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Abstract— The cloud computing environment enables cloud 

users to execute their applications in remote data centers. Many 

of these applications are considered to be highly complex in 

nature, requiring parallel processing capabilities. Parallel job 

scheduling techniques, mainly focus on improving throughput 

or the information processed by the cloud center in a given 

interval of time and reducing average task waiting time. For a 

data center that deals with parallel jobs, it is required to design 

an optimal scheduler resulting in minimal utilization of memory 

rate for scheduling each job. In this paper, we present M/M/M 

Queuing System and Load Optimized (QS-LO) model for 

parallel job scheduling in multiple cloud centers. The QS-LO 

model is designed as two algorithms, namely parallel job 

scheduling and load balancing with aiming at improving the 

throughput rate and reducing the average task waiting time in 

multiple cloud centers. We perform experimental analysis using 

benchmarks and synthetic datasets to measure the performance 

of the proposed algorithm. The experimental results are 

compared with the existing parallel job schedulers in terms of 

the job assigned, throughput memory utilization rate and 

scheduler time interval. The experimental results show that the 

QS-LO model is able to improve the throughput rate and also 

reduce the average task waiting time when compared to the 

state-of-the-art works. 

Keywords—Cloud Computing; Parallel Job Scheduling; 

M/M/M Queuing System; Virtual Machine; Load balancing; 

I.  INTRODUCTION  

With the advancement of computer and internet 

technologies, cloud computing environment has been 

successfully used in several information systems. Though, 

cloud computing environment provides a better way to 

accomplish the submitted jobs in terms of responsiveness and 

scalability, but most of the job scheduling problems in 

parallel cloud computing environments are still hard to 

design. 

 

Hyper Heuristic Scheduling Algorithms (HHSA) [1] find 

scheduling solutions for cloud computing systems. The 

HHSA algorithm used two detection operators to determine 

when to change the low-level heuristic algorithm and a 

perturbation operator to fine-tune solutions with the objective 

of improving the scheduling results in terms of job request 

made. However, the computation cost and deadline 

constraints were not taken into consideration. To address 

these two issues, Global Greedy Budget and Gradual 

Refinement [2] were designed so that the solutions were 

gradually refined by combining dynamic programming 

techniques with a local greedy algorithm. Next, two 

algorithms GGB and GR were designed on the basis of 

greedy strategy by aiming at minimizing the time complexity 

in reducing the scheduling lengths of the workflows without 

breaking the budget. Though, scheduling, length and 

scheduling time was reduced, but the information processed 

by cloud center remains unaddressed.  

 

In this paper, we investigate the problem of parallel job 

scheduling as a workflow within memory and throughput 

parameters. This workflow with the M/M/M queuing system 

handles multiple user requests in multiple cloud centers. 

Besides, we address load-optimized function, which is finely 

grained compared to the existing state-of-the-art methods.  

 

The remainder of the paper is organized as follows. 

Section 2 begins with a brief introduction to the traditional 

job scheduling models to be designed in cloud computing 

environments and scheduling problem and its relevant 

technologies, Section 3 provides a brief discussion on 

M/M/M Queuing System and Load Optimized model. The 

simulation results on CloudSim are discussed in Section 4. 

Conclusions are drawn in Section 5. 

II. RELATED WORKS 

With the recent advancements in hardware for handheld 

mobile devices, resource-intensive applications still requires 

large computation and storage capabilities. Recent research 

works have addressed these issues by employing remote 

servers, such as clouds. An approach called k-out-of-n-

computing [3] was employed to demonstrate the fault 

tolerance and energy efficiency in large scale networks. 

However, heterogeneous resource allocation remained 

unaddressed. In [4], a polynomial time to achieve the optimal 

throughput under resource constraints were addressed.  

 

Cloud computing environment has received considerable 

attention due to its promising future and delivering various 

computing and IT services. Optimal power allocation and 

load distribution for multiple servers across cloud and data 

centers was designed in [5]. In [6], a pricing model called 

M/M/m queue model was designed with the objective of 

improving profit maximization in cloud computing. To 

perform efficient thermal aware scheduling in geographically 

distributed centers, online scheduling and optimal offline 

algorithm was designed in [7].  
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In Cloud computing, a ubiquitous model offers distributed 

and elastic resources in the form of Virtual Machines (VMs). 

Uncertainty Based Task Scheduling (UBTS) was designed in 

[8] with the objective of reducing uncertainty and improving 

average cloud utilization. The load balancing algorithm based 

on ant colony [9] was designed to improve the workflow 

scheduling and to improve load balancing ability. However, 

optimization remains unaddressed. In [10], the dynamic 

resource allocation algorithm was designed to improve the 

performance in the situation where resource contention was 

observed to be fierce.  

 

One of the business model for cloud computing is the 

distributed computing environment. An adaptive heuristic 

scheduling process was designed in [11] to avoid frequent 

allocation of specific server and to minimize the total 

execution time. The fair scheduling model was designed in 

[12] with an objective of minimizing the switching time. To 

achieve fair throughput, an analysis was made in [13] with 

the objective of providing high throughput processing. 

Another method based on map reduce was investigated in 

[14] by using multi algorithm execution to reduce the I/O cost 

and complexity. Nash equilibrium resource allocation based 

on game theory was designed in [15] to decrease the response 

time and complexity involved in it. 

 

Efficient resource management is one of the key and 

remains the main operational goal in large-scale computer 

systems that includes cloud computing environment. In [16], 

Maximum Effective Reduction (MER) algorithm was 

designed to improve the resource efficiency while schedules 

in a cloud environment. Another method called bi-objective 

workflow scheduling was designed in [17] to improve the 

resource allocation on requests. A heuristic task scheduling 

algorithm [18] was designed using randomly generated 

graphs and set of task graphs to achieve best scheduling 

performance. Task scheduling optimization [19] was 

investigated to achieve better performance in terms of 

processing time while considering network contention and 

could cost. Another method to schedule parallel jobs using 

migration and consolidation was designed in [20] to reduce 

the average response time.  

 

 Adaptive-Scheduling-with-QoS-Satisfaction algorithm 

called as AsQ was presented in [22] for the hybrid cloud 

environment to improve the resource utilization rate of the 

private cloud and to reduce the task response time.  The Ant 

Colony Optimization algorithm was designed in [23] to 

improve the task scheduling process by means of dynamically 

scheduling the tasks and to improve the throughput and 

quality of service (QoS) of Mobile Cloud Computing. A 

hybrid job scheduling approach was developed in [24] using 

genetic algorithm and fuzzy theory for considering the load 

balancing of the system and to diminish the total execution 

time and the execution cost. 

 

 

 

 

 

III. PARALLEL JOB SCHEDULING 
A queuing system using the M/M/M load optimized 

function for parallel job scheduling and efficient load 
balancing is introduced by evaluating servers, Poisson input, 
exponential service and load balancer to the cloud 
infrastructure. We begin by describing the problem 
specification for parallel job scheduling and then present the 
QS-LO model. 

A. Problem Specification 

In a cloud computing environment, parallel job 

scheduling is dependent on the effectiveness of the methods 

used to execute the job. In our work, the cloud computing 

environment is said to be assumed, to be hosted in a data 

center consisting of many cloud servers that provide a 

resource by virtual machines. The cloud servers and virtual 

machines may possess different memory sizes, processing 

capacities and response time.  

 

Let us consider the data center 

‘ ’ of cloud servers 

‘ ’. And the assume cloud servers 

consist of many virtual machines in a cloud environment like 

‘ ’. The goal of QS-LO model 

is to schedule parallel jobs in the multi cloud center and to 

improve the information processed by cloud data by means of 

reducing the average task waiting time. In the next section we 

start with extending these results to the M/M/M Queuing 

System and Load Optimized function for parallel job 

scheduling. 

 

B. M/M/M Queuing System and Load Optimized 

Function 

To formulate and study the problem of parallel job 

scheduling and load balancing in multi cloud centers, we 

need a model for a queuing system and a design of virtual 

machines. Let us consider a parallel job scheduling that 

comprises of jobs represented by a Directed Acyclic Graph 

(DAG). The vertices of DAG denote the partitioned jobs of 

the corresponding application, whereas the edges of DAG 

denote preference between the jobs. Hence, the graph is 

represented as ‘ ’ that comprises of set ‘ ’ of ‘ ’ 

users and a set ‘ ’ of ‘ ’ edges respectively. 

 

Let ‘ ’ represents the number of jobs to be 

executed in the datacenter ‘ ’. On the other hand, 

‘ ’ represent the size of the job to be 

executed. The parallel job scheduling and load balancing 

model for ‘ ’ virtual machines across multiple clouds and 

data centers is shown in Fig 1. 
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Fig. 1. Structure of Queuing System and Load Optimized parallel job 

scheduling 
 

Fig. 1 shows the structure of the M/M/M Queuing System 

and Load Optimized parallel job scheduling in multiple cloud 

centers. As shown in the figure, Landsat dataset on AWS is 

given as input to the QS-LO model. To start with, cloud users 

in cloud environment place their requests to be processed. 

These jobs are placed in a queue. The jobs arrived comprises 

of either independent or dependent jobs. In case of 

independent jobs, arrived job is given as input to the 

scheduler. On the other hand, if the job is said to be 

dependent, dependent jobs are notified to the scheduler so 

that the parent jobs are scheduled after child jobs are 

executed.  

 

The dependent jobs contain the jobs that depend on the 

other jobs present in the virtual machines. Finally, jobs are 

assigned as the input to the scheduler. In certain cases, the 

jobs may take the execution time more than the allotted, 

resulting in overload. In such situation, resource manager 

identifies the unused virtual machines. If there appears to be 

no unused virtual machine, then no job migration takes 

places. On the contrary, job migration takes place when the 

resource manager finds any unused virtual machine.  In this 

way, an efficient scheduler and load balancer is designed. 

C. Construction of M/M/M Queuing System 

In this section, an M/M/M queuing system with multiple 

job arrivals to optimize the performance in a cloud computing 

environment is investigated. In a cloud computing 

environment, multiple requests are placed by cloud users and 

the cloud server acts as a single point of access for all types 

of cloud users. The cloud server is a collection of cloud 

server resources that is provided by the cloud provider to host 

all the applications for the cloud users.  

 

 In order to construct M/M/M queuing system, let us 

assume that there are ‘ ’ job requests and ‘ ’ cloud servers 

in a cloud computing environment. As the job arriving 

requests may be sent from different cloud users, the inter-

arrival time is a Poisson process with job arrival rate ‘ ’. 

Job requests from different cloud users in the scheduler’s 

queue are distributed to different cloud servers with the rate 

of scheduling depending on the scheduler. Let us consider 

that there are ‘ ’ cloud servers ‘ ’ in 

datacenter, then the total job arrival rate is as given below. 

                 (1) 

 

 On the other hand, the total cloud server’s service rate is 

as given below. 

 

                (2) 

As the cloud users' requests come from all over the world, 

the cloud computing environment provides infinite services, 

without limiting the source of cloud users and the number of 

the queuing model. If If ‘ ’, then the steady state 

equations for the M/M/M Queuing System are given as 

below. 

 

     

  

                   (3) 

  

 

 

Where 

 

Hence,                 (4) 

Once, the total job arrival rate ‘ ’ and total cloud server’s 

service rate ‘ ’ are obtained, independent job and dependent 

job forms as input to the scheduler. The job scheduler selects 

the suitable virtual machine based on QLS algorithm. The job 

scheduler gathers the resource information from the resource 

manager. It applies the proposed algorithm to find the 

suitable virtual machine for the given job. The load for single 

machine ‘ ’ is as given below. 

 

                 (5) 

From (5), ‘ ’ represents the load of the overall node (i.e. 

virtual machine) in cloud computing environment, on the 

other hand, ‘ ’ represents the capacity of a single node. Fig. 

2 shows the Queue-based Load Scheduling algorithm. 

 

Input: Data Center ‘ ’, Cloud Server 

‘ ’, Virtual Machine 

‘ ’, Jobs ‘ ’, 

Job size ‘ ’, Threshold ‘ ’ 

Output: Improved throughput rate  

1: Begin 

2:        For each job request ‘ ’ 
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3:                  Measure the job arrival rate using (1) 

4:                  Measure the cloud server’s service rate             
                     using (2) 

5:                  Obtain steady state using (3) 

6:                  Measure load for single machine using (5) 

7:                  If ‘ ’, then  

8:                               Virtual machine is under-loaded 

9:                               Assign job to the VM 

10:                End if 

11:                If ‘ ’, then  

12:                            Virtual machine is over-loaded 

13:                             Assign job to other VM 

14:                 End if 

15:                 If ‘ ’, then  

16:                            Virtual machine is balanced  

17:                            Assign job to the VM 

18:                  End if 

19:          End for 

20: End  

Fig. 2. Queue-based Load Scheduling algorithm 

 

As shown in the Fig. 2, for each job request from cloud 

user, the job arrival rate and cloud server’s service rate are 

measured. Followed by this, steady state equation is obtained 

based on the total job arrival rate ‘ ’ and total cloud server’s 

service rate. Finally, load is measured by assigning a threshold 

factor ‘ ’ to allocate the job to the appropriate virtual machine 

‘ ’ which in turn improves the throughput rate of QS-LO 

model in an effective manner. 

D. Load-Based Optimization Function 

Once the queue-based load scheduling is performed in a 

parallel manner in a cloud environment, the next step is to 

optimize the performance of multiple job requests in a cloud 

computing environment. The proposed work uses job 

utilization rate, average time and the number of cloud users 

waiting for servicing at each cloud server as the optimization 

metrics.  

 The Load-based Optimization Function is given as below. 

All the cloud users’ job request arrives at the scheduler, 

which selects the job request to the cloud server according to 

the result of the load-based optimization function. The input 

matrix of the load-based optimization function is the average 

time, job utilization rate, and the total number of cloud users 

(i.e. Job) waiting for each cloud server in the cloud 

computing environment. 

 

 Let us assume that ‘ ’ denotes the probability of ‘ ’ 

cloud user to be selected and ‘ ’ represents the cloud 

users servicing time. Then, the average time ‘ ’ is 

as given below. 

 

               (6) 
 

 The job utilization rate ‘ ’ is measured as given below. 

                  (7) 

 Where ‘ ’ represents the total job arrival rate and ‘ ’ 

represents the total cloud server’s service rate. Finally, the 

optimization function ‘ ’ is measured as given below.  

 

                (8) 

 

 With the resultant average time (6) and job utilization rate 

(7), optimization function (8) is evolved. Fig. 3 shows the 

load-based optimization algorithm. 
 

Input: Data Center ‘ ’, Cloud Server 

‘ ’, Virtual Machine 

‘ ’,  Jobs ‘ ’ 

probability of ‘ ’ cloud user to be selected ‘ ’, cloud users 

servicing time ‘ ’ total job arrival rate ‘ ’, total cloud server’s 

service rate ‘ ’ 

Output: Minimized average job waiting time  

1: Begin 

2: For each Jobs ‘ ’ and Cloud Server ‘ ’ 

3: Measure average time using (6) 

4: Measure job utilization rate using (7) 

5: Measure optimization function using (8) 

6:End for 

7: End  

Fig. 3. Load-based optimization algorithm 
 

The optimization function as given above, measures the 

value of the function, based on the input parameters, the 

cloud user to be selected, cloud users servicing time, total job 

arrival rate, total cloud servers service rate and so on. The 

scheduler then selects the cloud server to execute the service 

based on the results of the optimization function which in 

turn reduces the average task waiting time of each cloud users 

in an efficient manner.  As a result of queue and load-based 

optimization algorithm, the rate of throughput is improved. 

 

IV. EXPERIMENTS AND EVALUATIONS 
In this section, we present an evaluation for our queue-

based load optimization algorithm in terms of performance 
with respect to certain performance metrics, throughput, 
average task waiting time, memory utilization with respect to 
the job assigned, and number of cloud centers respectively. 
The proposed QS-LO model is used in Amazon Access 
Samples dataset and Landsat 8 data on AWS to check the 
performance of the proposed algorithm in a larger 
environment 

A. Datasets and Parameter Settings 
CloudSim [21], a tool for emulating a cloud computing 

environment is used in this study to solve the parallel job 
scheduling problem. Performance analysis was conducted on a 
PC with 2.67 GHz Intel i7-920 CPU and 4 GB of memory 
running with Linux 2.6.31 and using CloudSim to construct 
four virtual machines in a data center. The data sets, Amazon 
Access Sample dataset and Landsat 8 data on AWS are 
employed to compare the performance of the proposed 
algorithm and compared with other parallel job scheduling 
algorithms. More precisely, Amazon Access Sample dataset 
includes four categories of attributes including 
Person_Attribute, Resource_ID, Group_ID and 
System_Support_ID whereas Landsat 8 data on AWS that 
anyone can use the on-demand computing resources to 
perform analysis and create new products without needing to 
worry about the cost of storing Landsat data. Each simulation 
carried 30 runs.. 
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B. Simulation Results of Throughput 

To evaluate the performance of QS-LO model for parallel 

job scheduling in multiple cloud centers, we compare it with 

two traditional scheduling algorithms, namely, Hyper 

Heuristic Scheduling Algorithm (HHSA) [1] and Global 

Greedy Budget and Gradual Refinement (GGB-GR) [2]. For 

the two datasets, access samples and lands at 8, the results in 

table 1 shows that the M/M/M Queuing System and Load 

Optimized model find better results than traditional 

scheduling algorithms in terms of total number of jobs 

assigned.  

 

In addition, the results using Landsat 8 dataset are higher 

than using Access Sample dataset. Moreover, with minimum 

job assigned, the rate of throughput is increased, whereas 

with the increase in the number of jobs assigned to the cloud 

server, the cloud server has to process a higher number of job 

requests and therefore the throughput rate gets reduced with 

the increase in the job assigned. Moreover, the results also 

show that QS-LO model outperforms the other two job 

scheduling algorithms in cloud, namely, HHSA [1] and GGB-

GR [2].  

Table 1 Tabulation for throughput using access samples and 

landsat 8 dataset 
Job 

assigned 

Throughput (%) – using 

Access Samples dataset 

Throughput (%) – using 

Landsat 8 dataset  

QS-

LO 

HHSA GGB-

GR 

QS-

LO 

HHSA GGB-

GR 

5 96.50 89.19 78.37 96.14 91.06 88.32 

10 93.45 86.14 75.32 95.8 90.74 87.14 

15 92.89 85.86 73.83 95.14 86.21 83.83 

20 89.15 84.12 71.09 93.21 84.14 81.32 

25 88.45 83.42 70.39 90.25 88.19 79.13 

30 84.37 81.34 69.31 86.14 83.14 75.28 
 

The results of the throughput rate given in Fig. 4 show 

that the HHSA and GGB-GR get almost exactly the same 

throughput rate in all iterations using Landsat 8 dataset. For a 

lower number of jobs assigned, the higher the rate of 

throughput because lower the job requests for the cloud user 

side, the response to be provided by the cloud server is also 

less. Higher the job request, the rate of throughput gets 

reduced in all the methods. On the other hand, with a lower 

job assigned, rate of throughput will converge quickly.  
 

 

Fig. 4.a. Access samples dataset 

Fig. 4 also shows that QS-LO model converges faster than 

the other scheduling algorithms. This is because QS-LO 

model is able to automatically choose the cloud server based 

on the job arriving requests and cloud servers service rate, 

and use the Poisson process to improve the results. Therefore 

the end results of the QS - LO model are better than the other 

scheduling algorithms. For example, using access sample 

dataset, the results depicted in Fig. 4 (a) shows that QS-LO 

provides a result that is close to the HHSA in terms of 

throughput rate. However, by applying Landsat 8 dataset, the 

results described in Fig. 4 (b) show that the rate of throughput 

is more or less similar using HHSA and GGB-GR. 

 
Fig. 4.b Landsat 8 dataset 

 
Fig. 4. Convergence analysis for throughput 

 

Fig. 4 also provides the convergence information on the 
scheduling algorithms compared in this study. The results 
given in Fig. 4 (a) show that the job request handling of these 
parallel job scheduling algorithms converge to a stable state 
very quickly when the access samples data set is applied. A 
good example is the results of QS-LO and HHSA, which 
show that the result with 5 jobs assigned is very close to the 
results when 20 jobs were assigned. For example, using 
Landsat 8 dataset, the convergence speeds of QS-LO and 
HHSA are quite close to each other. However, by applying 
access sample dataset, the convergence speeds of QS-LO and 
HHSA are as shown in Fig. 4 (a) and (b). They show that QS-
LO has a higher chance to find a better result than HHSA [1] 
and GGB-GR [2] because it keeps finding a better result by 
applying the M/M/M Queuing System. 

C. Simulation Results of Average Task Waiting Time 

The average task waiting time measures the job requests 

made by the cloud user and the time taken by the cloud server 

to respond to it. Therefore the average task waiting time is 

mathematically evaluated as given below. 

               (9) 

 

Where ‘ ’ symbolizes the average task waiting 

time. The average task waiting time is measured in terms of 

milliseconds (ms). The average task waiting time by applying 

access samples and the Landsat 8 dataset for parallel job 

scheduling is shown in Fig. 5.  
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Fig. 5. Average task waiting time using Access samples and Landsat 8 

dataset 

 

The small waiting time using access sample data given in 

Fig. 5 implies that the load optimization function is under-

loaded with jobs and thus most jobs are scheduled 

immediately, resulting in reducing the average task waiting 

time. These results also explain that for small data sets like 

access samples dataset that is under-loaded with job requests, 

the performance of the parallel job scheduling algorithms is 

good when compared to using large access sample dataset. 

On the other hand, the results of the Access sample dataset in 

Fig. 5 indicate that for large data sets in a queue that is fully 

loaded, compared to Landsat 8 dataset.  

 

This in turn reduces the average task waiting time using 

QS-LO model. Moreover, the results of Fig. 5 indicate that 

for large datasets like access sample dataset that is fully 

loaded, compared to HHSA [1] and GGB-GR [2] reduces the 

average task waiting time of QS-LO model by 13.86% and 

12.12% respectively, using Landsat 8 and Access Sample 

dataset. This means that by optimizing the job requests by the 

cloud server using optimization function, making use of the 

average time, utilization rate incoming jobs are scheduled 

sooner and therefore the average task waiting time is said to 

be reduced using QS-LO model when compared to the 

state-of-the-art methods. 

D. Simulation Results of Memory Rate 

Here we analyze the memory requirements and 

performance with respect to the job assigned to the cloud 

server in a parallel fashion. The memory rate is the memory 

required for scheduling each job and the total number of jobs 

assigned in the multi cloud center. The memory rate is 

measured in terms of kilobytes (KB) and is formulated as 

given below.   

 

              (10) 

 

Where ‘ ’ refers to the memory rate measured using the 

‘ ’ job assigned, with respect to memory consumption 

‘ ’ for scheduling each job in multi cloud center. 

Lower memory rate proves the efficiency of the method.  

 
Fig. 6 Simulation results of memory rate 

 

Fig. 6 shows the results of simulation analysis made for 
memory rate with respect to the incoming requests from 
different cloud users using Landsat 8 dataset. Executing 
multiple jobs using load optimized function provides 
significant performance gain in average time and job 
utilization rate using the load-based optimization algorithm. 
The load-based optimization algorithm is a method of 
scheduling, in which the user request jobs are assigned to the 
cloud servers according to independent and dependent jobs. 
The resource manager in turns assigns the virtual machines in 
the corresponding data cent to adapt the user’s jobs. The 
algorithm is based on the first come, first serve for the cloud 
server selection process. The cloud user sends the parallel 
request to the cloud environment. Once the data center 
analyses the job and allocates the job to the first free server, 
the load is optimized which in turn reduces the memory 
required for scheduling each job. 

V CONCLUSION  
This paper presents an efficient solution for allocating 

parallel jobs in multiple cloud centers by handling M/M/M 
Queuing System and Load Optimized (QS-LO) model. With 
our proposed model, it can make the allocation of multiple 
jobs in a parallel fashion without collision. By using M/M/M 
Queuing System the cloud server have a better consolidation 
by analyzing the job arrival rate with a Poisson process and 
the job scheduler gathers the resource information from the 
resource manager and reduces the average task waiting time. 
Load-based Optimization Function optimizes the performance 
of multiple job requests in a cloud computing environment. 
The experiment result shows that the QS-LO model provides 
better performance with the improvement of throughput rate 
and reduced average task waiting time and memory rate of 
cloud users’ requests when compared to the state-of-the-art 
methods. 
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