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INTRODUCTION: After the introduction of fuzzy sets by L.A.Zadeh[16], 

several researchers explored on the generalization of the concept of fuzzy sets. 

The notion of fuzzy subgroups, anti-fuzzy subgroups, fuzzy fields and 

fuzzy linear spaces was introduced by Biswas.R[4, 5 ]. In this paper, we 

introduce the some theorems in lower level subsets of anti L-fuzzy subfield of 

a field under homomorphism.  

1. PRELIMINARIES: 

1.1 Definition: Let X be a non-empty set and L be a complete lattice.                       

A L-fuzzy subset A of X is a function A : X → L.  

1.2 Definition: Let ( F, +, ∙ ) be a field. A L-fuzzy subset A of F is said to be 

an anti L-fuzzy subfield(ALFSF) of F if the following conditions are 

satisfied: 

(i) A( x+y )  A(x) A(y), for all x and y in F, 

(ii) A( x
 
)  A( x ), for all x in F, 

(iii)     A( xy )  A(x)  A(y), for all x and y in F, 

            (iv)    A( x
-1 

)  A( x ), for all x in F−{0}, where 0 is the additive 

identity element of F. 

1.3 Definition: Let ( F, +, ∙ ) and ( F
׀
, +, ∙ )  be any two fields. Let f : F → F

׀
  

be any function and A be an anti-fuzzy subfield in F, V be an anti L-fuzzy 

subfield in f(F) = F
׀
, defined by V(y) = inf

)(1 yfx 

A(x), for all x in F and y in F
׀
. 

Then A is called a preimage of V under f and is denoted by f 
-1

(V). 
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1.4 Definition: Let A be an anti L-fuzzy subfield of a field ( F, +, ∙ ). For any a 

and b0 in F, aAb is defined by (a+A)(x) = A(a+x), for all x in F and                         

(bA)(x) = A(b
-1

x), for all x in F, is called an anti L-fuzzy (a,b )-coset of F. 

1.5 Definition: Let A be an anti L-fuzzy subfield of a field (F,  +, ∙ ) and a in 

F. Then the pseudo anti L-fuzzy coset (aA)
p
 is defined by ((aA)

p
)(x) = 

p(a)A(x), for every x in F and for some p in P. 

1.6 Definition: Let A be a fuzzy subset of X. For  in L, the lower level 

subset of A is the set A = { xX: A(x) ≤  }. 

2 – PROPERTIES OF ANTI L-FUZZY SUBFIELDS: 

2.1 Theorem: Let (F, +, · ) and (F
׀
, +, · ) be any two fields. The  

homomorphic image of an anti L-fuzzy subfield of F is an anti L-fuzzy 

subfield of F
׀
. 

Proof: Let (F, +, · ) and (F
׀
, +, · ) be any two fields and f : F→F

׀
  be a 

homomorphism. That is f(x+y) = f(x)+f(y), for all x and y in F and              

f(xy) = f(x)f(y), for all x and y in F. Let V= f(A), where A is an anti                  

L-fuzzy subfield of F. We have to prove that V is an anti L-fuzzy subfield of 

F
׀
. Now, for f(x) and f(y) in F

׀
, we have V( f(x)f(y) ) = V( f(xy) )  A(xy) 

 A(x)A(y), which implies that V( f(x)f(y) )  V(f(x))  V(f(y)), for all f(x) 

and f(y) in F
׀
. And  V( f(x)( f(y) )

-1
 ) = V( f(xy

-1
) )  A(xy

-1
)  A(x)  A(y), 

which implies that V( f(x)( f(y) )
-1

 )  V(f(x))  V( f(y) ), for all f(x) and f(y)  

0
1
 in F

׀
. Hence V is an anti L-fuzzy subfield of a field F

׀
. 

2.2 Theorem: Let (F, +, · ) and (F
׀
, +, · ) be any two fields. The homomorphic 

pre-image of an anti L-fuzzy subfield of F
׀
 is an anti L-fuzzy subfield of F. 

Proof: Let (F, +, · ) and (F
׀
, +, · ) be any two fields and f : F→F

׀
 be a 

homomorphism. That is f(x+y) = f(x)+f(y), for all x and y in F and                            

f(xy) = f(x)f(y), for all x and y in F. Let V = f(A), where V is an anti                   

L-fuzzy subfield of F
׀
. We have to prove that A is an anti L-fuzzy subfield of 

F. Let x and y in F. Then, A(xy)= V( f(xy) ) = V( f(x)f(y) )  V(f(x))  

V(f(y)) = A(x) A(y), which implies that A(xy)  A(x)  A(y), for all x and 

y in F. And, A(xy
-1

) = V( f(xy
-1

) ) = V( f(x)f(y
-1

) ) = V( f(x)(f(y) )
-1

)  V(f(x)) 

 V(f(y)) = A(x)  A(y), which implies that A(xy
-1

)  A(x)  A(y), for all x 

and y  0 in F. Hence A is an anti L-fuzzy subfield of a field F. 
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In the following Theorem ◦ is the composition operation of  functions : 

2.3 Theorem: Let A be an anti L-fuzzy subfield of a field H and f is an 

isomorphism from a field F onto H. Then A◦f is an anti L-fuzzy subfield of F. 

Proof: Let x and y in F and A be an anti L-fuzzy subfield of a field H. Then 

we have (A◦f )( xy) = A(f( xy
 
) ) = A( f(x)+f(y)) = A( f(x)f(y)

 
) ≤ A(f(x)) 

 A(f(y)) ≤ (A◦f )(x)  (A◦f )(y), which implies that (A◦f)(xy)≤ (A◦f )(x)  

(A◦f)(y), for all x and y in F. And, (A◦f )( xy
-1

) = A( f( xy
-1

)) = A( f(x)f(y
-1

) ) 

 = A( f(x)(f(y))
 -1

) ≤ A(f(x))  A(f(y)) ≤ (A◦f )(x)  (A◦f )(y), which implies 

that (A◦f )(xy
-1

) ≤ (A◦f )(x)  (A◦f )(y), for all x and y  0 in F. Therefore 

(A◦f) is an anti L-fuzzy subfield of a field F. 

2.4 Theorem: If A is an anti L-fuzzy subfield of a field (F, +, . ), then the 

pseudo anti L-fuzzy coset (aA)
p
 is an anti L-fuzzy subfield of a field F, for 

every aF and p in P. 

Proof: Let A be an anti L-fuzzy subfield of a field ( F, +, . ). For every x and y 

in F, we have( (aA)
p 

)(xy
 
) = p(a)A( xy) ≤ p(a){A(x)  A(y)}= p(a)A(x)  

p(a)A(y) = ((aA)
p 

)(x)  ((aA)
p 

)(y). Therefore, ((aA)
p
)(xy) ≤ ( (aA)

p 
)(x)  

((aA)
p 

)(y), for all x and y in F. And for every x and y  0 in F,((aA)
p 

)( xy
-1

) = 

p(a)A(xy
-1

) ≤ p(a){A(x)A(y)}= p(a)A(x)  p(a)A(y) = ((aA)
p
)(x)((aA)

p 
)(y). 

Therefore, ((aA)
p 

)(xy
-1

) ≤ ((aA)
p 

)(x)  ((aA)
p 

)(y), for all x and y  0 in F. 

Hence (aA)
p
 is an anti L-fuzzy subfield of a field F. 

2.5 Theorem: Let A be an anti L-fuzzy subfield of a field (F, +, . ), then the   

anti L-fuzzy (0, 1 )-coset 0A1 is an anti L-fuzzy subfield of a field F, where 0 

and 1 are identity elements of F. 

Proof: Let A be an anti L-fuzzy subfield of a field ( F, +, . ). For every x and y 

in F, we have, (0+A)( xy
 
) = A(0+ xy

 
) = A( xy

 
) ≤ A(x)  A(y). Therefore 

(0+A)( xy
 
) ≤ A(x)  A(y), for all x and y in F. And for x and y  0 in F, we 

have (1A)(xy
-1

) = A(1.xy
-1 

) = A(xy
-1

) ≤ A(x)  A(y). Therefore (1A)(xy
-1

) ≤ 

A(x)  A(y), for all x and y  0 in F. Hence the anti L-fuzzy (0, 1 )-coset 0A1 

is an anti L-fuzzy subfield of a field F. 

2.6 Theorem: Let A be an anti L-fuzzy subfield of a field ( F, +, . ). Then for 

 in L such that  ≥ A(0),  ≥ A(1), A  is a subfield of F, where 0 and 1 are 

identity elements of F. 
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Proof: For all x and y in A , we have, A(x) ≤  and A(y) ≤ . Now, A(x–y) ≤ 

A(x)  A(y) ≤    = , which implies that, A(x–y) ≤ . And also, A(xy
-1

) ≤ 

A(x)  A(y) ≤   = , which implies that, A(xy
 -1

) ≤ . Therefore, A(x–y)           

≤ , A(xy
 -1

) ≤ , we get x–y, xy
-1 

in A. Hence A  is a subfield of F. 

2.1 Definition: Let A be an anti L-fuzzy subfield of a field (F, +, . ). The 

lower level subset A, for  in L such that  ≥ A(0),  ≥ A(1), is called lower 

level subfield of A. 

2.7 Theorem: Let A be an anti L-fuzzy subfield of a field (F, +, . ). Then two 

lower level subfields A1 and A2, 1 and 2 in L and 1≥ A(0), 2 ≥ A(0),               

1 ≥ A(1), 2 ≥ A(1) with 2 1 of A are equal if and only if there is no x in 

F such that 1 A(x) 2, where 0 and 1 are identity elements of F. 

Proof: Assume that A1 = A2. Suppose there exists xF such that 1  A(x)  

2. Then A1 A2, which implies that x belongs to A2, but not in A 1. This 

is contradiction to A1 = A 2. Therefore there is no xF such that 1 A(x)  

2. Conversely, if there is no xF such that 1 A(x) 2. Then A1 = A2. 

2.8 Theorem: Let (F, +, . ) be a field and A be a fuzzy subset of F such that 

A be a lower level subfield of F. If  in L satisfying  ≥ A(0),  ≥ A(1), then 

A is an anti L-fuzzy subfield of F, where 0 and 1 are identity elements of F. 

Proof: Let (F, +, . ) be a field. For x and y in F. Let A(x) = 1 and A(y) = 2. 

Case (i): If 1 2, then x and y in A1. As A1 is a lower level subfield of F, 

so x – y and xy
-1

 in A1. Now, A(x –y)  1 = 1 2 = A(x) A(y), which  

implies that A(x–y)  A(x)  A(y), for all x and y in F. Now, A(xy
-1

)  1= 

1 2 = A(x)  A(y), which implies that A(xy
-1

)  A(x)  A(y), for all x and 

y  0 in F. Case (ii): If 1< 2, then x and y in A2. As A2 is a lower level 

subfield of F, so x–y and xy
-1

 in A2. Now, A(x–y)2 = 12 = A(x) A(y),  

which implies that A(x–y)  A(x) A(y), for all x and y in F. Now, A(xy
-1

) 

2 = 12 = A(x) A(y), which implies that A(xy
-1

)  A(x) A(y), for all x 

and y  0 in F. In all the cases, A is an anti L-fuzzy subfield of a field F. 

2.9 Theorem: Let A be an anti L-fuzzy subfield of a field (F, +, . ). If any two 

lower level subfields of A belongs to F, then their intersection is also lower 

level subfield of A in F. 
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Proof: For 1, 2 in L, 1≥ A(0) and 2 ≥ A(0), 1≥ A(1) and 2 ≥ A(1), where 

0 and 1 are identity elements of F. Case (i): If 1> A(x) > 2, then A 2   A 1. 

Therefore, A1  A2 = A2 but A2 is a lower level subfield of A. Case (ii): If 

1< A(x) < 2, then A 1  A2. Therefore, A1  A2 = A1, but A1 is a lower 

level subfield of A. Case (iii): If 1 = 2, then A1 = A2. In all cases, 

intersection of any two lower level subfields is a lower level subfield of A. 

2.10 Theorem: Let A be an anti L-fuzzy subfield of a field (F, +, . ). If i in L, 

i ≥ A(0), i ≥ A(1) and Ai, i in I,  is a collection of lower  level subfields of 

A, then their intersection is also a lower level subfield of A. 

Proof: It is trivial. 

2.11 Theorem: Let A be an anti L-fuzzy subfield of a field (F, +, . ). If any 

two lower level subfields of A belongs to F, then their union is also lower 

level subfield of A in F. 

Proof: For 1, 2 in L, 1≥ A(0) and 2 ≥ A(0), 1≥ A(1) and 2 ≥ A(1), where 

0 and 1 are identity elements of F. Case (i): If 1> A(x) > 2, then A2  A1. 

Therefore, A1A2 = A1, but A1 is a lower level subfield of A. Case (ii): If 

1< A(x) < 2, then A 1  A2. Therefore, A1  A2 = A2, but A2 is a lower 

level subfield of A. Case (iii): If 1 = 2, then A1 = A2. In all cases, union of 

any two lower level subfields is a lower level subfield of A. 

2.12 Theorem: Let A be an anti L-fuzzy subfield of a field ( F, +, . ). If i in 

L, i ≥ A(0), i ≥ A(1) and Ai, i in I, is a collection of lower  level subfields 

of A, then their union is also a lower level subfield of A. 

Proof: It is trivial. 

2.13 Theorem: Any two different anti L-fuzzy subfields of a field may have 

identical family of lower level subfields.  

Proof: We consider the following example: Consider the field F = Z5 = { 0, 1, 

2, 3, 4 } with addition modulo 5 and multiplication modulo 5 operations. 

Define fuzzy subsets A and B of F by A = { 0, 0.1, 1, 0.4, 2, 0.4, 3, 0.4, 

4, 0.4 } and B = {0, 0.2, 1, 0.3, 2, 0.3, 3, 0.3, 4, 0.3 }. Clearly A and 

B are two different anti L-fuzzy subfields of F. And, Im A = {0.1, 0.4}, then 

the lower level subfields of A are A0.1 = {0}, A0.4 = { 0, 1, 2, 3, 4 }= F. And,  
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Im B = {0.2, 0.3}, then the lower level subfields of B are B0.2= {0}, B0.3 =                  

{ 0, 1, 2, 3, 4 } = F. Thus the two anti L-fuzzy subfields A and B have the 

same family of lower level subfields. 

2.14 Theorem: Let (F, +, . ) be a finite field and A be an anti L-fuzzy subfield 

of F. If ,  are elements of the image set of A such that A = A , then  = .  

Proof: It is trivial. 

2.15 Theorem: Let (F, +, •) and (F
׀
, +, •) be any two fields. If f : F→ F

׀
 is a 

homomorphism, then the  homomorphic image of a lower level subfield of an 

anti L-fuzzy subfield of F is a lower level subfield of an  anti L-fuzzy subfield 

of F
׀
. 

Proof: Let (F, +, •) and (F
׀
, +, •)  be any two fields and f : F→ F

׀
 be a 

homomorphism. That is, f(x+y) = f(x)+f(y), for all x and y in F and f(xy) = 

f(x)f(y), for all x and y in F. Let V = f(A), where A is an anti L-fuzzy subfield 

of F. Clearly V is an anti L-fuzzy subfield of F
׀
. If x and y in F, then f(x) and 

f(y) in F
׀
. Let A be a lower level subfield of A. Suppose x, y and xy, xy

-1 
in 

A. That is, A(x) ≤  and A(y) ≤ , A(xy) ≤ , A(xy
-1

) ≤ . We have to 

prove that f(A) is a lower level subfield of V. Now, V(f(x)) ≤ A(x) ≤ , 

implies that V(f(x)) ≤ ; V(f(y)) ≤ A(y) ≤ , implies that V(f(y)) ≤ ,                     

V(f(x)f(y)) = V(f(x)+f(y) ) = V(f(xy) ) ≤ A(xy
 
) ≤ , which implies that   

V( f(x)f(y))≤ , for all f(x) and f(y) in F
׀
. And V(f(x)(f(y) )

-1
) = V(f(x)f(y

-1
) )                         

= V( f(xy
-1

) ) ≤ A(xy
-1

) ≤ , which implies that V(f(x)(f(y))
-1

) ≤ , for f(x)
 
and 

f(y)  0
 ׀
in F

׀
. Therefore, V(f(x)f(y)) ≤ , V( f(x)( f(y))

-1
) ≤ . Hence f (A) 

is a lower level subfield of an anti L-fuzzy subfield V of a field F
׀
. 

2.16 Theorem: Let (F, +, •) and (F
׀
, +, •) be any two fields. If f : F→ F

׀
 is a 

homomorphism, then the homomorphic pre-image of a lower level subfield of 

an anti L-fuzzy subfield of F
׀
 is a lower level subfield of an anti L-fuzzy 

subfield of F. 

Proof: Let (F, +, •) and (F
׀
, +, •) be any two fields and f : F→F

׀
 be a 

homomorphism. That is, f(x+y) = f(x)+f(y), for all x and y in F and f(xy) = 

f(x)f(y), for all x and y in F. Let V = f(A), where V is an anti L-fuzzy subfield 

of F
׀
. Clearly A is an anti L-fuzzy subfield of F. Let x and y in F. Let f(A) be 

a lower level subfield of V. Suppose f(x), f(y) and f(x)f(y), f(x)(f(y))
-1

 in 

f(A). That is, V(f(x)) ≤  and V(f(y)) ≤ ; V(f(x)f(y))≤ ,                                   
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V( f(x)(f(y))
-1 

) ≤ . We have to prove that A is a lower level subfield of A. 

Now, A(x) = V(f(x)) ≤ , implies that A(x) ≤ ; A(y) = V(f(y)) ≤ , implies 

that A(y)≤ , we have A(xy) = V(f(xy)) = V(f(x)+f(y)) = V(f(x)f(y)) ≤ , 

which implies that A(xy) ≤ , for all x and y in F. And A(xy
-1

) = V(f(xy
-1

)) = 

V( f(x)f(y
-1

) ) = V( f(x)(f(y))
-1 

) ≤ , which implies that A(xy
-1

) ≤ , for all x 

and y  0 in F. Therefore, A(xy) ≤ , A(xy
-1

) ≤ . Hence A is a lower level 

subfield of an anti L-fuzzy subfield A of F. 
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