

Load Balancing using SDN Methodology

Kavana H M (1) Kavya V B (2)
B. V. B College of Engg & Tech

Hubli, Karnataka

Madhura B (3) Neha Kamat (4)
B. V. B College of Engg & Tech

Hubli, Karnataka

Abstract: Software-Defined Networking (SDN) is an emerging

technology in the field of networking. Nowadays clients are

using large amount of data which needs to be handled by the

network which creates a lot of traffic. For a single server it

becomes difficult to handle all the load. The solution to this i

to use multiple servers. The requests are sent to the load

balancer. The client requests are then forwarded to the servers

depending on the load balancing strategy used. Earlier

hardware was used which turned out to be expensive and

inefficiency. Traditional load balancer are vendor locked,

nonprogrammable because network administrators cannot

create their own algorithms. On the other hand SDN load

balancers are programmable and allow you to design and

implement your own load balancing strategy. Additional use of

SDN load balancer is it does not need dedicated hardware. In

this paper we are implementing and comparing our algorithm

using Floodlight controller ,Mininet and testing our results via

Wireshark Network Analysis Tool.

Keywords: Software Defined Networking, Mininet, Floodlight,

Load Balancing, Wireshark.

I. INTRODUCTION

There are several limitations in the traditional networking

methods which required to be overcome to meet today’s

reqirements. Software Defined Network (SDN) is a major

change in the field of networking. It has witnessed a major

evaluation in the network world. In SDN data plane and

control plane are separated.

 Traditional methods consisted of tight coupling

between data and control plane The data planes of SDN are

cheap commodity silicon devices. OpenFlow protocol is

used by the control plane to communicate with data plane.

Network applications such as switching, routing, firewall

and load balancer which run on the top of control plane. The

most common protocol used in SDN networks which helps

to communicate the controller with all the network elements

(NE) is Open flow. It is an open standard that provides a

standardized hook to allow researchers to run experiments,

without requiring vendors to expose the internal workings of

their network devices. The SDN is the architecture dividing

the layers whereas Open Flow is just a protocol proposed to

convey the messages from the control layer to the network

elements. To increase the bandwidth, throughput and for

better working load balancing must be used in networking.

Load balancing is the ability to balance the load across

several internet connections. The load balancing capability

helps to balance the load across various sessions like web,

email etc. To increase the total amount of bandwidth

available it spreads out the bandwidth used by each user.

 Nowadays we require dynamic network management

resources for higher performance and high speed for the data

transmission. Our method of load balancing using SDN

uses a dynamic load balancing algorithm implemented in the

SDN controller. The algorithm distributes the upcoming and

incoming traffic flows. It helps in achieving the best

possible resource utilization of each of the links present in a

network.

 We have used the Floodlight controller as the SDN

controller, and the network is emulated using Mininet

software along with wireshark to assess the performance.

The aim of the project is to implement dynamic load

balancing using SDN data centres for achieving better

results and higher performance. To evaluate and validate the

functionality of the proposed algorithm is our objective.

A. SDN

 Software defined networking is a new upcoming

architecture where it is easily manageable and very cost

effective which is useful in today’s complex applications. In

Software defined networking there is a separation of control

plane and the data forwarding plane. [1] Here the controller

plane job is done by the controller. It performs various

functions like finding routes, minimizing cost and also scale

up to the increased workload. The network is centralized in

software defined networking so the whole network appears

to the application as a single logical switch.

 SDN architecture also help in supporting a set of API’s

which includes routing, security, access control ,finding

bandwidth and traffic management. SDN are being

controlled by SDN controllers and the SDN applications not

by the network consoles or commands which requires a lot

of overhead. With using SDN the enterprise will be able to

look after the whole network from a single logical point

which improves the scalability and functionality of the

network. And here there is no need of understanding and

processing the protocols but just to follow the instructions

given by SDN controller. Open flow is a interface designed

for SDN where it is completely centralized and has a good

performance, traffic control from multiple sellers. Open

flow also helps in improving network reliability and security

as there is a centralized management of network devices.

 Even end users using the application have a better

experience. Open flow has many advantages like there is no

need to equip costly load balancing devices where the single

load balancing switch or the controller controls the whole

workload of the network. It also helps to combine both the

packet and circuit networks together to decrease the

CAPEX/OPEX of the enterprises. The unused switches or

the unused links can be switched off which saves a lot of

energy.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050103
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

206

 Open flow also helps in easy control of network and

helps in saving resources. The traditional networks has some

limitations as the quality of service and security of the

network devices has to be configured manually where as in

SDN there are a set of common API’s which abstracts the

networking details. The workloads from IT change

frequently but the traditional network cannot fully satisfy its

needs because the IT may demand for increase in bandwidth

but by using traditional network to change the bandwidth

capacity there has to be increase in end points and services

which may lead to redesign of network which may become

expensive and complex. But in case of SDN there can be

innovation and it helps to change the network capacities and

services without need to configure individual devices. SDN

also provides the common programming environment which

helps enterprises, operators and sellers good

programmability and good revenues. So using SDN has

more advantages compared to using traditional networks.

II . SYSTEM MODEL

The above figure shows the SDN components.

There are three layers infrastructure, control and application

layer. The infrastructure layer consists of network elements

and it interacts with controller plane using controller plane

interface. SDN application interacts with controller via

Application controller plane interface. SDN controller

translates the network requirements to network elements

through controller.

III . PREVIOUS WORK

A load balancing mechanism using round robin

method. In this method the packets are sent in a circular

fashion. The switches are arranged in a circular fashion and

if there are five switches in the network then first the packet

is sent to switch one and this continues till switch five, if all

the packets did not reach the destination then the remaining

packets are again sent from switch one and it continues.

IV. PROPOSED METHODOLOGY

 We have used the software tool mininet and floodlight

controller and our basic aim is to achieve the efficient load

balancing using SDN. So by using the above described

software tools we have implemented the load balancing. We

have used the shortest path first and to implement is we have

used python language.

A. The programming language used: Python

 In our project we have used python in mininet to

convert the algorithm into code for balancing the load.It is

a powerful high level language which can be used in any of

the projects.

 We have used python programming language so that it

will be easy to debug the code and so that it should be well

understood by the people. This language is supported in

linux, windows.

 B. The algorithm used: Shortest path First

1)Find information about hosts connected.

2)Using shortest route concept finding the information.

3) Find total link cost for all the routes.

4) Get current transmission rate.

5) Selecting the best path.

6) Push the traffic into each switch in the current best path

and go to step 2.

C. Working

 First we have to get the information of the hosts

connected. once its done then we have to use the shortest

path concept .

S1 S2 S3

 1 1 s

 4 2 3

 S4 S5 2

 1 2 2 3

H1 H2 H3 H4
Fig1 : Data center network topology

 In the fig we can see that there are 5 switches and four

hosts and each link is assigned certain cost.H3 wants to send

packets to h1. So according to the code to balance the load it

should choose that link which has the least cost, so if packet

has to go to host 1 then it will go according to the path

highlighted. This will be done for all the hosts. Here the

total link cost is taken for all the paths between the hosts

and then according to the path the best path is selected this

all is done by the floodlight controller, it controls the traffic.

This is how there will be no traffic in sending the packets

and hence load is balanced.

V. SIMULATION/EXPERIMENTAL RESULTS

A.n Before load balancing and after load balancing

Transferring(Gbytes) Bandwidth(Gbits)

15.7 13.5

21.9 18.8

24.6 21.1

22.3 19.1

39.8 34.2

Average =24.86 Average=21.34

Table1:Before load balancing

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050103
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

207

Transferring(Gbytes) Bandwidth(Gbits)

38.2 32.8

27.6 32.3

40.5 34.8

40.8 35.1

16.5 14.2

Average=32.72 Average=29.84

Table2:After load balancing

This is calculated for the transferring of packets from host3

to host1.Likeewise we can calculate of other hosts as well

and can check the average .from table its clear that after load

balancing the transfer of packets is more and precise.

B. Analyzing the result

VI. CONCLUSION

Though there are many ways in transferring the packets to

different destinations but software defined network is the

efficient one as it requires least hardware. Balancing the

load in the network is very important in today’s huge

crowed so its necessary to pass the packets in a no time.

VII. FUTURE WORK

In future it can be further extended using different and more

efficient load balancing algorithms and even can connect

still more controllers in circular fashion

VIII. REFERENCES
[1] Chen, Yu-Jia, Yi-Hsin Shen, and Li-Chun Wang. "Traffic-

Aware Load Balancing for M2M Networks Using

SDN." Cloud Computing Technology and Science

(CloudCom), 2014 IEEE 6th International Conference on.

IEEE, 2014.

[2] Koryachko, Vyacheslav, Dmitry Perepelkin, and Vladimir

Byshov. "Approach of dynamic load balancing in software

defined networks with QoS." Embedded Computing (MECO),

2017 6th Mediterranean Conference on. IEEE, 2017.

[3] Chen, Kun-Ting, Chien Chen, and Po-Hsiang Wang.

"Network aware load-balancing via parallel VM migration for

data centers." Computer Communication and Networks

(ICCCN), 2014 23rd International Conference on. IEEE,

2014.

[4] Ye, Kejiang, et al. "Live migration of multiple virtual

machines with resource reservation in cloud computing

environments." Cloud Computing (CLOUD), 2011 IEEE

International Conference on. IEEE, 2011.

[5] Tsygankov, Mykola, and Chien Chen. "Network aware VM

load balancing in cloud data centers using SDN." Local and

Metropolitan Area Networks (LANMAN), 2017 IEEE

International Symposium on. IEEE, 2017

[6] Bhandarkar, Smriti, and Kotla Amjath Khan. "Load Balancing

in Software-defined Network (SDN) Based on Traffic

Volume." Advances in Computer Science and Information

Technology (ACSIT) Print ISSN (2015): 2393-9907.

[7] Al-Najjar, Anees, Siamak Layeghy, and Marius Portmann.

"Pushing SDN to the end-host, network load balancing using

OpenFlow." Pervasive Computing and Communication

Workshops (PerCom Workshops), 2016 IEEE International

onference on. IEEE, 2016.

[8] Zhang, Junjie, et al. "Load balancing for multiple traffic

matrices using SDN hybrid routing." High Performance

Switching and Routing (HPSR), 2014 IEEE 15th International

Conference on. IEEE, 2014.

[9] Yu, Jinke, et al. "A load balancing mechanism for multiple

SDN controllers based on load informing strategy." Network

Operations and Management Symposium (APNOMS), 2016

18th Asia-Pacific. IEEE, 2016.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050103
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

208

