future work is proposed in section 7. 

   2. Formulation of double inverted 

pendulum system 

The double inverted pendulum is a device that is 

composed of a cart on which the pendulum is fixed 

through a mounted shaft and the cart moves along a 

guided rail [14]. To measure the cart position, a 

photoelectric coder is installed at one end of the rail. 

Rotor shafts connect cart to the pendulum as well as 

both pendulums to each other and photoelectric 

coders at the connections measure the angles of upper 

and lower pendulum. The pendulums can move right 

and left on horizontal guide rail around respective 

motor shaft thus to make the inverted pendulum 

stable at the vertical position. The schematic diagram 

of DIP and the notations used with their values are 

given below. 

 
                     Figure 1: DIP schematic diagram 

                            Table1 : DIP Parameters  

M
1 2( , , )p p jm m m  Cart’s mass (that  includes 

first pole, second pole, joint) 

5.8 kg (1.5kg, 0.5 kg, 0.75kg)  

1 2,p p   The angle made by pole 1(2) 

and vertical direction (rad) 

1 1 2 2( ), ( )p p p pL l L l  Length of pendulum first (2

1pl ) and length of second 

pendulum (2
2pl ), 1m, 1.5m 

G Centre of gravity 9.8 m/s
2
 

F Force applied to cart 

Lagrange equations are used to derive the equations 

of motion of the above system 

i

i i

d dL dL
Q

dt dq dq
 


 

Where L = T   V  is a Lagrangian, Q is a generalized 

force vector that acts in generalized coordinates q’s 

direction. It is not taken in account for the 

formulation of kinetic energy T and potential energy 

V. Kinetic and potential energies of the system are 

given by the sum of all the energies of carts and 

pendulums. 
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1 2 1 1 2 1

2 2 2 2

3 1 1 2 2 2 1 1 2 1

3 1 1 1 2 2 2 2

2 1 2 1 2 1 2

1 2
( ) ( 2

2 3

1
2 ) ( 2

6

2 ) cos cos

2 cos( )

c p p j p p

p p p p p p p p p

p p p p p p p p

p p p p p p p

T m m m m x m l m l

m l m l m l m l

m l x m l x

m l l

 

   

   

     

   

 

 



 

  

 

 

1 1 1 3 1 1

2 1 1 2 2

cos 2 cos

(2 cos cos )

p p p p p p

p p p p p

V m gl m gl

m g l l

 

 

  


 

Using the equations above the Lagrangian L of the 

system is given as 

2 2 2

1 2 1 1 2 1

2 2 2 2

3 1 1 2 2 2 1 1 2 1

3 1 1 1 2 2 2 2

2 1 2 1 2 1 2 1 1 1

3 1 1 2 1

1 2
( ) ( 2

2 3

1
2 ) ( 2

6

2 ) cos cos

2 cos( ) cos

2 cos (2 cos

c p p j p p

p p p p p p p p p

p p p p p p p p

p p p p p p p p p p

p p p p p p

L m m m m x m l m l

m l m l m l m l

m l x m l x

m l l m gl

m gl m g l

 

   

    

 

     

    

 

  





 

  

 

1 2 2cos )p pl 

Now the Lagrangian is differentiated by   and    

to yield Lagrange equation as given below

1 1

2 2

0

0

p p

p p

d dL dL

dt d d

d dL dL

dt d d

 

 

 

 





 

or explicitly: 

2 2 2

1 1 2 1 1 1 1 1 2 1

1 1 2 1 2 2 1 2

2

2 1 2 2 1 2 1 1 2 1

1 1

4
( 4 2 ) ( 2
3

2 ) cos 2 cos( )

2 sin( ) ( 2

2 ) sin 0

p p p p j p p p p p p

j p p p p p p p p

p p p p p p p p p p

j p p

m l m l m l m l m l

m l x m l l

m l l m l m l

m l g



   

  



   

   

   








 

2 2 2 2 1 2 1 1 2

2 2

2 2 2 2 1 2 1 1 2

2 2 2

cos 2 cos( )

1
2 sin( )

3

sin 0

p p p p p p p p p

p p p p p p p p p

p p p

m l x m l l

m l m l l

m l g

   

   



  

  





   

A more compact matrix form of the Lagrange 

equation for the DICP system is given below                                        

( ) ( , ) ( )D C G Hu           

The stationary point of the system is given by 

1 2 1 2( , , , , , , ) (0,0,0,0,0,0,0).p p p px x x      
 

Now introducing a small deviation around the 

stationary point and expanding it using Taylor series; 

also, in the stable control process of the Double 

Inverted Pendulums are usually following 

approximations are used: 

1 2 1 2 1 2

1 1 2 2

cos( ) 1, sin( ), cos( ) cos( ) 1,

sin( ) , sin( )

p p p p p p

p p p p

     

   

    

 

Linearization is made at balance position; so we get 

the LTI state space model [] as:

                              

1 1

22

11

22

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 14.2545 4.0090 0 0 0 1.1818

0 14.2545 21.1077 0 0 0 0.1818

p p

pp

pp

pp

x x

xx

 







                                                            













( )u t





         

 

1

2

1

2

0

0

0
( ) . 1 1 1 1 1 1 ( )

0

0

0

p

p

p

p

x

y t diag u t
x









   
   
   
   
    
   
   
   
     







 

Throughout the paper this linearised model of double 

inverted pendulum is used. 

3.     Design of fusion function based on LQR 

Since we are going to use LQR control technique 

features in our controller which is applicable to linear 

state space model, so we define the state-space 

equations for our system. 
( ) ( ) ( )

( ) ( ) ( )

X t AX t Bu t

X t CX t Du t

 

 



 

Performance index J is chosen as    

0

1
 = ( ( ) ( ) ( ) ( ))

2

T TJ X t QX t u t Ru t dt


  

where Q and R are chosen to be positive semi-

definite matrices. They determine the matrix K of the 

optimal control vector 

( ) ( )u t KX t   

Minimizing the performance index J, the elements of 

matrix K are found. Then 

                   
1( ) ( ) ( )Tu t KX t R B PX t     

is optimal for any initial X(0) state. Where P is the 

solution of algebraic Riccati equation (given below) 

and K  is the linear optimal feedback matrix.
                                                   

1 0T TA P PA PBR B P Q     

Here, we have chosen as 

diag([10  60  80  0  0  0])Q   and 1R   
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After solving, we get 

[10 275.2453 515.650216.2044 22.1046 111.9285]K     

Now, using this K  matrix, a fusion function F(X) is 

constructed as suggested by Wang and Zheng [11]. It 

is described as  

1 2

1 2

0 0 0
1

( )
0 0 0

p p pn

p p pn

K K K
F X

K K KK

 
 
 
 

  

  

  

Where,     2 2

1 1

( ) ( )
n n

pi pj

i j

K K K
 

     

After solving, it comes out to be

                            0.01939 0.5338 1 0 0 0
( )

0 0 0 0.14477 0.19749 1
F X

  
  

  

 Then, input variable’s dimensions are reduced. The 

error ( )E  and error change ( )EC  may be obtained 

by ( )F X  as :    

                     ( ) T
E

F X X
EC

 
 

 
  

Since, our fusion function reduces the number of 

inputs for the fuzzy controller to two, namely, error 

(E) and error change (EC). We can formulate the 

number of rules i.e. d
2
. The Table (2) below shows 

the comparison of different rule reduction methods.                                       

              Table 2: Comparison of different reduction methods 

Methods used 

to reduce  

the no. of 

rules 

               The 

no. of 

variables  

1t   

 Even Odd 

Sensory 

fusion 

/2td  
( 1)/2td 

 

Hierarchical                                  
2( 1).t d  

 

Combinational 2(( / 2) 1).t d  2((( 1) / 2) 1).t d 

 

LQR-fusion                                          
2d  

 

 

4.      Interval type-2 fuzzy logic 

The usage of type-2 fuzzy sets provides us the 

advantage of handling the uncertainty and inaccuracy  

 

in the problems of real world. Zadeh proposed these 

sets in 1975, they are “fuzzy-fuzzy” sets in which the  

  Figure 2: Rule base reduction methods compared 

with 5.d   

membership grades are itself type-1 fuzzy sets. These 

sets express the degree of uncertainty and non-

determinist truth with which an element belongs to 

the whole set. 

 If ( ) 1, , [0,1]u u

p p pf u u J J       

An interval type-2 fuzzy set (IT2FS) A  can be 

characterized as: 

           

[0,1]

[0,1]

1[ ]
1

( , )
p

p

u J

u J p P
p P

u
A

x u x
 

  


 


    

Where the primary variable p, has domain P; the 

secondary variable u U ; has domain 
pJ  at each

p P ; 
pJ  is called the primary membership of p 

and the secondary grades of A  are all equal to 1. 

Clearly, means : {[ , ]: 0 1}.A P u v u v     

Union of all the primary membership conveys 

uncertainty about A , which is also known as 

footprint of uncertainty (FOU) of A . The shaded 

area (Mendal, 2000) which is bounded by an upper 

and lower membership function as shown in figure 

below:  

FOU( A ) = {( , ) : [0,1]}p P p pJ p u p J      

Here, the upper membership function (UMF) and 

lower membership function (LMF) of A  are type-1 
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membership function as shown in Figure 3.                       

 
             Figure 3: FOU (grey area) for IT2FS [15] 

4.1. Type-2 fuzzy reasoning 

A fuzzy system with M rules, n input variables and 1 

output variable is assumed where antecedent and 

consequent are taken as type-2 fuzzy sets. 
1R : if

1p  is 1

1F  and and 
np  is 1

nF , then y is 
1.G  

1:H p  is 
1pA  and   and 

np  is .pnA  

ˆ: is .C y y  

The reasoning evaluation is given below: 

The 
thl  rule relation is 

1 1

l l l l l l l l

nR F p pF G F G A G      

The fact relation is  

1 1... ...p p pn p pnA A p pA A A     

l l

pB A oR , Generalized, fuzzy reasoning 

( ) ( ) ( ) ( , )l l l l
pp

P AB A oR A G
y y p p y    

   
 

  

 1( ) ( ) ( ) ( ) ( ), ( )l l l l l
pi i

p

i A i iB G F B B
y y p p y y     

          

where 

 
11

* ( )* ( ) * ( )l l l
P i

p

A i iB F Gi
p p y   



 
  
 

   

 
11

* ( )* ( ) * ( )l l l
P i

p

A i iB F Gi
p p y   



 
  
 

   

Aggregation 

1 11

( ) ( ) ( ) ( )

( ), ( )

l l
pi

pMM

B A iB B
i ii

B B

y y y p

y y

   

 

 

  
      

  

   

 
 

Where , 

   
11 1 1

( ) ( ) * ( )* ( ) * ( )l l l
P i

pM M

B A i iB F Gi i i
y y p p y    

  

  
      

  

 

 

   
11 1 1

( ) ( ) * ( )* ( ) * ( )l l l
P i

pM M

B A i iB F Gi i i
y y p p y    

  

  
      

  

 

This can be depicted by the figure (4) below:                     

 
                 Figure 4: IT2 fuzzy reasoning [16] 

4.2. Type-2 rule based fuzzy logic system 

IT2FLC design which is based in interval type-2 

fuzzy system has the structure same as conventional 

fuzzy logic controller, except that a type reducer 

block between inference engine and defuzzifier 

blocks is added. The type reducer block converts the 

type-2 fuzzy set output of inference engine to type-1 

fuzzy set before applying it to defuzzifier block for 

getting crisp output. 

It has four principle components as shown in figure. 

1. Fuzzifier – Modifies inputs (crisp values) 

into corresponding fuzzy values. 

2. Inference System- obtains a type-2 fuzzy 

output by applying fuzzy reasoning. 

3. Defuzzifier/ Type Reducer- defuzzifier 

modifies the output to crisp values while the 

type reducer reduces a type-2 fuzzy set into 

corresponding type-1 fuzzy set. 

4. Knowledge Base- contains a rule base (set 

of fuzzy rules) and a database (set of 

membership functions).   

 

 
       Figure 5:  IT2 FLC (Basic block schematics) [17] 
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5.  Type-2 fuzzy controller design 

The logic universe i.e., actual range of fuzzy 

controller input variables depends on controlled 

objects. Here, the basic universe of input variables, 

E  and EC , is changed into fuzzy universe using 

quantization. Increase in the number of fuzzy sets, 

improves control accuracy but results in slower 

reasoning speed due to increased calculation. For 

design of type-2 fuzzy controller seven sets are 

defined in fuzzy universe [  30, 30] for error E , 

error change EC  and control output u. These sets 

are described with linguistic variables NL  (Negative 

Large), NM (Negative Medium), NS (Negative 

Small), Z (Zero), PS (Positive Small), PM (Positive 

Medium) and PL (Positive Large). The membership 

function describing fuzzy sets are shown in figure 

below: 

 
 Figure 6: Membership functions used in Type-1 FLC   

 
 Figure 7: Membership functions used in Type-2 FLC 

The rule base for the type-1 and type-2 fuzzy 

controller is given below in the Table (3). As 

depicted from Table (3), a total of 49 rules are 

formulated to control the double inverted pendulum. 

              Table 3: Rule base for fuzzy controllers   

       

The fuzzy control surface is shown below:                                              

 
            Figure 8: Non-linear control surface of FLCs 

The schematic diagram of double inverted pendulum 

system with LQR based type-2 fuzzy controller in 

SIMULINK is shown in Figure (9) below. The block 

named as “constant” in the upper left corner gives the 

final position of the cart which can be changed.    

           
 Figure 9: Simulink diagram of DIP with LQR based 

type-2 FLC 
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5. Results 

The design of the DIP system and LQR based Type-2 

Fuzzy controller is tested in MATLAB’s Simulink 

environment [16]. The pendulum angles are 

measured as the deviation from vertical upright 

position. There are scaling factors , ,E EC DK K K  and 

.uK  The factors are properly chosen to ensure proper 

working of the controller. 

The plot given below shows the cart position, upper 

and lower pendulum angles of double inverted 

pendulum under the initial states 

 1 2 1 2, , , , 0.1,0.1,0.1,0,0,0 .p p p px       
  under ideal 

condition i.e. no external disturbance. It is noticed 

that the performance is exactly similar to LQR 

controller. Therefore, the fusion function just reduces 

the input dimensions of the controller and the 

controller part is modified form of LQR gain.  

                                

 
 Figure 10: Simulation result of DIP with LQR based              

type-2 FLC 

Next experiment compares the two fuzzy controllers 

i.e. type-1 and type-2 fuzzy controllers, setup under 

ideal environment i.e. no external disturbance. Figure 

(11) depicts less damping and lower overshoot , in 

case of IT2FLC. 

                              

                            

                      

 
 Figure 11: Simulation results comparison of fuzzy 

controllers without disturbance for  (a) position (b) 

angle of lower pendulum (c) angle of upper 

pendulum 

In our last experiment, a disturbing force of 10N is 

applied to the cart at time t= 10sec, comparative 

results of the fuzzy controllers are shown in the fig. 

(12). Again, Type-2 fuzzy controller gives a better 

result; as the transients are little lower comparatively. 
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 Figure 12: Simulation results comparison of fuzzy 

controllers with disturbance for (a) position (b) angle 

of lower pendulum (c) angle of upper pendulum 

All the results indicate that the controller works 

successfully and efficiently as position of cart and 

both the angles of double inverted pendulum become 

stable well in time (approximately 4 seconds).  

6.   Conclusion and future work 

For real time uncertain system, using a type -2 FLC 

obtained lower overshoot and better settling times. It 

can be concluded here that type-2 FLC could be a 

better choice for real world systems as uncertainty is 

an inherent part of the system and is not easy to 

estimate. To encounter the “rule explosion problem”, 

a fusion function based on LQR gain was 

successfully used in order to reduce the large fuzzy 

rule base of Type-2 fuzzy controller. This was 

applied to an approximate linear model and the 

results clearly show that this method has great 

performance, ability to resist disturbance and 

effective handling of model uncertainties. 
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