
Load Optimized M/M/M Queueing for Parallel

Job Scheduling in Multiple Cloud Centers

C. Antony

Research and Development Centre:

Bharathiar University

Coimbatore, Tamil Nadu 641 046, India

C. Chandrasekar
Professor

Department of Computer Science

Periyar University

Salem, Tamil Nadu 636 011, India

Abstract— The cloud computing environment enables cloud

users to execute their applications in remote data centers. Many

of these applications are considered to be highly complex in

nature, requiring parallel processing capabilities. Parallel job

scheduling techniques, mainly focus on improving throughput

or the information processed by the cloud center in a given

interval of time and reducing average task waiting time. For a

data center that deals with parallel jobs, it is required to design

an optimal scheduler resulting in minimal utilization of memory

rate for scheduling each job. In this paper, we present M/M/M

Queuing System and Load Optimized (QS-LO) model for

parallel job scheduling in multiple cloud centers. The QS-LO

model is designed as two algorithms, namely parallel job

scheduling and load balancing with aiming at improving the

throughput rate and reducing the average task waiting time in

multiple cloud centers. We perform experimental analysis using

benchmarks and synthetic datasets to measure the performance

of the proposed algorithm. The experimental results are

compared with the existing parallel job schedulers in terms of

the job assigned, throughput memory utilization rate and

scheduler time interval. The experimental results show that the

QS-LO model is able to improve the throughput rate and also

reduce the average task waiting time when compared to the

state-of-the-art works.

Keywords—Cloud Computing; Parallel Job Scheduling;

M/M/M Queuing System; Virtual Machine; Load balancing;

I. INTRODUCTION

With the advancement of computer and internet

technologies, cloud computing environment has been

successfully used in several information systems. Though,

cloud computing environment provides a better way to

accomplish the submitted jobs in terms of responsiveness and

scalability, but most of the job scheduling problems in

parallel cloud computing environments are still hard to

design.

Hyper Heuristic Scheduling Algorithms (HHSA) [1] find

scheduling solutions for cloud computing systems. The

HHSA algorithm used two detection operators to determine

when to change the low-level heuristic algorithm and a

perturbation operator to fine-tune solutions with the objective

of improving the scheduling results in terms of job request

made. However, the computation cost and deadline

constraints were not taken into consideration. To address

these two issues, Global Greedy Budget and Gradual

Refinement [2] were designed so that the solutions were

gradually refined by combining dynamic programming

techniques with a local greedy algorithm. Next, two

algorithms GGB and GR were designed on the basis of

greedy strategy by aiming at minimizing the time complexity

in reducing the scheduling lengths of the workflows without

breaking the budget. Though, scheduling, length and

scheduling time was reduced, but the information processed

by cloud center remains unaddressed.

In this paper, we investigate the problem of parallel job

scheduling as a workflow within memory and throughput

parameters. This workflow with the M/M/M queuing system

handles multiple user requests in multiple cloud centers.

Besides, we address load-optimized function, which is finely

grained compared to the existing state-of-the-art methods.

The remainder of the paper is organized as follows.

Section 2 begins with a brief introduction to the traditional

job scheduling models to be designed in cloud computing

environments and scheduling problem and its relevant

technologies, Section 3 provides a brief discussion on

M/M/M Queuing System and Load Optimized model. The

simulation results on CloudSim are discussed in Section 4.

Conclusions are drawn in Section 5.

II. RELATED WORKS

With the recent advancements in hardware for handheld

mobile devices, resource-intensive applications still requires

large computation and storage capabilities. Recent research

works have addressed these issues by employing remote

servers, such as clouds. An approach called k-out-of-n-

computing [3] was employed to demonstrate the fault

tolerance and energy efficiency in large scale networks.

However, heterogeneous resource allocation remained

unaddressed. In [4], a polynomial time to achieve the optimal

throughput under resource constraints were addressed.

Cloud computing environment has received considerable

attention due to its promising future and delivering various

computing and IT services. Optimal power allocation and

load distribution for multiple servers across cloud and data

centers was designed in [5]. In [6], a pricing model called

M/M/m queue model was designed with the objective of

improving profit maximization in cloud computing. To

perform efficient thermal aware scheduling in geographically

distributed centers, online scheduling and optimal offline

algorithm was designed in [7].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS020175

Vol. 6 Issue 02, February-2017

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 302

In Cloud computing, a ubiquitous model offers distributed

and elastic resources in the form of Virtual Machines (VMs).

Uncertainty Based Task Scheduling (UBTS) was designed in

[8] with the objective of reducing uncertainty and improving

average cloud utilization. The load balancing algorithm based

on ant colony [9] was designed to improve the workflow

scheduling and to improve load balancing ability. However,

optimization remains unaddressed. In [10], the dynamic

resource allocation algorithm was designed to improve the

performance in the situation where resource contention was

observed to be fierce.

One of the business model for cloud computing is the

distributed computing environment. An adaptive heuristic

scheduling process was designed in [11] to avoid frequent

allocation of specific server and to minimize the total

execution time. The fair scheduling model was designed in

[12] with an objective of minimizing the switching time. To

achieve fair throughput, an analysis was made in [13] with

the objective of providing high throughput processing.

Another method based on map reduce was investigated in

[14] by using multi algorithm execution to reduce the I/O cost

and complexity. Nash equilibrium resource allocation based

on game theory was designed in [15] to decrease the response

time and complexity involved in it.

Efficient resource management is one of the key and

remains the main operational goal in large-scale computer

systems that includes cloud computing environment. In [16],

Maximum Effective Reduction (MER) algorithm was

designed to improve the resource efficiency while schedules

in a cloud environment. Another method called bi-objective

workflow scheduling was designed in [17] to improve the

resource allocation on requests. A heuristic task scheduling

algorithm [18] was designed using randomly generated

graphs and set of task graphs to achieve best scheduling

performance. Task scheduling optimization [19] was

investigated to achieve better performance in terms of

processing time while considering network contention and

could cost. Another method to schedule parallel jobs using

migration and consolidation was designed in [20] to reduce

the average response time.

 Adaptive-Scheduling-with-QoS-Satisfaction algorithm

called as AsQ was presented in [22] for the hybrid cloud

environment to improve the resource utilization rate of the

private cloud and to reduce the task response time. The Ant

Colony Optimization algorithm was designed in [23] to

improve the task scheduling process by means of dynamically

scheduling the tasks and to improve the throughput and

quality of service (QoS) of Mobile Cloud Computing. A

hybrid job scheduling approach was developed in [24] using

genetic algorithm and fuzzy theory for considering the load

balancing of the system and to diminish the total execution

time and the execution cost.

III. PARALLEL JOB SCHEDULING
A queuing system using the M/M/M load optimized

function for parallel job scheduling and efficient load
balancing is introduced by evaluating servers, Poisson input,
exponential service and load balancer to the cloud
infrastructure. We begin by describing the problem
specification for parallel job scheduling and then present the
QS-LO model.

A. Problem Specification

In a cloud computing environment, parallel job

scheduling is dependent on the effectiveness of the methods

used to execute the job. In our work, the cloud computing

environment is said to be assumed, to be hosted in a data

center consisting of many cloud servers that provide a

resource by virtual machines. The cloud servers and virtual

machines may possess different memory sizes, processing

capacities and response time.

Let us consider the data center

‘ ’ of cloud servers

‘ ’. And the assume cloud servers

consist of many virtual machines in a cloud environment like

‘ ’. The goal of QS-LO model

is to schedule parallel jobs in the multi cloud center and to

improve the information processed by cloud data by means of

reducing the average task waiting time. In the next section we

start with extending these results to the M/M/M Queuing

System and Load Optimized function for parallel job

scheduling.

B. M/M/M Queuing System and Load Optimized

Function

To formulate and study the problem of parallel job

scheduling and load balancing in multi cloud centers, we

need a model for a queuing system and a design of virtual

machines. Let us consider a parallel job scheduling that

comprises of jobs represented by a Directed Acyclic Graph

(DAG). The vertices of DAG denote the partitioned jobs of

the corresponding application, whereas the edges of DAG

denote preference between the jobs. Hence, the graph is

represented as ‘ ’ that comprises of set ‘ ’ of ‘ ’

users and a set ‘ ’ of ‘ ’ edges respectively.

Let ‘ ’ represents the number of jobs to be

executed in the datacenter ‘ ’. On the other hand,

‘ ’ represent the size of the job to be

executed. The parallel job scheduling and load balancing

model for ‘ ’ virtual machines across multiple clouds and

data centers is shown in Fig 1.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS020175

Vol. 6 Issue 02, February-2017

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 303

Fig. 1. Structure of Queuing System and Load Optimized parallel job

scheduling

Fig. 1 shows the structure of the M/M/M Queuing System

and Load Optimized parallel job scheduling in multiple cloud

centers. As shown in the figure, Landsat dataset on AWS is

given as input to the QS-LO model. To start with, cloud users

in cloud environment place their requests to be processed.

These jobs are placed in a queue. The jobs arrived comprises

of either independent or dependent jobs. In case of

independent jobs, arrived job is given as input to the

scheduler. On the other hand, if the job is said to be

dependent, dependent jobs are notified to the scheduler so

that the parent jobs are scheduled after child jobs are

executed.

The dependent jobs contain the jobs that depend on the

other jobs present in the virtual machines. Finally, jobs are

assigned as the input to the scheduler. In certain cases, the

jobs may take the execution time more than the allotted,

resulting in overload. In such situation, resource manager

identifies the unused virtual machines. If there appears to be

no unused virtual machine, then no job migration takes

places. On the contrary, job migration takes place when the

resource manager finds any unused virtual machine. In this

way, an efficient scheduler and load balancer is designed.

C. Construction of M/M/M Queuing System

In this section, an M/M/M queuing system with multiple

job arrivals to optimize the performance in a cloud computing

environment is investigated. In a cloud computing

environment, multiple requests are placed by cloud users and

the cloud server acts as a single point of access for all types

of cloud users. The cloud server is a collection of cloud

server resources that is provided by the cloud provider to host

all the applications for the cloud users.

 In order to construct M/M/M queuing system, let us

assume that there are ‘ ’ job requests and ‘ ’ cloud servers

in a cloud computing environment. As the job arriving

requests may be sent from different cloud users, the inter-

arrival time is a Poisson process with job arrival rate ‘ ’.

Job requests from different cloud users in the scheduler’s

queue are distributed to different cloud servers with the rate

of scheduling depending on the scheduler. Let us consider

that there are ‘ ’ cloud servers ‘ ’ in

datacenter, then the total job arrival rate is as given below.

 (1)

 On the other hand, the total cloud server’s service rate is

as given below.

 (2)

As the cloud users' requests come from all over the world,

the cloud computing environment provides infinite services,

without limiting the source of cloud users and the number of

the queuing model. If If ‘ ’, then the steady state

equations for the M/M/M Queuing System are given as

below.

 (3)

Where

Hence, (4)

Once, the total job arrival rate ‘ ’ and total cloud server’s

service rate ‘ ’ are obtained, independent job and dependent

job forms as input to the scheduler. The job scheduler selects

the suitable virtual machine based on QLS algorithm. The job

scheduler gathers the resource information from the resource

manager. It applies the proposed algorithm to find the

suitable virtual machine for the given job. The load for single

machine ‘ ’ is as given below.

 (5)

From (5), ‘ ’ represents the load of the overall node (i.e.

virtual machine) in cloud computing environment, on the

other hand, ‘ ’ represents the capacity of a single node. Fig.

2 shows the Queue-based Load Scheduling algorithm.

Input: Data Center ‘ ’, Cloud Server

‘ ’, Virtual Machine

‘ ’, Jobs ‘ ’,

Job size ‘ ’, Threshold ‘ ’

Output: Improved throughput rate

1: Begin

2: For each job request ‘ ’

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS020175

Vol. 6 Issue 02, February-2017

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 304

3: Measure the job arrival rate using (1)

4: Measure the cloud server’s service rate
 using (2)

5: Obtain steady state using (3)

6: Measure load for single machine using (5)

7: If ‘ ’, then

8: Virtual machine is under-loaded

9: Assign job to the VM

10: End if

11: If ‘ ’, then

12: Virtual machine is over-loaded

13: Assign job to other VM

14: End if

15: If ‘ ’, then

16: Virtual machine is balanced

17: Assign job to the VM

18: End if

19: End for

20: End

Fig. 2. Queue-based Load Scheduling algorithm

As shown in the Fig. 2, for each job request from cloud

user, the job arrival rate and cloud server’s service rate are

measured. Followed by this, steady state equation is obtained

based on the total job arrival rate ‘ ’ and total cloud server’s

service rate. Finally, load is measured by assigning a threshold

factor ‘ ’ to allocate the job to the appropriate virtual machine

‘ ’ which in turn improves the throughput rate of QS-LO

model in an effective manner.

D. Load-Based Optimization Function

Once the queue-based load scheduling is performed in a

parallel manner in a cloud environment, the next step is to

optimize the performance of multiple job requests in a cloud

computing environment. The proposed work uses job

utilization rate, average time and the number of cloud users

waiting for servicing at each cloud server as the optimization

metrics.

 The Load-based Optimization Function is given as below.

All the cloud users’ job request arrives at the scheduler,

which selects the job request to the cloud server according to

the result of the load-based optimization function. The input

matrix of the load-based optimization function is the average

time, job utilization rate, and the total number of cloud users

(i.e. Job) waiting for each cloud server in the cloud

computing environment.

 Let us assume that ‘ ’ denotes the probability of ‘ ’

cloud user to be selected and ‘ ’ represents the cloud

users servicing time. Then, the average time ‘ ’ is

as given below.

 (6)

 The job utilization rate ‘ ’ is measured as given below.

 (7)

 Where ‘ ’ represents the total job arrival rate and ‘ ’

represents the total cloud server’s service rate. Finally, the

optimization function ‘ ’ is measured as given below.

 (8)

 With the resultant average time (6) and job utilization rate

(7), optimization function (8) is evolved. Fig. 3 shows the

load-based optimization algorithm.

Input: Data Center ‘ ’, Cloud Server

‘ ’, Virtual Machine

‘ ’, Jobs ‘ ’

probability of ‘ ’ cloud user to be selected ‘ ’, cloud users

servicing time ‘ ’ total job arrival rate ‘ ’, total cloud server’s

service rate ‘ ’

Output: Minimized average job waiting time

1: Begin

2: For each Jobs ‘ ’ and Cloud Server ‘ ’

3: Measure average time using (6)

4: Measure job utilization rate using (7)

5: Measure optimization function using (8)

6:End for

7: End

Fig. 3. Load-based optimization algorithm

The optimization function as given above, measures the

value of the function, based on the input parameters, the

cloud user to be selected, cloud users servicing time, total job

arrival rate, total cloud servers service rate and so on. The

scheduler then selects the cloud server to execute the service

based on the results of the optimization function which in

turn reduces the average task waiting time of each cloud users

in an efficient manner. As a result of queue and load-based

optimization algorithm, the rate of throughput is improved.

IV. EXPERIMENTS AND EVALUATIONS
In this section, we present an evaluation for our queue-

based load optimization algorithm in terms of performance
with respect to certain performance metrics, throughput,
average task waiting time, memory utilization with respect to
the job assigned, and number of cloud centers respectively.
The proposed QS-LO model is used in Amazon Access
Samples dataset and Landsat 8 data on AWS to check the
performance of the proposed algorithm in a larger
environment

A. Datasets and Parameter Settings
CloudSim [21], a tool for emulating a cloud computing

environment is used in this study to solve the parallel job
scheduling problem. Performance analysis was conducted on a
PC with 2.67 GHz Intel i7-920 CPU and 4 GB of memory
running with Linux 2.6.31 and using CloudSim to construct
four virtual machines in a data center. The data sets, Amazon
Access Sample dataset and Landsat 8 data on AWS are
employed to compare the performance of the proposed
algorithm and compared with other parallel job scheduling
algorithms. More precisely, Amazon Access Sample dataset
includes four categories of attributes including
Person_Attribute, Resource_ID, Group_ID and
System_Support_ID whereas Landsat 8 data on AWS that
anyone can use the on-demand computing resources to
perform analysis and create new products without needing to
worry about the cost of storing Landsat data. Each simulation
carried 30 runs..

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS020175

Vol. 6 Issue 02, February-2017

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 305

B. Simulation Results of Throughput

To evaluate the performance of QS-LO model for parallel

job scheduling in multiple cloud centers, we compare it with

two traditional scheduling algorithms, namely, Hyper

Heuristic Scheduling Algorithm (HHSA) [1] and Global

Greedy Budget and Gradual Refinement (GGB-GR) [2]. For

the two datasets, access samples and lands at 8, the results in

table 1 shows that the M/M/M Queuing System and Load

Optimized model find better results than traditional

scheduling algorithms in terms of total number of jobs

assigned.

In addition, the results using Landsat 8 dataset are higher

than using Access Sample dataset. Moreover, with minimum

job assigned, the rate of throughput is increased, whereas

with the increase in the number of jobs assigned to the cloud

server, the cloud server has to process a higher number of job

requests and therefore the throughput rate gets reduced with

the increase in the job assigned. Moreover, the results also

show that QS-LO model outperforms the other two job

scheduling algorithms in cloud, namely, HHSA [1] and GGB-

GR [2].

Table 1 Tabulation for throughput using access samples and

landsat 8 dataset
Job

assigned

Throughput (%) – using

Access Samples dataset

Throughput (%) – using

Landsat 8 dataset

QS-

LO

HHSA GGB-

GR

QS-

LO

HHSA GGB-

GR

5 96.50 89.19 78.37 96.14 91.06 88.32

10 93.45 86.14 75.32 95.8 90.74 87.14

15 92.89 85.86 73.83 95.14 86.21 83.83

20 89.15 84.12 71.09 93.21 84.14 81.32

25 88.45 83.42 70.39 90.25 88.19 79.13

30 84.37 81.34 69.31 86.14 83.14 75.28

The results of the throughput rate given in Fig. 4 show

that the HHSA and GGB-GR get almost exactly the same

throughput rate in all iterations using Landsat 8 dataset. For a

lower number of jobs assigned, the higher the rate of

throughput because lower the job requests for the cloud user

side, the response to be provided by the cloud server is also

less. Higher the job request, the rate of throughput gets

reduced in all the methods. On the other hand, with a lower

job assigned, rate of throughput will converge quickly.

Fig. 4.a. Access samples dataset

Fig. 4 also shows that QS-LO model converges faster than

the other scheduling algorithms. This is because QS-LO

model is able to automatically choose the cloud server based

on the job arriving requests and cloud servers service rate,

and use the Poisson process to improve the results. Therefore

the end results of the QS - LO model are better than the other

scheduling algorithms. For example, using access sample

dataset, the results depicted in Fig. 4 (a) shows that QS-LO

provides a result that is close to the HHSA in terms of

throughput rate. However, by applying Landsat 8 dataset, the

results described in Fig. 4 (b) show that the rate of throughput

is more or less similar using HHSA and GGB-GR.

Fig. 4.b Landsat 8 dataset

Fig. 4. Convergence analysis for throughput

Fig. 4 also provides the convergence information on the
scheduling algorithms compared in this study. The results
given in Fig. 4 (a) show that the job request handling of these
parallel job scheduling algorithms converge to a stable state
very quickly when the access samples data set is applied. A
good example is the results of QS-LO and HHSA, which
show that the result with 5 jobs assigned is very close to the
results when 20 jobs were assigned. For example, using
Landsat 8 dataset, the convergence speeds of QS-LO and
HHSA are quite close to each other. However, by applying
access sample dataset, the convergence speeds of QS-LO and
HHSA are as shown in Fig. 4 (a) and (b). They show that QS-
LO has a higher chance to find a better result than HHSA [1]
and GGB-GR [2] because it keeps finding a better result by
applying the M/M/M Queuing System.

C. Simulation Results of Average Task Waiting Time

The average task waiting time measures the job requests

made by the cloud user and the time taken by the cloud server

to respond to it. Therefore the average task waiting time is

mathematically evaluated as given below.

 (9)

Where ‘ ’ symbolizes the average task waiting

time. The average task waiting time is measured in terms of

milliseconds (ms). The average task waiting time by applying

access samples and the Landsat 8 dataset for parallel job

scheduling is shown in Fig. 5.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS020175

Vol. 6 Issue 02, February-2017

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 306

Fig. 5. Average task waiting time using Access samples and Landsat 8

dataset

The small waiting time using access sample data given in

Fig. 5 implies that the load optimization function is under-

loaded with jobs and thus most jobs are scheduled

immediately, resulting in reducing the average task waiting

time. These results also explain that for small data sets like

access samples dataset that is under-loaded with job requests,

the performance of the parallel job scheduling algorithms is

good when compared to using large access sample dataset.

On the other hand, the results of the Access sample dataset in

Fig. 5 indicate that for large data sets in a queue that is fully

loaded, compared to Landsat 8 dataset.

This in turn reduces the average task waiting time using

QS-LO model. Moreover, the results of Fig. 5 indicate that

for large datasets like access sample dataset that is fully

loaded, compared to HHSA [1] and GGB-GR [2] reduces the

average task waiting time of QS-LO model by 13.86% and

12.12% respectively, using Landsat 8 and Access Sample

dataset. This means that by optimizing the job requests by the

cloud server using optimization function, making use of the

average time, utilization rate incoming jobs are scheduled

sooner and therefore the average task waiting time is said to

be reduced using QS-LO model when compared to the

state-of-the-art methods.

D. Simulation Results of Memory Rate

Here we analyze the memory requirements and

performance with respect to the job assigned to the cloud

server in a parallel fashion. The memory rate is the memory

required for scheduling each job and the total number of jobs

assigned in the multi cloud center. The memory rate is

measured in terms of kilobytes (KB) and is formulated as

given below.

 (10)

Where ‘ ’ refers to the memory rate measured using the

‘ ’ job assigned, with respect to memory consumption

‘ ’ for scheduling each job in multi cloud center.

Lower memory rate proves the efficiency of the method.

Fig. 6 Simulation results of memory rate

Fig. 6 shows the results of simulation analysis made for
memory rate with respect to the incoming requests from
different cloud users using Landsat 8 dataset. Executing
multiple jobs using load optimized function provides
significant performance gain in average time and job
utilization rate using the load-based optimization algorithm.
The load-based optimization algorithm is a method of
scheduling, in which the user request jobs are assigned to the
cloud servers according to independent and dependent jobs.
The resource manager in turns assigns the virtual machines in
the corresponding data cent to adapt the user’s jobs. The
algorithm is based on the first come, first serve for the cloud
server selection process. The cloud user sends the parallel
request to the cloud environment. Once the data center
analyses the job and allocates the job to the first free server,
the load is optimized which in turn reduces the memory
required for scheduling each job.

V CONCLUSION
This paper presents an efficient solution for allocating

parallel jobs in multiple cloud centers by handling M/M/M
Queuing System and Load Optimized (QS-LO) model. With
our proposed model, it can make the allocation of multiple
jobs in a parallel fashion without collision. By using M/M/M
Queuing System the cloud server have a better consolidation
by analyzing the job arrival rate with a Poisson process and
the job scheduler gathers the resource information from the
resource manager and reduces the average task waiting time.
Load-based Optimization Function optimizes the performance
of multiple job requests in a cloud computing environment.
The experiment result shows that the QS-LO model provides
better performance with the improvement of throughput rate
and reduced average task waiting time and memory rate of
cloud users’ requests when compared to the state-of-the-art
methods.

REFERENCES
[1] Churn-Wei Tsai, Wei-Cheng Huang, Meng-Hsiu Chiang, Ming-Chao

Chiang, and Chu-Sing Yang,” A Hyper-Heuristic Scheduling

Algorithm for Cloud”, IEEE TRANSACTIONS ON CLOUD
COMPUTING, VOL 2, NO 2, APRIL-JUNE 2014

[2] Yang Wang and Wei Shi,” Budget-Driven Scheduling Algorithms for
Batches of MapReduce Jobs in Heterogeneous Clouds”, IEEE

TRANSACTIONS ON CLOUD COMPUTING, VOL 2, NO 3, JULY-

SEPTEMBER 2014
[3] Chien-An Chen, Myounggyu Won, RaduStoleru, and Geoffrey G. Xie,”

Energy-Efficient Fault-Tolerant Data Storage and Processing in Mobile

Cloud”, IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.
3, NO. 1, JANUARY-MARCH 2015

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS020175

Vol. 6 Issue 02, February-2017

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 307

[4] Olivier Beaumont, Lionel Eyraud-Dubois and HejerRejeb,”

Heterogeneous Resource Allocation underdog Constraints”, IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, Vol. 24, Issue 5, Jun 2012

[5] Junwei Cao, Keqin Li, andIvanStojmenovic,” Optimal Power
Allocation and Load Distribution for Multiple Heterogeneous

Multicore Server Processors across Clouds and Data Centers”, IEEE

TRANSACTIONS ON COMPUTERS, VOL 63, NO 1, JANUARY
2014

[6] Junwei Cao, Kai Hwang, Keqin Li, and Albert Y. Zomaya,” Optimal

Multiserver Configuration for Profit Maximization in Cloud
Computing”, IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, VOL. 24, NO. 6, JUNE 2013

[7] Marco Polverini, Antonio Cianfrani, ShaoleiRen, and Athanasios V.
Vasilakos,” Thermal-Aware Scheduling of Batch Jobs in

Geographically Distributed Data Centers”, IEEE TRANSACTIONS

ON CLOUD COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH
2014

[8] Sanjaya Kumar Panda, Benazir Nehab, Sujaya Kumar Sathuac,” An

Uncertainty-Based Task Scheduling for Heterogeneous Multi-Cloud
Systems”, International Journal of Information Processing, 9 (2), 13-24,

2015

[9] ShengjunXue, Managing Li, XiaolongXu, and Jingyi Chen,” An ACO-
LB Algorithm for Task Scheduling in the Cloud Environment”,

JOURNAL OF SOFTWARE, VOL 9, NO 2, FEBRUARY 2014

[10] Jiayin Li, MeikangQiu, Zhong Ming, Gang Quan, Xiao Qin,
ZonghuaGu,”Online optimization for scheduling preemptable tasks on

IaaS cloud systems”, Journal of Parallel Distributed Computing,
Elsevier, Feb 2012

[11] I. M. MaywishRajakumari, Mrs. R. Narayani,”Provenance based

Adaptive Heuristic Scheduling in Cloud Environment”, International
Journal of Scientific & Engineering Research, Volume 6, Issue 4,

April-2015

[12] LipsaTripathy, RasmiRanjanPatra,” SCHEDULING IN CLOUD
COMPUTING”, International Journal on Cloud Computing: Services

and Architecture (IJCCSA), Vol. 4, No. 5, October 2014

[13] Amit Kawalia, Susanne Motameny, Stephan Wonczak, HolgerThiele,

LechNieroda, KamelJabbari, Stefan Borowski, Vishal Sinha,

WilfriedGunia, Ulrich Lang, Viktor Achter, Peter Nürnberg,”

Leveraging the Power of High Performance Computing for Next
Generation Sequencing Data Analysis: Tricks and Twists from a High

Throughput Exam Workflow”, PLOS ONE | DOI: 10.1371/journal.

pone. 0126321 May 5, 2015
[14] Muhammad Idris, ShujaatHussain, Muhammad Hameed Siddiqi,

Waseem Hassan, Hafiz Syed Muhammad Bilal, Sungyoung Lee,”

MRPack: Multi-Algorithm Execution Using Compute-Intensive
Approach in MapReduce”, PLOS ONE | DOI: 10.1371/journal. pone.

0136259 August 25, 2015

[15] Amin Nazareth, GH Dastghaibifard,” Efficient Nash Equilibrium
Resource Allocation Based on Game Theory Mechanism in Cloud

Computing by Using Auction”, PLOS ONE | DOI: 10.1371/journal.

pone. 0138424 October 2, 2015
[16] Young Choon Lee, Hyuck Han and Albert Y. Zomaya,” On Resource

Efficiency of Workflow Schedules”, 14th International Conference on

Computational Science, Elsevier, Volume 29, 2014, Pages 534-545

[17] Yalda Aryan and ArashGhorbanniaDelavar,” A BI-OBJECTIVE

WORKFLOW APPLICATION SCHEDULING IN CLOUD
COMPUTING SYSTEMS”, International Journal on Integrating

Technology in Education (IJITE) Vol.3, No.2, June 2014

[18] Yanyan Dai and Xiangli Zhang,” A Synthesized Heuristic Task
Scheduling Algorithm”, Hindawi Publishing Corporation, The

Scientific World Journal Volume 2014

[19] Pham Phuoc Hung and Eui-Nam Huh,” An Adaptive Procedure for
Task Scheduling Optimization in Mobile Cloud Computing”, Hindawi

Publishing CorporationMathematical Problems in Engineering Volume

2015
[20] Xiaocheng Liu, Bin Chen, XiaogangQiu, Ying CAI, and Kedi Huang,”

Scheduling Parallel Jobs Using Migration and Consolidation in the

Cloud”, Hindawi Publishing CorporationMathematical Problems in
Engineering Volume 2012

[21] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R.

Buyya, “CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning

algorithms,” Softw.: Practice Experience, vol. 41, no. 1, pp. 23-50,

2011
[22] Wei-Jen Wang, Yue-Shan Chang, Win-Tsung Lo, Yi-Kang Lee,

“Adaptive scheduling for parallel tasks to QoS satisfaction for hybrid

cloud environments”, The Journal of Supercomputing, Springer,
November 2013, Volume 66, Issue 2, pp 783-811

[23] RathnakarAchary, V. Vityanathan, Pethur Raj, S. Nagarajan,

“Dynamic Job Scheduling Using Ant Colony Optimization for Mobile
Cloud Computing”Intelligent Distributed Computing, Springer,

Volume 321 of the series Advances in Intelligent Systems and

Computing, pp 71-82, 2015.

[24] Saeed Javanmardi, Mohammad Shojafar, DaniloAmendola,

Nicola Cordeschi, Hongbo Liu, Ajith Abraham, “Hybrid Job

Scheduling Algorithm for Cloud Computing Environment, ”

Proceedings of the Fifth International Conference on

Innovations in Bio-Inspired Computing and Applications

IBICA 2014, Springer, Volume 303 of the series Advances in

Intelligent Systems and Computing, pp 43-52, 2014

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS020175

Vol. 6 Issue 02, February-2017

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 308

