
Load Balancing Algorithm in Distributed File 

System: A Survey 
(A Decision Making Strategy for Load Balancing in Cloud) 

 

1
Kalahasti K. P. 

PG: student, Department of Computer Science 

and Engineering 

RMD Engineering College 

Kavaraipettai, Tamil Nadu, India 

  

 

2
Dr. Velvizhi N. 

Professor, Department of Computer Science 

and Engineering 

RMD Engineering College 

Kavaraipettai, Tamil Nadu, India 

 

 
Abstract— Distributed File System is a key component in cloud 

computing application based on building block in Map Reduce 

Programming. In Distributed File System nodes are 

simultaneously serve computing and storage function and file are 

divided into number of chunk allocated in the distinct nodes In a 

large cloud we are able to add thousands of nodes together. The 

main aim of allocated files are not creating any significant load to 

any of the nodes, for the files are different partitioned squares 

measure off completely different modules. Another objective is to 

back the network traffic attribute and network inconsistencies to 

unbalancing hundreds of nodes. The result of reduction in 

network information measures in order than so man can run 

numerous such as large amount application run in it. Because of 

quantifiability property we are able to add, delete, update and  

new nodes in order that it supports heterogeneousness of the 

system. To enhance the potential of nodes we able tend to use 

Distributed file system in Cloud Computing Applications. 

 

Key Words—Cloud Computing, distributed Hash tables, load 

rebalancing 

I. INTRODUCTION  

Cloud Computing is a technology used for connecting so 

many nodes together for dynamically allocating resources. 

The Number of technology used in cloud such as 

virtualization,HdFS,Reduce programming paradigm, 

Distributed file System. These Kind of techniques scalable for 

add or del new node in system it making reliable. In a large 

cloud thousands of nodes are added together. the main aim of 

allocating files Distributed uniformly without making heavy 

load because of  balance node  to reduces the network traffic. 

The reduction of network inconsistency will lead to 

maximization of network bandwidth so that so many large 

applications can run in it. Due to scalability property can be 

added, deleted, updated new nodes so that it supports 

heterogeneity of the system. To improve the capability of 

nodes we use Distributed file System in Cloud Computing 

Applications. In such file systems the main functionalities of 

nodes is to serve computing and storage functions. If store a 
file into the system firstly we will divide the file into different 

modules and store it in different nodes. So introduced new 

load rebalancing algorithm to avoid all these disadvantages. 

When analyzing the existing system clouds rely on central 

nodes to balance the loads of storage nodes, they occur  

bottleneck because the failure of central nodes leads to the 

failure of whole system and it will leads to many technical and 

functional difficulties. 

 

 

II. RELATED WORK 

 

       Google file System do not provide any caching technique 

in file system.GFS carried number of unreliable component 

and fault tolerance major problem in file system[1].some of 

problems occur by GFS operating system bugs, human error, 

disk failures etc.In File System once write are only read major 

drawback in the System. In new File System Hash Key values 

support constant number of load balancing method. It consist 

of two type schemes load stealing and load shedding the goal 

of scheme should me more cost effective and simple[2]. In 

extreme case „n‟ balls and „n‟ bins load balancing problem 

will occur in system. In File System Load balancing method 

even distribution of item should be limited. In DHT two type 

schemes present DHT address and DHT node[3]. Each node 

should be limited no of hash function and address should be 

balanced or limited no of address space. If address fails and 

node will fails this is major drawback in the System. In the 

design and evaluation of Pastry distributed object location and 

routing scheme for application of peer to peer network. Pastry 

not performs  application-level routing and object location in a 

potentially very large overlay network of nodes connected via 

the Internet[4]. It can be used to support a wide range of peer-

to-peer applications like global data storage, global data 

sharing, and naming. This paper Load balancing is necessary 

in such scenarios to eliminate skew. We presented 

asymptotically optimal online load-balancing algorithms that 

guarantee a constant imbalance ratio[5]. The data movement 

of cost per tuple insert or delete is constant, and was shown to 

be close to 1 in experiments. To adapt our algorithms to 

dynamic P2P environments, and architected a new P2P system 

that can be support efficient range queries. 

650

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030845



   This paper presents the design of Mercury, for supporting 

scalable protocol  multi-nodes range-based searches. Mercury 

dicers from previous range-based query systems in that it 

supports multiple attributes as well as performs explicit load 

balancing[6]. To client routing and load balancing, Mercury 

uses light-weight sampling mechanisms novel for uniformly 

sampling random nodes in a highly dynamic overlay network. 

It shows that Mercury dicers not  able to achieve its goals of 

logarithmic routing and uniform load balancing. Existing 

solutions to balance load in DHTs incur a high overhead either 

in terms of routing state or in terms of load movement 

generated by nodes incoming or outgoing the system[8]. This 

paper we have a tendency to propose a general techniques and 

use them to develop a protocol supported Chord, called Y0, 

that achieves load leveling with lowest overhead underneath 

the everyday assumption that the load is uniformly distributed 

within the symbol house. An elementary drawback that 

confronts peer-to-peer applications is that the economical 

location of the node that stores a desired information item. This 

paper presents Chord, a distributed operation protocol that 

addresses this drawback[9]. Chord provides only one 

operation: given a key, it maps the key onto a node. 

Information location is simply enforced on prime of Chord by 

associating a key with every information item, and storing the 

key/data combine at the node to that the key maps. Map 

Reduce may be a programming model AND an associated 

implementation for processing and generating massive 

information sets and users specify a map operate that processes 

a key/value combine to come up with a group of intermediate 

key/value pairs, and a cut back operate that merges all 

intermediate values related to constant intermediate key[10]. 

Several tasks are under able during this model, as shown within 

the paper. Programs written during this useful vogue are 

mechanically parallelized and dead on an oversized cluster of 

artifact machines. 

 

 

III. PROPOSED SYSTEM 

 

      In proposed work the dependences will be eliminated on 

central nodes. the storage of files Distributed uniformly among 

the nodes with help of DHT.The DHT enables of nodes to 

repair and self-organize which offering constancy lookup 

based on functionality in the node Dynamism and providing 

system management. Our algorithm compared to existing 

approach. it provide production system and a competing 

distributed solution . The load rebalancing algorithm 

uniformly distributed the nodes equally without acquiring 

global knowledge.  

      A file is partitioned into a no of chunks allocation of nodes 

performed parallel over the Map Reduce task in the nodes. 

The load of a node is proportional typically to the number of 

file chunks the node possesses. Because the files are transform 

to the cloud can be automatically created, deleted, and update, 

and nodes can be added, replaced and upgrade in the file 

system, the file chunks are not uniformly distributed to the 

nodes. 

        

 

                           Main Server 

     

              Sub Server 

      

      

      

   

 

 

          File upload         CentralizedSystem          

   

                                     

                      

 Client 
     FIG.1 SYSTEM ARCHITECTUR                   

 

 

       Our proposal is to allocate the number  of chunk files 

distributed uniformly as possible among such that no can 

manage nodes  excessive no of chunks. 

 Sub Server 

       The storage nodes are structured as a network based on 

distributed hash tables (DHTs), e.g., discovering a file chunk 

can simply refer to rapid key lookup in DHTs, given that a 

unique handle (or identifier) is assigned to each file chunk. 

DHTs carry out the nodes to self-organize and Repair 

constantly offering lookup functionality in node dynamism, 

simplifying the system management and provision. In our 

proposal the chunk server are organized as a DHT network. 

The Distributed Hash Table guarantee that if a node leaves, it 

will migrated to its successor node then if nodes leaves and 

joins the allocated chunks will manage ID immediately 

proceed the  if a node joins and leaves then it allocates the 

chunks whose IDs immediately precede the node joining to its 

successor node manage it. our proposed algorithm, each chunk 

server node I first estimate whether it is under loaded (light) or 

overloaded (heavy) without global knowledge. If the node  

allocated no of chunks hosts is smaller than the threshold. 

Load statuses of a the nodes its selected each nodes randomly. 

Specifically, each node should select randomly in the system 

and builds a vector denoted by V. A vector consists of new 

entries, and each entry contains the ID and key value 

pair,(i.e)network address and load status of a randomly 

selected node. 

 

 

 

651

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030845



IV.CONCLUSION 

 

        We should not  standardize the algorithmic rule Inter-

operability is not a problem devices implementing completely 

different algorithms will inter-operate. Load reconciliation 

Algorithms ought to be deterministic; a minimum of for a 

specific flow Frame order should be preserved at intervals a 

flow. The synthesis workloads across the load equalization 

algorithms by making a couple of storage node that square 

measure heavily loaded. In the Intermixture sensible 

algorithms continually works, given a standard receive 

algorithm. The potency and effectiveness of our style square 

measure valid by analytical models and a true implementation 

with a small-scale cluster setting. The centralized algorithmic 

rule within the Load rebalancing algorithm and dramatically 

outperforms the competitor distributed algorithmic rule in 

terms of load imbalance issue, movement of cost and avoid 

network traffic. Our proposal strives to balance the masses of 

nodes and scale back the demanded movement price the 

maximum amount as potential, where as taking advantage of 

physical network vicinity and node no uniformity. 

 

V. FUTURE WORK 

 

In future we have increase efficiency and effectiveness of 

our design are further validated by analytical models and a real 

implementation with a small-scale cluster environment highly 

desirable to improve the network efficiency by reducing each 

user‟s download time. In the contrast commonly focusing on 

average capacity in the network. It service involved capacity on 

both heterogeneity and the temporal correlation significantly 

increase download time in the network then average capacity 

of network will be remain same 

                  VI.REFERENCE 

 

 
[1]  Sanjay Ghemawat and Howard Gobioff,, ”The Google File System,” 

SOSP‟03 ,Bolton Landing, New York, USA Oct 2003. 

[2]  John Byers and  Jeffrey Considine,“Simple Balancing for Distributed 
Hash Tables,” SIGCOMM 2002. 

[3]  David R. Karger and Matthias Ruhl,“Simple Efficient Load Balancing 

Algorithms for Peer-to-Peer Systems” 2001. 
[4]  Antony Rowstron1 and Peter Druschel,“Pastry: Scalable, decentralized 

object location and routing for large-scale peer-to-peer systems,” Proc. 

of the 18th IFIP/ACM International Conference on Distributed Systems 
Platforms Nov 2001. 

[5]  Prasanna Ganesan and Mayank Bawa,()“Online Balancing of Range-

Partitioned Data with Applications to Peer-to-Peer Systems” 

Proceedings of the 30th VLDB Conference,Toronto, Canada 2004. 

[6]  Ashwin R. Bharambe and Mukesh Agrawal,“Mercury: Supporting 

Scalable MultiAttribute Range Queries,” SIGCOMM'04,Portland, 

Oregon, USA sep 2004. 

[7]  Hung-Chang Hsiao,“Non-uniformity And Load Balance In Distributed 

Hash Tables” 7 Sept. 2009; revised 22 Dec. 2009; accepted 4 Apr. 
2010;published online 18 May 2010. 

[8]  Ion Stoica and Robert Morris,”Chord: A Scalable Peer-To-Peer 

Operation Protocol For Web Application” SIGCOMM‟01, San Diego, 
California, USA Aug 2001. 

[9]  Jeffrey Dean and Sanjay Ghemawat,”Map Reduce: Simplified On 

Massive Cluster,” USENIX Association OSDI ‟04: 6th Symposium on 
Operating Systems Design and Implementation Feb 2004. 

 

 

 

 

 

 

 

 

 

 

652

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030845


