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Abstract — Inverted pendulum on a mobile robot system is a 

paradigm example taken into consideration for studying the 

dynamics related to huge complex systems over many years. The 

major problems that arise with this system are to stabilize the 

unstable equilibrium point of it, which can be readily achieved 

by the moving cart underneath. This paper tries to implement 

an Linear Matrix Inequality (LMI) based optimal controller for 

this system, to ensure robust stability and optimal performance 

with respect to the other known techniques in the literature, 

being devised using convex optimization procedure. 

Index Terms— Inverted Pendulum, Under-actuated system, 

Linear Matrix Inequality (LMI).  

 

I.  INTRODUCTION 

 

Inverted pendulum obsoletes the benchmark problem in 

numerous automatic control systems since forties. It 

represents the basic system of the higher-order nonlinear as 

well as non-minimum phase systems [1]. As the system itself 

represents the nonlinear system, it would be beneficial to 

illustrate many ideas over it of non-linear control. 

  Wheeled mobile robot received a huge interest in recent 

years, as it provides high degree of efficiency and flexibility 

with respect to different operations, when flexible motion 

requires with respect to smooth grounds. Sometime lack of 

knowledge regarding control limits the application. Here the 

inverted pendulum is joined with the robot having a motor 

which drives it on a horizontal track. The position and velocity 

are the accessible parameters of the motor. The pendulum has 

an unstable equilibrium point and the behavior of the system 

is helpful for the analysis of similar systems. 

 Balancing an inverted pendulum on a wheeled mobile 

robot is inherently unstable system, and its dynamics are 

profoundly nonlinear. This system is under-actuated 

mechanical system having control inputs less than degree of 

freedom. This makes the controlling more challenging. Due to 

these properties this system is a benchmark problem for 

designing and evaluating different control techniques. 

 There are many control methods proposed in the case of 

an inverted pendulum. In [2] and [3] a Proportional-Integral-

Derivative (PID), and Proportional-Derivative (PD) control 

techniques have been deployed. The execution of the 

dynamical frameworks being controlled is sought to be 

optimal. There are numerous optimization techniques which 

are available for linear & nonlinear dynamical frameworks 

like Model Predictive Control (MPC) [4] and Linear 

Quadratic Regulator (LQR) [5] etc are also proposed for the 

same system.  

The method proposed in this paper is for balancing an 

inverted pendulum attached on the wheeled mobile robot by 

using LMI [6] based state feedback controller [7] method. 

This type of control provides quick stabilization by state 

feedback controller. The search for the desired controller is 

casted as a problem in the convex frame. LMI updates 

parameters of the control law according to the Lyapunov 

Stability Theorem[8]. The basic LQR controller can also get 

the optimal results but is highly sensitive to disturbance. An 

LMI design technique overcomes this problem and hence 

stabilizes any unpredictive behavior of the system due to 

uncertainties. The implementation of the controller with more 

analytical approach will be tested in MATLAB environment. 

The aim of this paper is designing a controller which 

meets the following requirements: 

 

 𝑇𝑠 i.e. settling time < 5 seconds 

 Overshoot < 10 degees 

 𝑇𝑟  i.e. rise time < 0.5 seconds 

 

This paper contain mathematical modeling of the Wheeled 

Mobile Robot which is the Inverted Pendulum mounted on a 

wheeled robot in Section II, Section III  explains the 

fundamental designing of the LMI based controller for the 

stabilization on the given under-actuated system, in Section 

IV, the simulation and results of the given system are shown 

and we conclude the paper in Section V.  

  

II. MATHEMATICAL MODEL 

 

The purpose of this section is to turn up with a credible model 

to be used as the base for control design. The block diagram 

depicts the system. The mass of robot is given as M, the mass 

of pendulum is by m, applied force by F and angle by 

𝜃 related to the vertical axis. 

While modeling the system, many conditions needs to be 

considered within which some are vital than others. Without 

loss of generality, the following assumptions are taken into 

account for simplification of the model. 

 Frictionless hinge between pendulum and robot 

 Frictionless contact between wheel and horizontal 

plane 
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 Little angle approximation i.e. movement of 

pendulum is restricted within few degrees 

 Measurement of states are taken by sensors 

assuming the availability of LQR controller 

 

  Applying Lagrange’s Equation corresponds to the 

position of the robot i.e. 𝑥 and deflection angle of pendulum 𝜃 

and considering moments around the center of mass, the non 

linear dynamic equation of the pendulum is as given below, 

 

 𝐼 + 𝑚𝑙2 𝜃 − 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = −𝑚𝑙𝑥 𝑐𝑜𝑠𝜃     (1) 

 

Where 𝐼 represents moment of inertia of pendulum, 

𝜃 represent the angle with respect to the vertical line and 𝐿 

represents length of the pendulum with distance to the center 

of mass 𝐿/2 = 𝑙, as shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The robotic system governs the equation of motion 

corresponds to the applied forces from pendulum to robot. 

Which yield the Newton’s law of motion and the motion of 

robot in horizontal direction is as, 

 

 𝑀 + 𝑚 𝑥 + 𝑚𝑙𝜃 𝑐𝑜𝑠𝜃 − 𝑚𝑙𝜃 2𝑠𝑖𝑛𝜃 = 𝐹 (2) 

 

Where 𝐹 is the physical quantity i.e. applied force of the 

motor [11].  

 

             𝐹 =
𝜂𝑡𝐾𝑚 𝐾𝑡

𝑅𝑟
𝑉 −

𝐾𝑚2𝐾𝑔
2

𝑅𝑟2 𝑥    (3) 

Taking 𝐾𝑔 ,𝐾𝑚 , 𝜂𝑡 , 𝐾𝑡 , 𝑅 and  𝑟 as the coefficients which 

depends on the physical properties of gear and motor. 

Inferring from above derivation states can be defined as, 

 

𝑥 =  𝑥1  𝑥2  𝑥3  𝑥4 
𝑇 =  𝑥 𝑥  𝜃 𝜃   

𝑇
                   (4) 

 

 After linearization the state space model of the system is 

as, 

 

𝑥 = 𝐴𝑥 + 𝐵𝑉                       (5) 

 

𝑦 = 𝐶𝑥                       (6) 

 

Where  𝐴, 𝐵 and 𝐶 are the matrices of relevant dimension 

which are required to design the controller. 𝑉 represents the 

input voltage applied to the motor and the interested 

linearization point is unstable equilibrium of the system. 

 

𝑥 =  0 0 0 0  𝑇  

 

 Approximating the angle of approximation very small 

gives 𝑠𝑖𝑛𝜃 = 𝜃, 𝑐𝑜𝑠𝜃 = 1 and 𝜃 = 0 the following 

linearization equations occurred. 

 

𝜃 =
(𝑚𝑔𝑙𝜃 −𝑚𝑙 𝑥 )

(𝐼+𝑚𝑙2)
                                         (7) 

 

𝑥 =
(𝐹−𝑚𝑙 𝜃 )

(𝑀+𝑚)
                          (8) 

 

 The more convenient way for state space representation of 

the above equations is, 

 

𝜃 =
𝐾𝑚

2 𝐾𝑔
2

𝑅𝑟2(𝑀𝑡𝐿−𝑚𝑙 )
𝑥 +

𝑔

(𝐿−𝑚𝑙 )
𝜃 −

𝐾𝑚 𝐾𝑔

𝑅𝑟(𝑀𝑡𝐿−𝑚𝑙 )
𝑉     (9) 

 

𝑥 = −
𝐿𝐾𝑚

2 𝐾𝑔
2

𝑅𝑟2(𝐿𝑀𝑡−𝑚𝑙 )
𝑥 −

𝑚𝑔𝑙

(𝐿𝑀𝑡−𝑚𝑙 )
𝜃 +

𝐿𝐾𝑚𝐾𝑔

𝑅𝑟(𝐿𝑀𝑡−𝑚𝑙 )
𝑉  (10) 

 

where 𝐿 =
𝐼+𝑚𝑙2

𝑚𝑙
 and  𝑀𝑡 = 𝑀 + 𝑚. 

 

as above the state vector, 

 

𝑥 = [𝑥2  𝑥  𝑥4 𝜃 ]
𝑇  

 

represent the first order system from (9) and (10) as the 

state space form, 

 

𝑥 =

 
 
 
 
 
 

0 1

0
𝐾𝑚

2 𝐾𝑔
2

𝑅𝑟2(𝑀𝑡𝐿−𝑚𝑙 )

0          0
𝑔

(𝐿−𝑚𝑙 )
         0

    0 0

   0 −
𝐿𝐾𝑚

2 𝐾𝑔
2

𝑅𝑟2(𝐿𝑀𝑡−𝑚𝑙 )

0 1

−
𝑚𝑔𝑙

(𝐿𝑀𝑡−𝑚𝑙 )
0
 
 
 
 
 
 

𝑥 +

                 

 
 
 
 
 

0
𝐿𝐾𝑚 𝐾𝑔

𝑅𝑟(𝐿𝑀𝑡−𝑚𝑙 )

0

−
𝐾𝑚 𝐾𝑔

𝑅𝑟(𝑀𝑡𝐿−𝑚𝑙 ) 
 
 
 
 

𝑉                                   (11) 

 
 

 
Figure1: Inverted Pendulum mounted on mobile robot 
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    𝑦 =  
1 0
0 0

0 0
1 0

              (12) 

 

III. DESIGN OF CONTROLLER: AN LMI APPROACH 

 

In this section, it is portrayed how a state feedback 

controller for the given system explained in section II can be 

mounted as an LMI based convex problem [6]. 

For the linearized model of the system explained in 

equation (11) and (12) input 𝑉 can be formulated as a linear 

function of state vector i.e. 𝑉 𝑡 = 𝐾𝑥(𝑡) where 𝐾is gain of 

state feedback controller.  Now the state space equations can 

be formulated as follows, 

 

𝑥  𝑡 =  𝐴 + 𝐵𝐾 𝑥 𝑡 ,            𝑥(0) = 𝑥0  (13) 

 

 By applying LMI on the system family of controller 

design problem such that the stabilized state is attained and 

control effort is reduced relating to a measure of mean square 

deviation. 

 The global asymptotic stability of (13) can be attained by 

the Lyapunov function, 

 

                                    𝑉(𝑥) = 𝑥𝑇𝑃𝑥                      (14) 

 

For stability the derivative of 𝑉(𝑥) to be negative for the 

solution of (13). Here Lyapunov function 𝑃 must be 

symmetric positive definite (𝑃 > 0). The control problem is 

to find a Lyapunov function 𝑃 and a controller gain  𝐾 that 

minimizes the bound 𝑥0
𝑇𝑃𝑥0. The solution of this problem can 

be determined by getting a Lyapunov function and drawing 𝐾 

which leads to a satisfied performance bound. From which the 

optimization problem can be formulated as,  

 

 
                                min 𝑥0

𝑇𝑃𝑥0

                             s. t. P > 0
                      (15) 

(𝐴 + 𝐵𝐾)𝑇 + 𝑃 𝐴 + 𝐵𝐾 + 𝑄 + 𝐾𝑇𝑅𝐾 ≤ 0 

 

This optimization problem taken as SDP unlikely Semi-

Definite Programming (SDP) [6], as the constrained contained 

by this problem are bilinear term 𝑃 and quadratic term 𝐾. This 

problem can be taken as SDP with some translations. 

Introducing new matrices  𝑌 and 𝑊 such that, 

 

𝑌 = 𝑃−1, 𝑊 = 𝐾𝑃−1 

 

Where 𝑃 is greater than zero and 𝑌 is also greater than 

zero. This leads us, 

 

𝑃 = 𝑌−1, 𝐾 = 𝑊𝑌−1 

 

The substitution of  𝑌 and 𝑊 in the place of 𝑃 and 𝐾 in 

equation (15) with the pre-multiplication and post-

multiplication by  𝑌, we get the inequality as, 

 

 
   𝑌𝐴𝑇 + 𝑊𝑇𝐵𝑇 + 𝐴𝑌 + 𝐵𝑊 + 𝑌𝑄𝑌 + 𝑊𝑇𝑅𝑊 ≤ 0    (16) 

 

 

  The LMI representation of equation (15) can be formulated 

as, 

 

                                      
−𝑍 𝑌 𝑊𝑇

𝑌 𝑄−1 0
𝑊 0 𝑅

 ≥ 0              (17) 

 

where the value of  𝑍 is, 

 

𝑍 = (𝑌𝐴𝑇 + 𝑊𝑇𝐵𝑇 + 𝐴𝑌 + 𝐵𝑊) 

 

and the terms 𝑅 and 𝑄 are invertible with Schur compliment 

hence the cost can be formulated as LMI, 

 

                                      
𝛾 𝑥0

𝑇

𝑥0 𝑌
 ≥ 0                                 (18) 

 

The resulting LMI formulation of the convex problem is as 

follows, 
   min  γ 

s. t.  
−𝑍 𝑌 𝑊𝑇

𝑌 𝑄−1 0
𝑊 0 𝑅

 
 ≥ 0        

 

                              
𝛾 𝑥0

𝑇

𝑥0 𝑌
 ≥ 0                                (19) 

 

IV. SIMULATION RESULTS 

 

The simulation substantiation of the given under-actuated 

system after applying LMI proposed in section II. The 

response of the system is as shown in Figure 2. For solving the 

LMI CVX Toolbox [9] is used in MTLAB. 

The under-actuated system gives lower settling time and 

lower damping over the values provided in [10] based on the 

derivation (3) and putting the values in (11) and (12), in  the 

matrix equation the values of  𝐴 and 𝐵 are as follows, 

 

 

𝐴 =  

0 1
0 −15.14

0 0
−3.04 0

0 0
0   37.23 

0 1
31.61 0

 , 𝐵 =   

0
3.39

0
−8.33

   

 

After solving the stabilization problem with LMI based 

control, the value 𝐾 is [9.9998,  16.5573,  64.5656,  9.2759], 

by taking the value of 𝑄 as diag[100, 1, 2000, 1] and 𝑅 as 1 

we reach the required specifications. 

 

 

 

V. CONCLUSION 

 

       In this research state feedback controller using LMI is  

 

 
 

Figure 2: Response of the system after applying LMI 
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designed for stabilizing the highly unstable inverted 

pendulum mounted on mobile robot. This controller is 

obtained using convex optimization hence the controlled 

system shows faster yet accurate responses, which were the 

desired system requirement. Stability of the controller is 

guaranteed by using Lyapunov stability approach.  

  As seen from the simulation results, the controller 

stabilizes the pendulum in less than 2 seconds. While the 

LQR and other techniques does not give global stability and 

takes more time to stabilizing and shows more oscillations. 
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