Lower Level Subsets of Anti L-Fuzzy Subfield of a Field

M. Vasu & D. Sivakumar

ABSTRACT: In this paper, we made an attempt to study the algebraic nature of lower level subsets of anti L-fuzzy subfield of a field under homomorphism.

2000 AMS Subject classification: 03F55, 06D72, 08A72.

KEY WORDS: L-fuzzy set, anti L-fuzzy subfield, anti L-fuzzy (a,b)-coset, lower level subset pseudo anti L-fuzzy coset.

INTRODUCTION: After the introduction of fuzzy sets by L.A.Zadeh[16], several researchers explored on the generalization of the concept of fuzzy sets. The notion of fuzzy subgroups, anti-fuzzy subgroups, fuzzy fields and fuzzy linear spaces was introduced by Biswas.R[4, 5]. In this paper, we introduce the some theorems in lower level subsets of anti L-fuzzy subfield of a field under homomorphism.

1. PRELIMINARIES:

1.1 Definition: Let X be a non-empty set and L be a complete lattice. A L-fuzzy subset A of X is a function $A : X \rightarrow L$.

1.2 Definition: Let $(F, +, \cdot)$ be a field. A L-fuzzy subset A of F is said to be an **anti L-fuzzy subfield**(**ALFSF**) of F if the following conditions are satisfied:

- (i) $A(x+y) \le A(x) \lor A(y)$, for all x and y in F,
- (ii) $A(-x) \le A(x)$, for all x in F,
- (iii) $A(xy) \le A(x) \lor A(y)$, for all x and y in F,
- (iv) $A(x^{-1}) \le A(x)$, for all x in F-{0}, where 0 is the additive

identity element of F.

1.3 Definition: Let $(F, +, \cdot)$ and $(F^{l}, +, \cdot)$ be any two fields. Let $f: F \to F^{l}$ be any function and A be an anti-fuzzy subfield in F, V be an anti L-fuzzy subfield in $f(F) = F^{l}$, defined by $V(y) = \inf_{x \in f^{-l}(y)} A(x)$, for all x in F and y in F^{l} .

Then A is called a preimage of V under f and is denoted by $f^{-1}(V)$.

1.4 Definition: Let A be an anti L-fuzzy subfield of a field (F, +, \cdot). For any a and $b\neq 0$ in F, $_aA_b$ is defined by (a+A)(x) = A(-a+x), for all x in F and $(bA)(x) = A(b^{-1}x)$, for all x in F, is called an anti L-fuzzy (a,b)-coset of F.

1.5 Definition: Let A be an anti L-fuzzy subfield of a field $(F, +, \cdot)$ and a in F. Then the pseudo anti L-fuzzy coset $(aA)^p$ is defined by $((aA)^p)(x) = p(a)A(x)$, for every x in F and for some p in P.

1.6 Definition: Let A be a fuzzy subset of X. For α in L, the lower level subset of A is the set $A_{\alpha} = \{ x \in X : A(x) \le \alpha \}.$

<u>2 – PROPERTIES OF ANTI L-FUZZY SUBFIELDS:</u>

2.1 Theorem: Let $(F, +, \cdot)$ and $(F^{I}, +, \cdot)$ be any two fields. The homomorphic image of an anti L-fuzzy subfield of F is an anti L-fuzzy subfield of F^I.

Proof: Let $(F, +, \cdot)$ and $(F', +, \cdot)$ be any two fields and $f : F \rightarrow F'$ be a homomorphism. That is f(x+y) = f(x)+f(y), for all x and y in F and f(xy) = f(x)f(y), for all x and y in F. Let V= f(A), where A is an anti L-fuzzy subfield of F. We have to prove that V is an anti L-fuzzy subfield of F¹. Now, for f(x) and f(y) in F¹, we have V($f(x)-f(y) = V(f(x-y)) \le A(x-y) \le A(x)\lor A(y)$, which implies that V($f(x)-f(y) \ge V(f(x))\lor V(f(y))$, for all f(x) and f(y) in F¹. And V($f(x)(f(y))^{-1} = V(f(xy^{-1})) \le A(xy^{-1}) \le A(x)\lor A(y)$, which implies that V($f(x)(f(y))\lor V(f(y))$, for all f(x) and $f(y) = 0^{1}$ in F¹. Hence V is an anti L-fuzzy subfield of a field F¹.

2.2 Theorem: Let $(F, +, \cdot)$ and $(F', +, \cdot)$ be any two fields. The homomorphic pre-image of an anti L-fuzzy subfield of F' is an anti L-fuzzy subfield of F.

Proof: Let $(F, +, \cdot)$ and $(F', +, \cdot)$ be any two fields and $f : F \rightarrow F'$ be a homomorphism. That is f(x+y) = f(x)+f(y), for all x and y in F and f(xy) = f(x)f(y), for all x and y in F. Let V = f(A), where V is an anti L-fuzzy subfield of F'. We have to prove that A is an anti L-fuzzy subfield of F. Let x and y in F. Then, $A(x-y)=V(f(x-y)) = V(f(x)-f(y)) \le V(f(x)) \lor V(f(y)) = A(x) \lor A(y)$, which implies that $A(x-y) \le A(x) \lor A(y)$, for all x and y in F. And, $A(xy^{-1}) = V(f(xy^{-1})) = V(f(x)f(y^{-1})) = V(f(x)(f(y))^{-1}) \le V(f(x))) \lor V(f(y)) = A(x) \lor A(y)$, which implies that $A(xy^{-1}) \le A(x) \lor A(y)$, for all x and y in F. Hence A is an anti L-fuzzy subfield of a field F.

In the following Theorem • is the composition operation of functions :

2.3 Theorem: Let A be an anti L-fuzzy subfield of a field H and f is an isomorphism from a field F onto H. Then A°f is an anti L-fuzzy subfield of F. **Proof:** Let x and y in F and A be an anti L-fuzzy subfield of a field H. Then we have $(A \circ f)(x-y) = A(f(x-y)) = A(f(x)+f(-y)) = A(f(x)-f(y)) \le A(f(x))$ $\lor A(f(y)) \le (A \circ f)(x) \lor (A \circ f)(y)$, which implies that $(A \circ f)(x-y) \le (A \circ f)(x) \lor$ $(A \circ f)(y)$, for all x and y in F. And, $(A \circ f)(xy^{-1}) = A(f(xy^{-1})) = A(f(x)f(y^{-1}))$ $= A(f(x)(f(y))^{-1}) \le A(f(x)) \lor A(f(y)) \le (A \circ f)(x) \lor (A \circ f)(y)$, which implies that $(A \circ f)(xy^{-1}) \le (A \circ f)(x) \lor (A \circ f)(y)$, for all x and $y \ne 0$ in F. Therefore $(A \circ f)$ is an anti L-fuzzy subfield of a field F.

2.4 Theorem: If A is an anti L-fuzzy subfield of a field (F, +, .), then the pseudo anti L-fuzzy coset $(aA)^p$ is an anti L-fuzzy subfield of a field F, for every $a \in F$ and p in P.

Proof: Let A be an anti L-fuzzy subfield of a field (F, +, .). For every x and y in F, we have($(aA)^p$)(x-y) = p(a)A(x-y) \le p(a){A(x) \lor A(y)} = p(a)A(x) \lor $p(a)A(y) = ((aA)^p)(x) \lor ((aA)^p)(y)$. Therefore, $((aA)^p)(x-y) \le ((aA)^p)(x) \lor$ $((aA)^p)(y)$, for all x and y in F. And for every x and $y \ne 0$ in F, $((aA)^p)(xy^{-1}) =$ $p(a)A(xy^{-1}) \le p(a){A(x)\lor A(y)} = p(a)A(x) \lor p(a)A(y) = ((aA)^p)(x)\lor ((aA)^p)(y)$. Therefore, $((aA)^p)(xy^{-1}) \le ((aA)^p)(x) \lor ((aA)^p)(y)$, for all x and $y \ne 0$ in F. Hence $(aA)^p$ is an anti L-fuzzy subfield of a field F.

2.5 Theorem: Let A be an anti L-fuzzy subfield of a field (F, +, .), then the anti L-fuzzy (0, 1)-coset $_0A_1$ is an anti L-fuzzy subfield of a field F, where 0 and 1 are identity elements of F.

Proof: Let A be an anti L-fuzzy subfield of a field (F, +, .). For every x and y in F, we have, $(0+A)(x-y) = A(0+x-y) = A(x-y) \le A(x) \lor A(y)$. Therefore $(0+A)(x-y) \le A(x) \lor A(y)$, for all x and y in F. And for x and $y \ne 0$ in F, we have $(1A)(xy^{-1}) = A(1.xy^{-1}) = A(xy^{-1}) \le A(x) \lor A(y)$. Therefore $(1A)(xy^{-1}) \le A(x) \lor A(y)$, for all x and $y \ne 0$ in F. Hence the anti L-fuzzy (0, 1)-coset $_0A_1$ is an anti L-fuzzy subfield of a field F.

2.6 Theorem: Let A be an anti L-fuzzy subfield of a field (F, +, .). Then for α in L such that $\alpha \ge A(0)$, $\alpha \ge A(1)$, A_{α} is a subfield of F, where 0 and 1 are identity elements of F.

Proof: For all x and y in A $_{\alpha}$, we have, A(x) $\leq \alpha$ and A(y) $\leq \alpha$. Now, A(x-y) $\leq A(x) \lor A(y) \leq \alpha \lor \alpha = \alpha$, which implies that, A(x-y) $\leq \alpha$. And also, A(xy⁻¹) $\leq A(x) \lor A(y) \leq \alpha \lor \alpha = \alpha$, which implies that, A(xy⁻¹) $\leq \alpha$. Therefore, A(x-y) $\leq \alpha$, A(xy⁻¹) $\leq \alpha$, we get x-y, xy⁻¹ in A $_{\alpha}$. Hence A $_{\alpha}$ is a subfield of F.

2.1 Definition: Let A be an anti L-fuzzy subfield of a field (F, +, .). The lower level subset A_{α} , for α in L such that $\alpha \ge A(0)$, $\alpha \ge A(1)$, is called lower level subfield of A.

2.7 Theorem: Let A be an anti L-fuzzy subfield of a field (F, +, .). Then two lower level subfields $A_{\alpha 1}$ and $A_{\alpha 2}$, α_1 and α_2 in L and $\alpha_1 \ge A(0)$, $\alpha_2 \ge A(0)$, $\alpha_1 \ge v_A(1)$, $\alpha_2 \ge v_A(1)$ with $\alpha_2 > \alpha_1$ of A are equal if and only if there is no x in F such that $\alpha_1 < A(x) < \alpha_2$, where 0 and 1 are identity elements of F.

Proof: Assume that $A_{\alpha 1} = A_{\alpha 2}$. Suppose there exists $x \in F$ such that $\alpha_1 < A(x) < \alpha_2$. Then $A_{\alpha 1} \subseteq A_{\alpha 2}$, which implies that x belongs to $A_{\alpha 2}$, but not in $A_{\alpha 1}$. This is contradiction to $A_{\alpha 1} = A_{\alpha 2}$. Therefore there is no $x \in F$ such that $\alpha_1 < A(x) < \alpha_2$. Conversely, if there is no $x \in F$ such that $\alpha_1 < A(x) < \alpha_2$. Then $A_{\alpha 1} = A_{\alpha 2}$.

2.8 Theorem: Let (F, +, ...) be a field and A be a fuzzy subset of F such that A_{α} be a lower level subfield of F. If α in L satisfying $\alpha \ge A(0)$, $\alpha \ge A(1)$, then A is an anti L-fuzzy subfield of F, where 0 and 1 are identity elements of F.

Proof: Let (F, +, .) be a field. For x and y in F. Let $A(x) = \alpha_1$ and $A(y) = \alpha_2$. **Case (i)**: If $\alpha_1 > \alpha_2$, then x and y in $A_{\alpha 1}$. As $A_{\alpha 1}$ is a lower level subfield of F, so x - y and xy^{-1} in $A_{\alpha 1}$. Now, $A(x - y) \le \alpha_1 = \alpha_1 \lor \alpha_2 = A(x) \lor A(y)$, which implies that $A(x-y) \le A(x) \lor A(y)$, for all x and y in F. Now, $A(xy^{-1}) \le \alpha_1 = \alpha_1 \lor \alpha_2 = A(x) \lor A(y)$, which implies that $A(xy^{-1}) \le A(x) \lor A(y)$, for all x and y in F. Now, $A(xy^{-1}) \le \alpha_1 = \alpha_1 \lor \alpha_2 = A(x) \lor A(y)$, which implies that $A(xy^{-1}) \le A(x) \lor A(y)$, for all x and $y \ne 0$ in F. **Case (ii)**: If $\alpha_1 < \alpha_2$, then x and y in $A_{\alpha 2}$. As $A_{\alpha 2}$ is a lower level subfield of F, so x–y and xy^{-1} in $A_{\alpha 2}$. Now, $A(x-y) \le \alpha_2 = \alpha_1 \lor \alpha_2 = A(x) \lor A(y)$, which implies that $A(x-y) \le A(x) \lor A(y)$, for all x and y in F. Now, $A(xy^{-1}) \le \alpha_2 = \alpha_1 \lor \alpha_2 = A(x) \lor A(y)$, which implies that $A(x-y) \le A(x) \lor A(y)$, for all x and y in F. Now, $A(xy^{-1}) \le \alpha_2 = \alpha_1 \lor \alpha_2 = A(x) \lor A(y)$, which implies that $A(x-y) \le A(x) \lor A(y)$, for all x and y in F. Now, $A(xy^{-1}) \le \alpha_2 = \alpha_1 \lor \alpha_2 = A(x) \lor A(y)$, which implies that $A(xy^{-1}) \le A(x) \lor A(y)$, for all x and y in F. In all the cases, A is an anti L-fuzzy subfield of a field F.

2.9 Theorem: Let A be an anti L-fuzzy subfield of a field (F, +, .). If any two lower level subfields of A belongs to F, then their intersection is also lower level subfield of A in F.

Proof: For α_1 , α_2 in L, $\alpha_1 \ge A(0)$ and $\alpha_2 \ge A(0)$, $\alpha_1 \ge A(1)$ and $\alpha_2 \ge A(1)$, where 0 and 1 are identity elements of F. **Case (i):** If $\alpha_1 > A(x) > \alpha_2$, then $A_{\alpha 2} \subseteq A_{\alpha 1}$. Therefore, $A_{\alpha 1} \cap A_{\alpha 2} = A_{\alpha 2}$ but $A_{\alpha 2}$ is a lower level subfield of A. **Case (ii):** If $\alpha_1 < A(x) < \alpha_2$, then $A_{\alpha 1} \subseteq A_{\alpha 2}$. Therefore, $A_{\alpha 1} \cap A_{\alpha 2} = A_{\alpha 1}$, but $A_{\alpha 1}$ is a lower level subfield of A. **Case (ii):** If $\alpha_1 < A(x) < \alpha_2$, then $A_{\alpha 1} \subseteq A_{\alpha 2}$. Therefore, $A_{\alpha 1} \cap A_{\alpha 2} = A_{\alpha 1}$, but $A_{\alpha 1}$ is a lower level subfield of A. **Case (iii):** If $\alpha_1 = \alpha_2$, then $A_{\alpha 1} = A_{\alpha 2}$. In all cases, intersection of any two lower level subfields is a lower level subfield of A.

2.10 Theorem: Let A be an anti L-fuzzy subfield of a field (F, +, .). If α_i in L, $\alpha_i \ge A(0)$, $\alpha_i \ge A(1)$ and $A_{\alpha i}$, i in I, is a collection of lower level subfields of A, then their intersection is also a lower level subfield of A.

Proof: It is trivial.

2.11 Theorem: Let A be an anti L-fuzzy subfield of a field (F, +, .). If any two lower level subfields of A belongs to F, then their union is also lower level subfield of A in F.

Proof: For α_1 , α_2 in L, $\alpha_1 \ge A(0)$ and $\alpha_2 \ge A(0)$, $\alpha_1 \ge A(1)$ and $\alpha_2 \ge A(1)$, where 0 and 1 are identity elements of F. **Case (i):** If $\alpha_1 > A(x) > \alpha_2$, then $A_{\alpha 2} \subseteq A_{\alpha 1}$. Therefore, $A_{\alpha 1} \cup A_{\alpha 2} = A_{\alpha 1}$, but $A_{\alpha 1}$ is a lower level subfield of A. **Case (ii):** If $\alpha_1 < A(x) < \alpha_2$, then $A_{\alpha 1} \subseteq A_{\alpha 2}$. Therefore, $A_{\alpha 1} \cup A_{\alpha 2} = A_{\alpha 2}$, but $A_{\alpha 2}$ is a lower level subfield of A. **Case (ii):** If $\alpha_1 < A(x) < \alpha_2$, then $A_{\alpha 1} \subseteq A_{\alpha 2}$. Therefore, $A_{\alpha 1} \cup A_{\alpha 2} = A_{\alpha 2}$, but $A_{\alpha 2}$ is a lower level subfield of A. **Case (iii):** If $\alpha_1 = \alpha_2$, then $A_{\alpha 1} = A_{\alpha 2}$. In all cases, union of any two lower level subfields is a lower level subfield of A.

2.12 Theorem: Let A be an anti L-fuzzy subfield of a field (F, +, .). If α_i in L, $\alpha_i \ge A(0)$, $\alpha_i \ge A(1)$ and $A_{\alpha i}$, i in I, is a collection of lower level subfields of A, then their union is also a lower level subfield of A.

Proof: It is trivial.

2.13 Theorem: Any two different anti L-fuzzy subfields of a field may have identical family of lower level subfields.

Proof: We consider the following example: Consider the field $F = Z_5 = \{0, 1, 2, 3, 4\}$ with addition modulo 5 and multiplication modulo 5 operations. Define fuzzy subsets A and B of F by $A = \{\langle 0, 0.1 \rangle, \langle 1, 0.4 \rangle, \langle 2, 0.4 \rangle, \langle 3, 0.4 \rangle, \langle 4, 0.4 \rangle\}$ and $B = \{\langle 0, 0.2 \rangle, \langle 1, 0.3 \rangle, \langle 2, 0.3 \rangle, \langle 3, 0.3 \rangle, \langle 4, 0.3 \rangle\}$. Clearly A and B are two different anti L-fuzzy subfields of F. And, Im $A = \{0.1, 0.4\}$, then the lower level subfields of A are $A_{0.1} = \{0\}, A_{0.4} = \{0, 1, 2, 3, 4\} = F$. And,

Im B = {0.2, 0.3}, then the lower level subfields of B are $B_{0.2}$ = {0}, $B_{0.3}$ = {0, 1, 2, 3, 4} = F. Thus the two anti L-fuzzy subfields A and B have the same family of lower level subfields.

2.14 Theorem: Let (F, +, .) be a finite field and A be an anti L-fuzzy subfield of F. If α , β are elements of the image set of A such that $A_{\alpha} = A_{\beta}$, then $\alpha = \beta$.

Proof: It is trivial.

2.15 Theorem: Let $(F, +, \bullet)$ and $(F^{l}, +, \bullet)$ be any two fields. If $f : F \to F^{l}$ is a homomorphism, then the homomorphic image of a lower level subfield of an anti L-fuzzy subfield of F is a lower level subfield of an anti L-fuzzy subfield of F^l.

Proof: Let $(F, +, \cdot)$ and $(F^{!}, +, \cdot)$ be any two fields and $f : F \rightarrow F^{!}$ be a homomorphism. That is, f(x+y) = f(x)+f(y), for all x and y in F and f(xy) = f(x)f(y), for all x and y in F. Let V = f(A), where A is an anti L-fuzzy subfield of F. Clearly V is an anti L-fuzzy subfield of F[!]. If x and y in F, then f(x) and f(y) in F[!]. Let A_{α} be a lower level subfield of A. Suppose x, y and x–y, xy^{-1} in A_{α} . That is, $A(x) \leq \alpha$ and $A(y) \leq \alpha$, $A(x-y) \leq \alpha$, $A(xy^{-1}) \leq \alpha$. We have to prove that $f(A_{\alpha})$ is a lower level subfield of V. Now, $V(f(x)) \leq A(x) \leq \alpha$, implies that $V(f(x)) \leq \alpha$; $V(f(y)) \leq A(y) \leq \alpha$, implies that $V(f(y)) \leq \alpha$, $V(f(x)-f(y)) = V(f(x)+f(-y)) = V(f(x-y)) \leq A(x-y) \leq \alpha$, which implies that $V(f(x)f(y)) \leq \alpha$, for all f(x) and f(y) in F[!]. And $V(f(x)(f(y))^{-1}) = V(f(x)f(y^{-1})) = V(f(xy^{-1}) \leq \alpha$, which implies that $V(f(x)-f(y)) \leq \alpha$, for f(x) and $f(y) = 0^{1}$ in F[!]. Therefore, $V(f(x)-f(y)) \leq \alpha$, $V(f(x)(f(y))^{-1} \leq \alpha$. Hence f (A_{α}) is a lower level subfield of an anti L-fuzzy subfield V of a field F[!].

2.16 Theorem: Let $(F, +, \bullet)$ and $(F', +, \bullet)$ be any two fields. If $f: F \to F'$ is a homomorphism, then the homomorphic pre-image of a lower level subfield of an anti L-fuzzy subfield of F' is a lower level subfield of an anti L-fuzzy subfield of F.

Proof: Let $(F, +, \bullet)$ and $(F', +, \bullet)$ be any two fields and $f : F \rightarrow F'$ be a homomorphism. That is, f(x+y) = f(x)+f(y), for all x and y in F and f(xy) = f(x)f(y), for all x and y in F. Let V = f(A), where V is an anti L-fuzzy subfield of F'. Clearly A is an anti L-fuzzy subfield of F. Let x and y in F. Let $f(A_{\alpha})$ be a lower level subfield of V. Suppose f(x), f(y) and f(x)-f(y), $f(x)(f(y))^{-1}$ in $f(A_{\alpha})$. That is, $V(f(x)) \leq \alpha$ and $V(f(y)) \leq \alpha$; $V(f(x)-f(y)) \leq \alpha$,

V($f(x)(f(y))^{-1}$) $\leq \alpha$. We have to prove that A_{α} is a lower level subfield of A. Now, $A(x) = V(f(x)) \leq \alpha$, implies that $A(x) \leq \alpha$; $A(y) = V(f(y)) \leq \alpha$, implies that $A(y)\leq \alpha$, we have $A(x-y) = V(f(x-y)) = V(f(x)+f(-y)) = V(f(x)-f(y)) \leq \alpha$, which implies that $A(x-y) \leq \alpha$, for all x and y in F. And $A(xy^{-1}) = V(f(xy^{-1})) = V(f(x)f(y^{-1})) = V(f(x)(f(y))^{-1}) \leq \alpha$, which implies that $A(xy^{-1}) \leq \alpha$, for all x and y in F. And $A(xy^{-1}) \leq \alpha$, for all x and $y \neq 0$ in F. Therefore, $A(x-y) \leq \alpha$, $A(xy^{-1}) \leq \alpha$. Hence A_{α} is a lower level subfield of an anti L-fuzzy subfield A of F.

REFERENCE

- 1. Akram. M and Dar.K.H, On fuzzy d-algebras, Punjab University Journal of Mathematics, 37, 61-76, (2005).
- 2. Anthony.J.M. and Sherwood.H, Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69,124 -130 (1979).
- 3. Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517 (1971).
- 4. Biswas.R, Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35,121-124 (1990).
- 5. Biswas.R, Fuzzy fields and fuzzy linear spaces redefined, Fuzzy sets and systems, (1989) North Holland.
- 6. Choudhury.F.P. and Chakraborty.A.B. and Khare.S.S., A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications ,131 ,537 -553 (1988).
- 7. Kumbhojkar.H.V., and Bapat.M.S., Correspondence theorem for fuzzy ideals, Fuzzy sets and systems, (1991)
- 8. Mustafa Akgul, Some properties of fuzzy groups, Journal of mathematical analysis and applications, 133, 93-100 (1988).
- 9. Mohamed Asaad, Groups and fuzzy subgroups, fuzzy sets and systems (1991), North-Holland.
- 10. Nanda. S, Fuzzy fields and fuzzy linear spaces, Fuzzy sets and systems, 19 (1986), 89-94.
- 11. Palaniappan.N and Arjunan.K, The homomorphism, anti-homomorphism of a fuzzy and anti fuzzy ideals, Varahmihir journal of mathematical sciences, Vol.6 No.1 (2006), 181-188.
- 12. Palaniappan. N & K.Arjunan. 2007. Some properties of intuitionistic fuzzy subgroups, Acta Ciencia Indica, Vol.XXXIII (2): 321-328.
- 13. Prabir Bhattacharya, Fuzzy Subgroups: Some Characterizations, Journal of Mathematical Analysis and Applications, 128, 241-252 (1987).
- 14. Rosenfeld. A, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
- 15. Vasantha kandasamy.W.B, Smarandache fuzzy algebra, American research press, Rehoboth -2003.

16. ZADEH.L.A, Fuzzy sets, Information and control, Vol.8, 338-353 (1965).

¹Mathematics Wing,

Annamalai University,

Annamalainagar- 608002, Chidambaram, India.

²Mathematics Wing, Annamalai University, Annamalainagar- 608002, Chidambaram, India.

