

Localization of Indoor Mobile Networking

Priya Darshini

MTech Student

Department of Electronics and Telecommunication

Siddaganga Institute of Technology

Tumkur, India.

Mrs. Suchitra V

Assistant professor

Department of Electronics and Telecommunication

Siddaganga Institute of Technology

Tumkur, India.

Abstract - Reliable indoor location techniques are essential for the development of advanced location-conscious applications. Most of the previously proposed solutions to this problem assume that the nodes can use some ranging technology to obtain pair distances to other nearby nodes. These techniques for indoor localization fix the inadequacy of the global positioning system within a closed setting, such as houses. This research describes and evaluates a method for locating devices that use a wireless network to communicate. The distances between a blind node, unable to decide its position, and a group of anchor nodes, recognizing its localization, are calculated using the signal attenuation (Relative Received Signal Strength Indicator) obtained while capturing International Mobile Subscriber Identity numbers. The position is calculated using the triangulation method.

Keywords - IMSI (International Mobile Subscriber Identity Number), RSSI (Relative Received Signal Strength Indicator), GPS, IPS (Indoor Positioning System), GSM, indoor mapping.

I. INTRODUCTION

With the exponential development of mobile connectivity and the pervasive computing technologies, the need to provide location-aware service is growing. While the Global Positioning System (GPS) may provide location services with accurate and reliable position information, indoor environments cannot be used effectively [5], [6]. Researchers have introduced various innovative technologies for localization, such as sensor network [3], RFID, and Wi-Fi [2] to solve this constraint. Wi-Fi positioning systems appealed considerable interest among them because it is focused on cell phones which are widely used around the world [2]. The crowded areas, such as highways, office buildings, shopping centres, hotels, and airports, typically have a lot of access-point (AP) hot-spots, providing a large coverage of Wi-Fi network. Thus, it is practical and feasible to follow the Wi-Fi network and cell phone [3] to incorporate indoor staff positioning. An important and novel emerging technology is precise indoor localization [4], [6], [7].

The former utilizes the signal propagation model to translate measured signal intensity to distance data. We will then calculate the target location using a known location, based on the distance between target in motion and the various access points. The actual installation of Wi-Fi access points is unusual for an ordinary multilevel house, as it is seriously affected by certain variables such as the building layout. Therefore, fulfillment is very complicated for defining and

calculating the AP coordinates. Hence the signal propagation model cannot accurately describe the relationship between real distance and signal strength with complex structures in the indoor environment [6]. The ability to access the exact location contributes to substantial context-conscious computing and a wide range of useful Location Based Services (LBS). Examples of such applications include asset tracking, context-conscious computing, omnipresent computing, security for wireless access, mobile advertising and various personal robotics applications. This project uses Universal Software Radio Peripheral (USRP) to collect IMSI numbers for users nearby. With the support of GNU's Not Unix (GNU) radio software and python programming, USRP is used to obtain an IMSI number of different users.

A. IMSI (International Mobile Subscriber Identity):

The international mobile subscriber identity or IMSI is used to identify subscribers of the cellular network and is a specific identifier used with all cellular networks. It is located as a bit field and is sent over the mobile device to the network. An IMSI would usually appear as a number of 15 digits but may be shorter. The first three digits indicates Mobile Country Code (MCC), preceded by Mobile Network Code (MNC) in 2- or 3-digit formats. The length of the MNC depends upon the importance of the MCC. The remaining numbers are the Mobile Subscriber Identification Number (MSIN) within the client base of the network, typically 9 to 10 digits long depending on the MNC's length.

Fig 1: IMSI number description.

IMSI catcher is an eavesdropping tool that is used to capture cell phone traffic and monitor mobile phone users' location data. A fake cell tower that operates between a target mobile phone and the real tower of the service provider, which is called a "man-in-the-middle" attack, IMSI catchers can distinguish cell phone IMSI numbers in its vicinity. When the licensed network operator has more than one base station available, they should always pick the one with the strongest signal. As a base station, an IMSI-

catcher masks and causes all cell phones of the simulated network operator to log in within a given radius.

B. IPS (Indoor Positioning System):

Indoor Positioning Systems (IPS) allow the location of objects or individuals within buildings. Due to the absence of visual contact within the GPS satellites [5], [7], GPS is inadequate in enclosed environments, an IPS (Indoor Positioning System) may use other forms of positioning. These include common consumer technologies such as Wi-Fi or Bluetooth Low Energy (BEL), but also ultra-wideband (UWB), or wireless solutions based on RFIDs. Infsoft's devices are ideal for indoor and outdoor applications. The first and most critical step in applying localization programs is to select the method [4] and positioning technologies [1]. IPS technologies allow for a variety of location-based solutions, which include real-time location systems (RTLS), navigation, inventory management, as well as first responder location systems. There is a wide variety of different technology which can be used for indoor positioning [6], some of which may be proximity-based systems [4], Wi-Fi systems [2], ultra-wideband systems, acoustic systems and infrared systems.

II. METHODOLOGY

Indoor positioning systems (IPS) allow to locate objects or people within buildings. Provided that GPS is ineffective in enclosed spaces due to lack of visual communication with GPS satellites and lack of accuracy, an IPS wants to use other positioning methods. These include common consumer standards such as WiFi or Bluetooth Low Energy (BEL), but also Ultra-Wideband (UWB) or passive RFID based solutions. The selection of the positioning approach and technologies is the first and most important step in the implementation of locating systems. Base-station is places in the defined area in a certain position for precise localization. Base-stations are linked and the information is shared. Base-station is used by users in the specified area to collect basic information parameters (IMSI number, MCC, MNC, RSSI). Therefore, using triangulation procedure, these parameters can help to determine the distance and position of particular users. Coordinates for specific locations can be identified using 2D mapping process.

Fig 2: 2D mapping of the interior indoor area.

Trilateration positioning uses measured distances to measure the latter's location between multiple emitters and receivers. Distances are determined either by algorithms RSSI or ToF. RSSI stands for Relative received Signal Strength Indicator. RSSI refers for measure of signal intensity obtained by relative. It makes distance measuring based on radio wave attenuation that fulfills the inverse-square physical theorem.

Fig.3, where the base stations are connected to a master processing unit, indicates a model of a traditional indoor positioning system, and a reference tag is necessary to put the cell node into the regional 3-D coordinate network. Using the arrival time difference (TDOA) for 3-D triangulation in tandem with the leading-edge detection at the UWB receiver allows reduce the strict synchronization criteria of the base station and the susceptibility to thick multipath indoor interruption. Although the network architecture shown in Fig.3 is well known and has been integrated into wireless positioning systems like Global Positioning Systems (GPS), this concept for high precision indoor 3-D positioning has proven to be deceptively difficult to achieve.

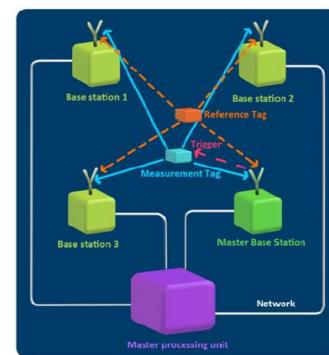


Fig 3: A standard indoor positioning system, with four or more base stations triangulating a mobile's 3-D location.

In this project, USRP is acting as a base station in the mobile network to collect the user data. USRP will gather the user's basic information parameters such as IMSI number, MCC, MNC, RSSI in a given region. Using triangulation method certain parameters can be used to measure a given consumer's distance and location. Method direction for the determined position can be identified by using 2D mapping method.

III. RESULTS AND DISCUSSION

This chapter discusses how the radio parameters are collected, users' distance and the 2-D mapping detected. This will explain the process for obtaining certain criteria and measures to be taken. As well as the results obtained after the above measure.

A. Radio parameters collected using USRP:

USRP acts as a base station, and attempts to connect to the users in the specified area. This sends powerful signals to communicate with users than the other base station. User network can scan for the strongest base station transmitting

signal and request the temporary USRP-user link. The mobile device sends its protection capabilities, but this can be overlooked by the USRP as of experimental purpose. It responds to the phone with a request for an ID (sent identifier). The user mobile phone will send IMSI/TMSI back in plain text, finally. The law enforcement will use this IMSI number to establish the IMSI's phone number and user.

GSM traffic captured must be decoded before it is fed to Wireshark. Decoding here means converting radio signals into data, and this can be done using the grgsm method. Grgsm application scanning GSM bands and printing information of base transceiver stations transmitted in the area and interactive single channel monitor. Grgsm uses GNU Radio Companion method for processing GSM signal. A Grgsm scanner is the application which scans GSM bands and prints information on transmitting base transceiver stations in that area. A Gr-gsm folder contains programs for scanning and monitoring. Export uhd image files and debug scanner software. The output of the scanner is shown in figure 4 below.

```
swara@swara-OptiPlex-5090:~/Desktop/IMSI-catcher-master$ grgsm_scanner
linux; GNU C++ version 5.4.0 20160609; Boost_105800; UHD_003.010.003.000-0-unkno
wn
ARFCN: 51, Freq: 945.2M, CID: 2312, LAC: 25012, MCC: 404, MNC: 45, Pwr: -76
ARFCN: 53, Freq: 945.6M, CID: 2311, LAC: 25012, MCC: 404, MNC: 45, Pwr: -54
ARFCN: 56, Freq: 946.2M, CID: 2313, LAC: 25012, MCC: 404, MNC: 45, Pwr: -83
```

Fig 4: The output of scanning GSM band.

From the GSM frequencies scanning above, one of the frequencies with the highest receiving power. The highest receiving power means the user is closest to the fake base station and is simple to connect. From the above, we chose the frequency 945.6MHz with a maximum receiving power of -54 Watts. Grgsm offers a series of GRC blocks and scripts to interpret GSM signals. Live monitoring of the GSM signal opens an interface where one can set their GSM frequency. Through another terminal window, when a decoder detects a simple GSM signal, one can see the received I/Q values. The completely decoded network traffic of the GSM is sent over the interface of the localhost where the data can be analyzed. Figure 5 shows they process of decoding.

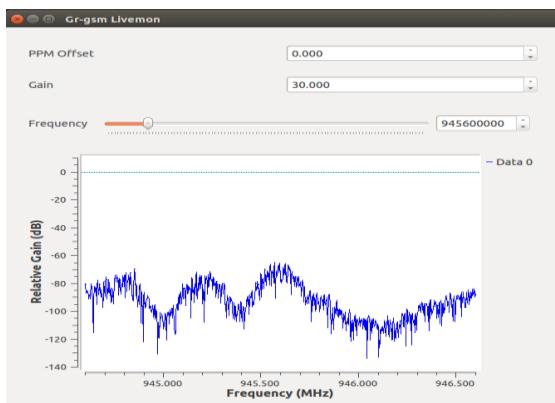


Fig 5: Relative gain obtained while live monitoring

Start the script which is a simple IMSI catching program that can collect the IMSI numbers which are in that particular band. It resolves all the various types of packets that live monitoring passes to it. From there it attempts to overcome any values of TMSI or IMSI. Starting there it can save data for further processing of the data in sqlite database. Figure 6 describes the results obtained after live monitoring, the GSM band which contains IMSI, TMSI, the country, brand, operator, MCC, MNC, LAC and Cellid.

No	IMSI	TMSI	IMSI	country	brand	operator	MCC	MNC	LAC	Cellid	Timestamp
1	91057213	01e0c5654	404 45 0955934558	India	Airtel	Karnataka					2020-01-23T16:21:45.793152
2	010558021	01c03956a8	404 45 0745493223	India	Airtel	Andhra Pradesh and Telangana	404	45	25012	2311	2020-01-23T16:22:45.666055
3	01121a702b	01a0434954	404 45 0554951083	India	Airtel	Karnataka	404	45	25012	2311	2020-01-23T16:22:46.403026
4	01022a7c9	01a05397c3	404 45 0915374264	India	Airtel	Karnataka	404	45	25012	2311	2020-01-23T16:21:48.234561
5	010556374	01d0757ce8	404 45 0935934948	India	Airtel	Karnataka	404	45	25012	2311	2020-01-23T16:21:48.385511

Fig 6: Results after live monitoring.

B. DISTANCE AND LOCATION CALCULATION:

Taking 3 reference points is determined using the triangulation method, position and distance of the unknown. Three points are divided as 2 base-station reference and the other is a current location. It calculates the distance between each point. The distance calculation formula is given below which took earth radius as the reference.

$$Dist = \cos^{-1}((\sin(lat0) \sin(lat1)) + (\cos(lat0) \cos(lat1) \cos(lon1 - lon0))) \times earthR$$

They are translated into cartesian (x, y, z) co-ordinates of 3 points, P0, P1 and P2 using the latitude and longitude of the reference points taken. An array of triangulation point ECEF (acronym for earth-centered, earth-fixed) x, y, z is measured using cartesian-shaped reference points. Convert cartesian back from ECEF to latitude/longitude and convert to degrees. And we measure the distance. The figure 7 shows the calculation results that got after running the program which is for calculating location and distance of an unknown point.

```
pynkitha@pynkitha:~/location finding$ python 3d3.py
0.000631645967898 0.00163479244288 0.00100882659808 ↙ DistA, DistB, DistC
[ 1343.57652932 6061.23682758 1430.33255919] [ 1339.94801697 6061.90224591 1
430.34482088] [ 1339.73027444 6062.30869763 1429.35175337] ↙ Cartesian points
1.8697411441 0.854986464362 2.0559516117 ↙ P0, P1, P2
[ 1341.22744564 6059.81634199 1429.37448767] ↙ Target Point (x, y, z)
12.9650338029 77.5198416151 ↙ ECEF array point
12.9650338029 77.5198416151 ↙ Target latitude and longitude
12.9650338029 77.5198416151 ↙ Distance calculated
1.09725404126 ↙ Distance calculated
```

Fig 7: Location and distance of an unknown point.

C. GENERATION OF A 2-D MAP:

The blue points in the graph are all static, and the target point is red. Because it depends on multiple nodes from USRP, two static points are assumed, and their RSSI values are constant. Having one varied RSSI to the target node, using the triangulation method, achieves the cartesian view as below. Any changes to the target point, changes to its RSSI depend on RSSI of the static points and consideration of the static point node, the variation on the graph will be seen. The output of the results obtained is plotted on graph, figure 8, and the position is determined using the method of trilateration.

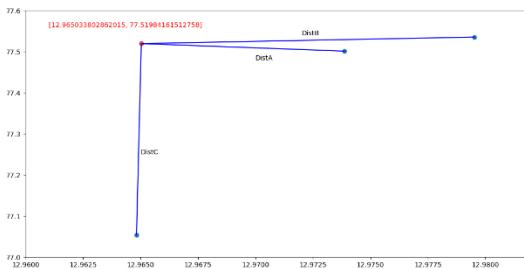


Fig 8: Location and distance of an unknown single point graphically.

The below figure 9 explains the location and distance of two target points. In the below graph, points A and B are used as static points and the other two points are variable points. While evaluating points A, B and C the target point is found between them, where C is a reference point that can be varies as the consumer wishes. When we consider A, B and D points, another target point is detected, where a D point is also a variable point. Usage of the two-reference points C and D to identify the two target points. Many points that require more valuable points can also be found by taking two static points.

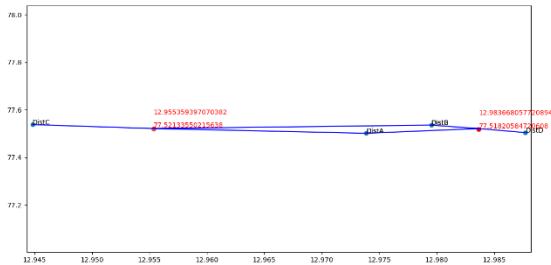


Fig 9: Location and distance of a undefined 2 point graphically.

If 5 nodes which are A, B, C, D and E are considered, the target nodes obtained will be extracted if we take A as reference node. The combinations of the target nodes are ABC, ABD and ABE respectively. The below figure 10 describes the output of the first three combinations by taking node A as reference node. The graph shows the target points in the form of red dots with the location values that is latitude and longitude. The output values of the target points calculated using node A as a reference are shown in figure 11. The values calculated using the basic triangulation method are shown below. The location is firstly calculated in cartesian form is then to the latitude and longitude form. The latitude and longitude information is supplied to the position of the target points, and the distance is also determined by taking node A as reference.

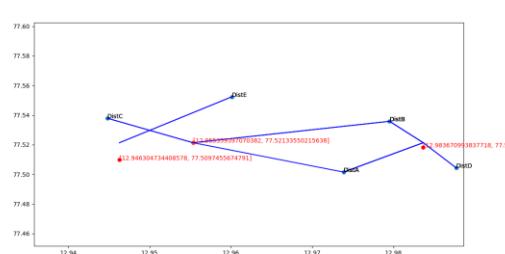


Fig 10: The location of three target points using node A as reference.

```
python3.6:/desktop/localization/Hospital2.py
0.0000311108880197563 D1010= 0.0032111108880197563 D1011= 0.0015410040748467543 D1012= 0.001532276980134
D1013= 0.001532276980134 D1014= 0.001532276980134 D1015= 0.001532276980134 D1016= 0.001532276980134
D1017= 0.001532276980134 D1018= 0.001532276980134 D1019= 0.001532276980134 D1020= 0.001532276980134
D1021= 0.001532276980134 D1022= 0.001532276980134 D1023= 0.001532276980134 D1024= 0.001532276980134
D1025= 0.001532276980134 D1026= 0.001532276980134 D1027= 0.001532276980134 D1028= 0.001532276980134
D1029= 0.001532276980134 D1030= 0.001532276980134 D1031= 0.001532276980134 D1032= 0.001532276980134
D1033= 0.001532276980134 D1034= 0.001532276980134 D1035= 0.001532276980134 D1036= 0.001532276980134
D1037= 0.001532276980134 D1038= 0.001532276980134 D1039= 0.001532276980134 D1040= 0.001532276980134
D1041= 0.001532276980134 D1042= 0.001532276980134 D1043= 0.001532276980134 D1044= 0.001532276980134
D1045= 0.001532276980134 D1046= 0.001532276980134 D1047= 0.001532276980134 D1048= 0.001532276980134
D1049= 0.001532276980134 D1050= 0.001532276980134 D1051= 0.001532276980134 D1052= 0.001532276980134
D1053= 0.001532276980134 D1054= 0.001532276980134 D1055= 0.001532276980134 D1056= 0.001532276980134
D1057= 0.001532276980134 D1058= 0.001532276980134 D1059= 0.001532276980134 D1060= 0.001532276980134
D1061= 0.001532276980134 D1062= 0.001532276980134 D1063= 0.001532276980134 D1064= 0.001532276980134
D1065= 0.001532276980134 D1066= 0.001532276980134 D1067= 0.001532276980134 D1068= 0.001532276980134
D1069= 0.001532276980134 D1070= 0.001532276980134 D1071= 0.001532276980134 D1072= 0.001532276980134
D1073= 0.001532276980134 D1074= 0.001532276980134 D1075= 0.001532276980134 D1076= 0.001532276980134
D1077= 0.001532276980134 D1078= 0.001532276980134 D1079= 0.001532276980134 D1080= 0.001532276980134
D1081= 0.001532276980134 D1082= 0.001532276980134 D1083= 0.001532276980134 D1084= 0.001532276980134
D1085= 0.001532276980134 D1086= 0.001532276980134 D1087= 0.001532276980134 D1088= 0.001532276980134
D1089= 0.001532276980134 D1090= 0.001532276980134 D1091= 0.001532276980134 D1092= 0.001532276980134
D1093= 0.001532276980134 D1094= 0.001532276980134 D1095= 0.001532276980134 D1096= 0.001532276980134
D1097= 0.001532276980134 D1098= 0.001532276980134 D1099= 0.001532276980134 D1100= 0.001532276980134
D1101= 0.001532276980134 D1102= 0.001532276980134 D1103= 0.001532276980134 D1104= 0.001532276980134
D1105= 0.001532276980134 D1106= 0.001532276980134 D1107= 0.001532276980134 D1108= 0.001532276980134
D1109= 0.001532276980134 D1110= 0.001532276980134 D1111= 0.001532276980134 D1112= 0.001532276980134
D1113= 0.001532276980134 D1114= 0.001532276980134 D1115= 0.001532276980134 D1116= 0.001532276980134
D1117= 0.001532276980134 D1118= 0.001532276980134 D1119= 0.001532276980134 D1120= 0.001532276980134
D1121= 0.001532276980134 D1122= 0.001532276980134 D1123= 0.001532276980134 D1124= 0.001532276980134
D1125= 0.001532276980134 D1126= 0.001532276980134 D1127= 0.001532276980134 D1128= 0.001532276980134
D1129= 0.001532276980134 D1130= 0.001532276980134 D1131= 0.001532276980134 D1132= 0.001532276980134
D1133= 0.001532276980134 D1134= 0.001532276980134 D1135= 0.001532276980134 D1136= 0.001532276980134
D1137= 0.001532276980134 D1138= 0.001532276980134 D1139= 0.001532276980134 D1140= 0.001532276980134
D1141= 0.001532276980134 D1142= 0.001532276980134 D1143= 0.001532276980134 D1144= 0.001532276980134
D1145= 0.001532276980134 D1146= 0.001532276980134 D1147= 0.001532276980134 D1148= 0.001532276980134
D1149= 0.001532276980134 D1150= 0.001532276980134 D1151= 0.001532276980134 D1152= 0.001532276980134
D1153= 0.001532276980134 D1154= 0.001532276980134 D1155= 0.001532276980134 D1156= 0.001532276980134
D1157= 0.001532276980134 D1158= 0.001532276980134 D1159= 0.001532276980134 D1160= 0.001532276980134
D1161= 0.001532276980134 D1162= 0.001532276980134 D1163= 0.001532276980134 D1164= 0.001532276980134
D1165= 0.001532276980134 D1166= 0.001532276980134 D1167= 0.001532276980134 D1168= 0.001532276980134
D1169= 0.001532276980134 D1170= 0.001532276980134 D1171= 0.001532276980134 D1172= 0.001532276980134
D1173= 0.001532276980134 D1174= 0.001532276980134 D1175= 0.001532276980134 D1176= 0.001532276980134
D1177= 0.001532276980134 D1178= 0.001532276980134 D1179= 0.001532276980134 D1180= 0.001532276980134
D1181= 0.001532276980134 D1182= 0.001532276980134 D1183= 0.001532276980134 D1184= 0.001532276980134
D1185= 0.001532276980134 D1186= 0.001532276980134 D1187= 0.001532276980134 D1188= 0.001532276980134
D1189= 0.001532276980134 D1190= 0.001532276980134 D1191= 0.001532276980134 D1192= 0.001532276980134
D1193= 0.001532276980134 D1194= 0.001532276980134 D1195= 0.001532276980134 D1196= 0.001532276980134
D1197= 0.001532276980134 D1198= 0.001532276980134 D1199= 0.001532276980134 D1200= 0.001532276980134
D1201= 0.001532276980134 D1202= 0.001532276980134 D1203= 0.001532276980134 D1204= 0.001532276980134
D1205= 0.001532276980134 D1206= 0.001532276980134 D1207= 0.001532276980134 D1208= 0.001532276980134
D1209= 0.001532276980134 D1210= 0.001532276980134 D1211= 0.001532276980134 D1212= 0.001532276980134
D1213= 0.001532276980134 D1214= 0.001532276980134 D1215= 0.001532276980134 D1216= 0.001532276980134
D1217= 0.001532276980134 D1218= 0.001532276980134 D1219= 0.001532276980134 D1220= 0.001532276980134
D1221= 0.001532276980134 D1222= 0.001532276980134 D1223= 0.001532276980134 D1224= 0.001532276980134
D1225= 0.001532276980134 D1226= 0.001532276980134 D1227= 0.001532276980134 D1228= 0.001532276980134
D1229= 0.001532276980134 D1230= 0.001532276980134 D1231= 0.001532276980134 D1232= 0.001532276980134
D1233= 0.001532276980134 D1234= 0.001532276980134 D1235= 0.001532276980134 D1236= 0.001532276980134
D1237= 0.001532276980134 D1238= 0.001532276980134 D1239= 0.001532276980134 D1240= 0.001532276980134
D1241= 0.001532276980134 D1242= 0.001532276980134 D1243= 0.001532276980134 D1244= 0.001532276980134
D1245= 0.001532276980134 D1246= 0.001532276980134 D1247= 0.001532276980134 D1248= 0.001532276980134
D1249= 0.001532276980134 D1250= 0.001532276980134 D1251= 0.001532276980134 D1252= 0.001532276980134
D1253= 0.001532276980134 D1254= 0.001532276980134 D1255= 0.001532276980134 D1256= 0.001532276980134
D1257= 0.001532276980134 D1258= 0.001532276980134 D1259= 0.001532276980134 D1260= 0.001532276980134
D1261= 0.001532276980134 D1262= 0.001532276980134 D1263= 0.001532276980134 D1264= 0.001532276980134
D1265= 0.001532276980134 D1266= 0.001532276980134 D1267= 0.001532276980134 D1268= 0.001532276980134
D1269= 0.001532276980134 D1270= 0.001532276980134 D1271= 0.001532276980134 D1272= 0.001532276980134
D1273= 0.001532276980134 D1274= 0.001532276980134 D1275= 0.001532276980134 D1276= 0.001532276980134
D1277= 0.001532276980134 D1278= 0.001532276980134 D1279= 0.001532276980134 D1280= 0.001532276980134
D1281= 0.001532276980134 D1282= 0.001532276980134 D1283= 0.001532276980134 D1284= 0.001532276980134
D1285= 0.001532276980134 D1286= 0.001532276980134 D1287= 0.001532276980134 D1288= 0.001532276980134
D1289= 0.001532276980134 D1290= 0.001532276980134 D1291= 0.001532276980134 D1292= 0.001532276980134
D1293= 0.001532276980134 D1294= 0.001532276980134 D1295= 0.001532276980134 D1296= 0.001532276980134
D1297= 0.001532276980134 D1298= 0.001532276980134 D1299= 0.001532276980134 D1300= 0.001532276980134
D1301= 0.001532276980134 D1302= 0.001532276980134 D1303= 0.001532276980134 D1304= 0.001532276980134
D1305= 0.001532276980134 D1306= 0.001532276980134 D1307= 0.001532276980134 D1308= 0.001532276980134
D1309= 0.001532276980134 D1310= 0.001532276980134 D1311= 0.001532276980134 D1312= 0.001532276980134
D1313= 0.001532276980134 D1314= 0.001532276980134 D1315= 0.001532276980134 D1316= 0.001532276980134
D1317= 0.001532276980134 D1318= 0.001532276980134 D1319= 0.001532276980134 D1320= 0.001532276980134
D1321= 0.001532276980134 D1322= 0.001532276980134 D1323= 0.001532276980134 D1324= 0.001532276980134
D1325= 0.001532276980134 D1326= 0.001532276980134 D1327= 0.001532276980134 D1328= 0.001532276980134
D1329= 0.001532276980134 D1330= 0.001532276980134 D1331= 0.001532276980134 D1332= 0.001532276980134
D1333= 0.001532276980134 D1334= 0.001532276980134 D1335= 0.001532276980134 D1336= 0.001532276980134
D1337= 0.001532276980134 D1338= 0.001532276980134 D1339= 0.001532276980134 D1340= 0.001532276980134
D1341= 0.001532276980134 D1342= 0.001532276980134 D1343= 0.001532276980134 D1344= 0.001532276980134
D1345= 0.001532276980134 D1346= 0.001532276980134 D1347= 0.001532276980134 D1348= 0.001532276980134
D1349= 0.001532276980134 D1350= 0.001532276980134 D1351= 0.001532276980134 D1352= 0.001532276980134
D1353= 0.001532276980134 D1354= 0.001532276980134 D1355= 0.001532276980134 D1356= 0.001532276980134
D1357= 0.001532276980134 D1358= 0.001532276980134 D1359= 0.001532276980134 D1360= 0.001532276980134
D1361= 0.001532276980134 D1362= 0.001532276980134 D1363= 0.001532276980134 D1364= 0.001532276980134
D1365= 0.001532276980134 D1366= 0.001532276980134 D1367= 0.001532276980134 D1368= 0.001532276980134
D1369= 0.001532276980134 D1370= 0.001532276980134 D1371= 0.001532276980134 D1372= 0.001532276980134
D1373= 0.001532276980134 D1374= 0.001532276980134 D1375= 0.001532276980134 D1376= 0.001532276980134
D1377= 0.001532276980134 D1378= 0.001532276980134 D1379= 0.001532276980134 D1380= 0.001532276980134
D1381= 0.001532276980134 D1382= 0.001532276980134 D1383= 0.001532276980134 D1384= 0.001532276980134
D1385= 0.001532276980134 D1386= 0.001532276980134 D1387= 0.001532276980134 D1388= 0.001532276980134
D1389= 0.001532276980134 D1390= 0.001532276980134 D1391= 0.001532276980134 D1392= 0.001532276980134
D1393= 0.001532276980134 D1394= 0.001532276980134 D1395= 0.001532276980134 D1396= 0.001532276980134
D1397= 0.001532276980134 D1398= 0.001532276980134 D1399= 0.001532276980134 D1400= 0.001532276980134
D1401= 0.001532276980134 D1402= 0.001532276980134 D1403= 0.001532276980134 D1404= 0.001532276980134
D1405= 0.001532276980134 D1406= 0.001532276980134 D1407= 0.001532276980134 D1408= 0.001532276980134
D1409= 0.001532276980134 D1410= 0.001532276980134 D1411= 0.001532276980134 D1412= 0.001532276980134
D1413= 0.001532276980134 D1414= 0.001532276980134 D1415= 0.0015
```

IV. CONCLUSION

Indoor positioning is a very complex matter and cannot be addressed with different technology like the way GPS does outdoors. The successful providers rely on a method called sensor fusion, based on using a mix of sensors to provide the highest possible precision. Much of the time, they use trilateration to get an absolute location, often to improve accuracy in combination with fingerprinting. We then use motion control to shift the blue points until sufficient variance of the radio signal occurs to determine another absolute location. That way they will spare mobile batteries, because operation monitoring radio signals comes along with high energy costs. The proximity positioning is a low-cost and low-tech way of getting a position. Also, if it is really simple, it could be appropriate depending on the situation, since not every project necessarily requires high precision; without specifying the budget you need to do it. This project relates to indoor mapping using the parameters of the mobile network. The target point is determined using the RSSI values of the static and moving system and is pointed precisely at the spot. Calculated using a triangulation method, the distance between static and target is then.

REFERENCES

- [1] S.Alraih; A.Alhammadi ; I.Shayea ; Ahmed M. Al-Samman, "Improving accuracy in indoor localization system using fingerprinting technique", 2017 IEEE International Conference on Information and Communication Technology Convergence (ICTC).
- [2] Xiang He, Shirin Badie, Daniel Aloi, Jia Li, "WiFi iLocate: WiFi based indoor localization for smartphone, Conference Paper, 2014.
- [3] Han Zou, Zhenghua Chen, Hao Jiang, Lihua Xie and Costas Spanos, "Accurate Indoor Localization and Tracking Using Mobile Phone Inertial Sensors, WiFi and iBeacon", March 2017.
- [4] M.Usman, M.Rizwan ,Imran Shafique Ansari, Fabrizio, Khalid A. Qaraqe, "Technologies and Solutions for Location-Based Services in Smart Cities: Past, Present, and Future", volume 6, 2018.
- [5] Xinrong Li, Kaveh Pahlavan, Mika Yliantila, Ranvir Chana, and Matti Latvaaho," An Overview of Wireless Indoor Geolocation Techniques and Systems", Conference Paper, January 2000.
- [6] Eladio Martin, Oriol Vinyals, Gerald Friedland, Ruzena Bajcsy, "Precise indoor localization using smart phones", conference paper, October, 2010.
- [7] Katsuyuki Haneda, Lei Tian, Henrik Asplund, Jian Li, Yi Wang, "Indoor 5G 3GPP-like Channel Models for Office and Shopping Mall Environments" IEEE International Conference on Communications, May, 2016.