

Linux Network Security Access & Monitoring

Service Tools

Mahesh Kumar 1
1 Department of Computer Science & Engineering,

Ganga Institute of Technology and Management,

Kablana, Jhajjar, Haryana, INDIA

Abstract--It has been recognized that securing applications is

only half of the battle: a computer system must also employ

security policies at the OS level, and the current model of user

vs. administrator that we find in standard Unix is insufficient.

For the basic security features, Linux has password

authentication, file system discretionary access control, and

security auditing. These three fundamental features are

necessary to achieve a security evaluation at the C2 level [4].

Most commercial server-level operating systems, including AIX

(IBM), Windows NT, and Solaris, have been certified to this C2

level. Generally speaking workstations/servers are used by

people that don't really care about the underlying technology,

they just want to get their work done and retrieve their email in

a timely fashion. There are however many users that will have

the ability to modify their workstation, for better or worse

(install packet sniffers, warez ftp sites, www servers, irc bots,

etc). To add to this most users have physical access to their

workstations, meaning you really have to lock them down if you

want to do it right.

 Keywords:- Security, Linux OS, Server, Security, monitoring tool

I. INTRODUCTION

By expanding the basic standard security features we have:

 User and group separation

 File system security

 Audit trails

 PAM authentication

A. User and Group Separation

 User accounts are used to verify the identity of the person

using a computer system. By checking the identity of a user

through username and password credentials, the system is

able to determine if the user is permitted to log into the

system and, if so, which resources the user is allowed to

access.

Groups are logical constructs that can be used to group user

accounts together for a particular purpose. For example, if a

company has a group of system administrators, they can all

be placed in a system administrator group with permission to

access key resources of the OS. In addition, through group

creation and assignment of privileges, access to restricted

resources can be controlled for those who need them and

denied to others.

The ability for a user to access a machine is determined by

whether or not that user's account exists. Access to an

application or file is granted based on the permission settings

for the file. This helps to ensure the integrity of sensitive

information and key resources against accidental or

purposeful damage by users.

After a normal user account is created, the user can log into

the system and access any applications or files they are

permitted to access. Linux determines whether or not a user

or group can access these resources based on the permissions

assigned to them.

There are three permissions for files, directories, and

applications. Table 1 lists the symbols used to indicate each

of them. Each of the three permissions is assigned to three

defined categories of users. The categories are listed in Table

2.

TABLE 1.

Permission character symbols

Symbol Description

r Indicates that a given category of user can read a file.

w Indicates that a given category of user can write to a file.

x
Indicates that a given category of user can execute the

file.

- A fourth symbol indicates that no access is permitted.

TABLE 2.

PERMISSION CATEGORIES

Category Description

Owner The owner of the file or application.

Group
The group that owns the file or

application.

Everyone All users with access to the system.

 One can easily view the permissions for a file by

invoking a long format listing using the command ls -l.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

1

For instance, if the user kambing creates an executable

file named foo, the output of the command ls -l foo

would look something like this:

 -rwxrwxr-x 1 kambing kambing 0 Sep 2 12:25 foo

 The permissions for this file are listed at the start of

the line, starting with set of rwx.

 This first set of symbols defines owner access.

 The next set of rwx symbols define group

access,

 The last set of symbols defining access

permitted for all other users.

 This listing indicates that the file is readable, writable,

and executable by the user who owns the file (user

kambing) as well as the group owning the file (which is

a group named kambing). The file is also world-

readable and world-executable, but not world-writable.

II. FILE SYSTEM SECURITY

 A very true statement of a UNIX/Linux system,

everything is a file; if something is not a file, it is a

process. Most files are just files, called regular files;

they contain normal data, for example text files,

executable files or programs, input to or output from a

program and so on. While it is practically safe to say

that everything you encounter on a Linux system is a

file, there are some exceptions as listed below:

 Directories: files that are lists of other files.

 Special files: the mechanism used for input

and output. Most special files are in /dev for

example USB and CD-ROM.

 Links: a system to make a file or directory

visible in multiple parts of the system's file

tree. It is a shortcut.

 (Domain) sockets: a special file type, similar

to TCP/IP sockets, providing inter-process

networking protected by the file system's

access control.

 Named pipes: act more or less like sockets and

form a way for processes to communicate

with each other, without using network socket

semantics.

 The following table gives an overview of the characters

determining the file type:

TABLE 3.

FILE TYPES CHARACTER SYMBOLS

Symbol Meaning

- Regular file

d Directory

l Link

c Special file

s Socket

p Named pipe

b Block device

 On Linux system, every file is owned by a user and a group

user. There is also a third category of users, those that are not

the user owner and don't belong to the group owning the file.

For each category of users, read, write and execute

permissions can be granted or denied.

The long option to list files using the ls -l command, also

displays file permissions for these three user categories; they

are indicated by the nine characters that follow the first

character, which is the file type indicator at the beginning of

the file properties line. As seen in the following examples,

the first three characters in this series of nine display access

rights for the actual user that owns the file.

 ls -l Mine

-rw-rw-r-- 1 mike users 5 Jul 15 12:39 Mine

ls -l /bin/ls

-rwxr-xr-x 1 root root 45948 Aug 10 15:01 /bin/ls*

The next three are for the group owner of the file, the last

three for other users. The permissions are always in the same

order: read, write, execute for the user, the group and the

others. The first file is a regular file (first dash). Users with

user name mike or users belonging to the group users can

read and write (change/move/delete) the file, but they can't

execute it (second and third dash). All other users are only

allowed to read this file, but they can't write or execute it

(fourth and fifth dash).

The second example is an executable file, the difference is

everybody can run this program, but you need to be root to

change it.

For easy use with commands, both access rights or modes

and user groups have a code shown in Table 4 and 5.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

2

TABLE 4.

ACCESS MODE CODES

Code Meaning

0 or -
The access right that is supposed to be on this place is not

granted.

4 or r
read access is granted to the user category defined in this

place

2 or

w

write permission is granted to the user category defined in

this place

1 or x
execute permission is granted to the user category defined

in this place

TABLE 5.

USER GROUP CODES

Code Meaning

u user permissions

g group permissions

o permissions for others

This straight forward scheme is applied very strictly, which

allows a high level of security even without network security.

Among other functions, the security scheme takes care of

user access to programs; it can serve files on a need-to-know

basis or least privilege and protect sensitive data such as

home directories and system configuration files. We can use

the chmod command to modify the file permission, changing

of the access mode of a file. The chmod command can be

used with alphanumeric or numeric options, whatever you

like best. The following shows the examples.

>/hello

bash: ./hello: bad interpreter: Permission denied

>cat hello

#!/bin/bash

echo "Hello, World"

>ls -l hello

-rw-rw-r-- 1 mike mike 32 Jul 1 16:29 hello

>chmod u+x hello

>./hello

Hello, World

>ls -l hello

-rwxrw-r-- 1 mike mike 32 Jul 1 16:29 hello*

The + and - operators are used to grant or deny a given right

to a given group. Combinations separated by commas are

allowed. The following is another example, which makes the

file from the previous example a private file to user mike:

>chmod u+rwx,go-rwx hello

>ls -l hello

-rwx------ 1 mike mike 32 Jan 15 16:29 hello*

 If you encounter problems resulting in an error message

saying that permission is denied, it is usually a problem with

access rights in most cases.

When using chmod with numeric arguments, the values for

each granted access right have to be counted together per

group. Thus we get a 3-digit number, which is the symbolic

value for the settings chmod has to make. The following table

lists the most common combinations:

TABLE 5.

FILE PROTECTION WITH CHMOD

 If you enter a number with less than three digits as an

argument to chmod, omitted characters are replaced with

zeros starting from the left. There is actually a fourth digit on

Linux systems that precedes the first three and sets special

access modes.

A. The File Mask

 When a new file is saved somewhere, it is first subjected to

the standard security procedure. Files without permissions

don't exist on Linux. The standard file permission is

determined by the mask for new file creation. The value of

this mask can be displayed using the umask command:

Command Meaning

chmod 400 file
To protect a file against accidental

overwriting.

chmod 500

directory

To protect you from accidentally removing,

renaming or moving files from this directory.

Chmod 600 file
A private file only changeable by the user

who entered this command.

chmod 644 file
A publicly readable file that can only be

changed by the issuing user.

chmod 660 file

Users belonging to your group can change

this file; others don't have any access to it at

all.

chmod 700 file

Protects a file against any access from other

users, while the issuing user still has full

access.

chmod 755

directory

For files that should be readable and

executable by others, but only changeable by

the issuing user.

chmod 775 file Standard file sharing mode for a group.

chmod 777 file Everybody can do everything to this file.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

3

 >umask

0002

Instead of adding the symbolic values to each other, as with

chmod, for calculating the permission on a new file they need

to be subtracted from the total possible access rights. In the

example above, however, we see 4 digits displayed, yet there

are only 3 permission categories: user, group and other. The

first zero is part of the special file attributes settings. It might

just as well be that this first zero is not displayed on your

system when entering the umask command and that you only

see 3 numbers representing the default file creation mask.

Each UNIX-like system has a system function for creating

new files, which is called each time a user uses a program

that creates new files, for instance, when downloading a file

from the Internet, when saving a new text document. This

function creates both new files and new directories. Full read,

write and execute permission is granted to everybody when

creating a new directory. When creating a new file, this

function will grant read and write permissions for everybody,

but set execute permissions to none for all user categories. In

this case, before the mask is applied, a directory has

permissions 777 or rwxrwxrwx, a plain file 666 or rw-rw-rw-

.

The umask value is subtracted from these default permissions

after the function has created the new file or directory. Thus,

a directory will have permissions of 775 by default, a file

664, if the mask value is (0)002. This is demonstrated in the

following examples:

 >mkdir newdir

>ls -ld newdir

drwxrwxr-x 2 mike mike 2096 Jul 28 13:45 newdir/

>touch newfile

>ls -l newfile

-rw-rw-r-- 1 mike mike 0 Jul 28 13:52 newfile

 A directory gets more permission by default, it always has

the execute permission. If it wouldn't have that, it would not

be accessible.

If you log in to another group using the newgrp command,

the mask remains unchanged. Thus, if it is set to 002, files

and directories that you create while being in the new group

will also be accessible to the other members of that group;

you don't have to use chmod. The root user usually has

stricter default file creation permissions as shown below:

 [root@tenouk root]# umask 022

 These defaults are set system-wide in the shell resource

configuration files, for instance /etc/bashrc or /etc/profile.

You can change them in your own shell configuration file.

III. AUDIT TRAILS

 Linux kernel 2.6 comes with auditd daemon. It’s responsible

for writing audit records to the disk. During startup, the rules

in /etc/audit.rules are read by this daemon. You can open

/etc/audit.rules file and make changes such as setup audit file

log location and other option. The default file is good enough

to get started with auditd. In order to use audit facility you

need to use following utilities:TABLE 6.

AUDIT UTILITY

IV. Pluggable Authentication Modules authentication

(PAM)

PAM [5] was invented by SUN Microsystems. Linux-PAM

provides a flexible mechanism for authenticating users. It

consists of a set of libraries that handle the authentication

tasks of applications on the system. The library provides a

stable general interface to which privilege-granting programs

(such as login) defer to perform standard authentication tasks.

Historically, authentication of Linux users relied on the input

of a password which was checked with the one stored in

/etc/passwd. At each improvement (e.g. /etc/shadow, one-

time passwords) each program (e.g. login, ftp) had to be

rewritten. PAM is a more flexible user authentication

mechanism. Programs supporting PAM must dynamically

link themselves to the modules in charge of authentication.

The administrator is in charge of the configuration and the

attachment order of modules. All applications using PAM

must have a configuration file in /etc/pam.d. Each file is

composed of four columns:

Utility Description

auditctl

A command to assist controlling the kernel’s audit

system. You can get status, and add or delete rules

into kernel audit system

ausearch
A command that can query the audit daemon logs

based for events based on different search criteria.

aureport
A tool that produces summary reports of the audit

system logs.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

4

TABLE 7.

PAM’S PAM.D CONTENT

Other PAM functionalities are listed in the following Table.

TABLE 8.

OTHER PAM FUNCTIONALITY

Functionality Description

/etc/pam.d/other file

Provides default configuration for all

modules not specified in the

configuration file of the application.

pam_cracklib

Uses the cracklib library to check the

"strength" of a password and to check

it was not built based on the old one.

pam_limits

This module can restrict, depending

on the user and/or group, the number

of simultaneous processes, CPU time,

the number of files simultaneously

opened, their size, and the maximum

number of simultaneous connections.

The configuration file is:

/etc/security/limits.conf

pam_rootok

Enables root to access a service

without using his password. To be

used with chfn or chsh and not with

login.

pam_time

Control the access time. The

configuration file is:

/etc/security/time.conf.

pam_wheel
Allow access to root only to users of

the wheel group. For use with su.

pam_cap
This module can force all privileges

to a user.

 Keep in mind that PAM however does not itself have an

authenticated access to the kernel.

 LINUX SECURITY EXTENSIONS

 The Linux family of products has provided a highly secure

environment since its original delivery in early 2002. The

features discussed in the following sections have been added

to the Linux OS. For example, the Red Hat Enterprise Linux

Update 3, shipped in September 2004 contains:

 ExecShield [6] – With the No eXecute (NX) [7], [8],

or eXecute Disable (XD) and Segmentation features.

 Position Independent Executables (PIE) [9]

 Then, in Red Hat Enterprise Linux v.4, shipped in February

2005 contains the following security features:

 SecurityEnhanced Linux (SELinux) [10]

 Compiler and library enhancements [11]

 Advanced glibc memory corruption checker [11]

 Secure version of the printf and other string

manipulation functions. [11]

Column Description

Module type

 auth: user authentication

 account: user restriction (e.g.:
hour restriction)

 session: tasks to perform at
login and logout e.g.:
mounting directories

 password: update of the user
authentication token

success
control

 required: a least one of the
required modules

 requisite: all the requisite
modules

 sufficient: only one sufficient
module

 optional: a least one of the
required modules is necessary
if no other has

 succeeded

path to the
module

Usually /lib/security.

optional
arguments

-

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

5

 gcc buffer bound checking [11]

 In term of the Linux OS security breaches, most of the

problems originated from the buffer overflow issue. The

buffer overflow exploits unprotected and or unchecked fixed

sized buffers, overwriting the area beyond it. The overwritten

area may be filled with the malicious codes, containing code

that pointing to the customized return address. There are

many buffer locations in the memory area. It is used to

temporarily store data.

A. ExecShield

 The ExecShield supports two technologies that protect

application from being compromised by most of the buffer

exploit types. The goal of these features is to prevent code

that is maliciously written in the data areas of an application

from being executed. These NX/XD and Segmentation

features use different techniques but to achieve the similar

result. PAX [12], [13], [14] is similar, earlier technology that

will not be discussed here.

1) The NX/XD:

 The NX term is used by AMD for its Opteron/Athlon64

processors, while the XD is used by Intel for its Itanium2 and

the x86/EM64T processors. These capabilities provides a

new memory management feature that that allows individual

pages of an application’s memory to be marked as non

executable. The problem is, previously the only level of

control over memory pages was read and write. However, a

page that was enabled for read could also be executed.

This meant that data areas such as the stack, heap and I/O

buffers, which are typically only used for read/write could

also be used to execute codes. It is a common form of

exploit that involves writing code in a stack buffer and then

executing it. So the ability to disable execution enhances the

application and system security. The NX/XD support is

available for most new processors including the recent model

Intel x86 CPUs.

V. ADMINISTRATIVE MONITORING TOOLS

ACCESS

A. Telnet

Telnet is by far the oldest and well known remote access tool,

virtually ever Unix ships with it, and even systems such as

NT support it. Telnet is really only useful if you can

administer the system from a command prompt (something

NT isn’t so great at), which makes it perfect for Unix. Telnet

is incredibly insecure, passwords and usernames as well as

the session data flies around as plain text and is a favourite

target for sniffers. Telnet comes with all Linux distributions.

You should never ever use stock telnet to remotely

administer a system.

B. SSL Telnet

SSL Telnet is telnet with the addition of SSL encryption

which makes it much safer and far more secure. Using X.509

certificates (also referred to as personal certificates) you can

easily administer remote systems. Unlike systems such as

SSH, SSL Telnet is completely GNU and free for all use.

You can get SSL Telnet server and client from:

ftp://ftp.replay.com/.

C. SSH

SSH was originally free but is now under a commercial

license, it does however have many features that make it

worthwhile. It supports several forms of authentication

(password, rhosts based, RSA keys), allows you to redirect

ports, and easily configure which users are allowed to login

using it. SSH is available from: ftp://ftp.replay.com/. If you

are going to use it

commercially, or want the latest version you should head

over to: http://www.ssh.fi/.

D. LSH

LSH is a free implementation of the SSH protocol, LSH is

GNU licensed and is starting to look like the alternative

(commercially speaking) to SSH (which is not free anymore).

You can download it from: http://www.net.lut.ac.uk/psst/,

please note it is under development.

E. REXEC

REXEC is one of the older remote UNIX utilities, it allows

you to execute commands on a remote system, however it is

seriously flawed in that it has no real security model. Security

is achieved via the use of “rhosts” files, which specify which

hosts/etc may run commands, this however is prone to

spoofing and other forms of exploitation. You should never

ever use stock REXEC to remotely administer a system.

F. Slush

Slush is based on OpenSSL and supports X.509 certificates

currently, which for a large organization is a much better

(and saner) bet then trying to remember several dozen

passwords on various servers. Slush is GPL, but not finished

yet (it implements most of the

required functionality to be useful, but has limits). On the

other hand it is based completely in open source software

making the possibilities of backdoors/etc remote. Ultimately

it could replace SSH with something much nicer. You can get

it from: http://violet.ibs.com.au/slush/.

G. NSH

NSH is a commercial product with all the bells and whistles

(and I do mean all). It’s got built in support for encryption, so

it’s relatively safe to use (I cannot really verify this as it isn’t

open source). Ease of use is high, you cd //computername

and that ‘logs’ you into that

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

6

computer, you can then easily copy/modify/etc. files, run ps

and get the process listing for that computer, etc. NSH also

has a Perl module available, making scripting of commands

pretty simple, and is ideal for administering many like

systems (such as workstations). In addition to this NSH is

available on multiple platforms (Linux, BSD, Irix, etc.). NSH

is available from:

http://www.networkshell.com/, and 30 day evaluation

versions are easily downloaded.

H. Fsh

Fsh is stands for “Fast remote command execution” and is

similar in concept to rsh/rcp. It avoids the expense of

constantly creating encrypted sessions by bring up an

encrypted tunnel using ssh or lsh, and running all the

commands over it. You can get it from:

http://www.lysator.liu.se/fsh/.

I. secsh

secsh (Secure Shell) provides another layer of login security,

once you have logged in via ssh or SSL telnet you are

prompted for another password, if you get it wrong secsh

kills off the login attempt. You can get secsh at:

http://www.leenux.com/scripts/.

J. YaST

YaST (Yet Another Setup Tool) is a rather nice command

line graphical interface (very similar to scoadmin) that

provides an easy interface to most administrative tasks. It

does not however have any provisions for giving users

limited access, so it is really only useful for cutting down on

errors, and allowing new users to administer their systems.

Another problem is unlike Linuxconf it is not network aware,

meaning you must log into each system you want to

manipulate.

K. sudo

Sudo gives a user setuid access to a program(s), and you can

specify which host(s) they are allowed to login from (or not)

and have sudo access (thus if someone breaks into an

account, but you have it locked down damage is minimized).

You can specify what user a command will run as, giving

you a relatively fine degree of control. If granting users

access be sure to

specify the hosts they are allowed to log in from and execute

sudo, as well give the full pathnames to binaries, it can save

you significant grief in the long run (i.e. if I give a user setuid

access to "adduser", there is nothing to stop them editing

their path statement, and copying "bash" into /tmp). This tool

is very similar to super but with slightly less fine control.

Sudo is available for most distributions as a core package or a

contributed package. Sudo is available at:

http://www.courtesan.com/sudo/ just in case your distribution

doesn’t ship with it Sudo allows you to define groups of

hosts, groups of commands, and groups of users, making

long term administration simpler. Several /etc/sudoers

examples:

Give the user ‘seifried’ full access seifried ALL=(ALL) ALL

Create a group of users, a group of hosts, and allow then to

shutdown the server as root Host_Alias

WORKSTATIONS=localhost, station1, station2

User_Alias SHUTDOWNUSERS=bob, mary, jane

Cmnd_Alias REBOOT=halt, reboot, sync

Runas_Alias REBOOTUSER=admin

SHUTDOWNUSERS WORKSTATIONS=(REBOOTUSER)

REBOOT

L. Super

Super is one of the very few tools that can actually be used to

give certain users (and groups) varied levels of access to

system administration. In addition to this you can specify

times and allow access to scripts, giving setuid access to even

ordinary commands could have

unexpected consequences (any editor, any file manipulation

tools like chown, chmod, even tools like lp could

compromise parts of the system). Debian ships with super,

and there are rpm's available in the contrib directory

(buildhost is listed as "localhost", you might want to find the

source and compile it yourself). This is a very powerful tool

(it puts sudo to shame), but requires a significant amount of

effort to implement properly, I think it is worth the effort

though. The head end distribution site for super is at:

ftp://ftp.ucolick.org/pub/users/will/.

M. Remote

Webmin

Webmin is a (currently) a non commercial web based

administrative tool. It’s a set of perl scripts with a self

contained www server that you access using a www browser,

it has modules for most system administration functions,

although some are a bit temperamental. One of my favourite

features is the fact is that it holds it’s own username and

passwords for access to webmin, and you can customize what

each user gets access to (i.e. user1 can administer users, user2

can reboot the server, and user3 can fiddle with the apache

settings). Webmin is available at: http://www.webmin.com/.

N. Linuxconf

Linuxconf is a general purpose Linux administration tool that

is usable from the command line, from within X, or via it's

built in www server. It is my preferred tool for automated

system administration (I primarily use it for doing strange

network configurations), as it is relatively light from the

command line (it is actually split up into several modules).

From within X it provides an overall view of everything that

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

7

can be configured (PPP, users, disks, etc.). To use it via a

www browser you must first run Linuxconf on the machine

and add the host(s) or network(s) you want to allow to

connect (Conf > Misc > Linuxconf network access), save

changes and quit, then when you connect to the machine (by

default Linuxconf runs on port 98) you must enter a

username and password, it only accepts root as the account,

and Linuxconf doesn't support any encryption, so I would

have to recommend very strongly against using this feature

across public networks. Linuxconf ships with RedHat Linux

and is available at: http://www.solucorp.qc.ca/linuxconf/.

Linuxconf also doesn't seem to ship with any man pages/etc,

the help is contained internally which is slightly irritating.

O. COAS

The COAS project (Caldera Open Administration System) is

a very ambitious project to

provide an open framework for administering systems, from

a command line (with semi

graphical interface), from within X (using the qt widget set)

to the web. It abstracts the actual

configuration data by providing a middle layer, thus making

it suitable for use on disparate Linux platforms. Version 1.0

was just released, so it looks like Caldera is finally pushing

ahead with it. The COAS site is at: http://www.coas.org/.

P. Log files and other forms of monitoring

One integral part of any UNIX system are the logging

facilities. The majority of logging in Linux is provided by

two main programs, sysklogd and klogd, the first providing

logging services to programs and applications, the second

providing logging capability to the Linux kernel. Klogd

actually sends most messages to the syslogd facility but will

on occasion pop up messages at the console (i.e. kernel

panics). Sysklogd actually handles the task of processing

most messages and sending them to the appropriate file or

device, this is configured from within /etc/syslog.conf. By

default most logging to files takes place in /var/log/, and

generally speaking programs that handle their own logging

(such as apache) log to /var/log/progname/, this centralizes

the log files and makes it easier to place them on a separate

partition (some attacks can fill your logs quite quickly, and a

full / partition is no fun). Additionally there are programs that

handle their own interval logging, one of the more interesting

being the bash command shell. By default bash keeps a

history file of commands executed in

~username/.bash_history, this file can make for extremely

interesting reading, as oftentimes many admins will

accidentally type their passwords in at the command line.

Apache handles all of it's logging internally, configurable

from httpd.conf and extremely

flexible with the release of Apache 1.3.6 (it supports

conditional logging). Sendmail handles it's logging

requirements via syslogd but also has the option (via the

command line -X switch) of logging all SMTP transactions

straight to a file. This is highly inadvisable as the file will

grow enormous in a short span of time, but is useful for

debugging. See the sections in network security on apache

and sendmail for more information.

Q. sysklogd / klogd

In a nutshell klogd handles kernel messages, depending on

your setup this can range from almost none to a great deal if

for example you turn on process accounting. It then passes

most messages to syslogd for actual handling, i.e. placement

in a logfile. the man pages for sysklogd, klogd and

syslog.conf are pretty good with clear examples. One

exceedingly powerful and often overlooked ability of syslog

is to log messages to a remote host running syslog. Since you

can define multiple locations for syslog messages (i.e. send

all kern messages to the /var/log/messages file, and to

console, and to a remote host or multiple remote hosts) this

allows you to centralize logging to a single host and easily

check log files for security violations and other strangeness.

There are several problems with syslogd and klogd however,

the primary ones being the ease of which once an attacker has

gained root access to deleting/modifying log files, there is no

authentication built into the standard logging facilities.

The standard log files that are usually defined in syslog.conf

are:

/var/log/messages

/var/log/secure

/var/log/maillog

/var/log/spooler

The first one (messages) gets the majority of information

typically, user login's, TCP_WRAPPERS dumps information

here, IP firewall packet logging typically dumps information

here and so on. The second typically records entries for

events like users

changing their UID/GID (via su, sudo, etc.), failed attempts

when passwords are required and so on. The maillog file

typically holds entries for every pop/imap connection (user

login and 30 logout), and the header of each piece of email

that goes in or out of the system (from whom, to where,

msgid, status, and so on). The spooler file is not often used

anymore as the number

of people running usenet or uucp has plummeted, uucp has

been basically replaced with ftp and email, and most usenet

servers are typically extremely powerful machines to handle

a full, or even partial newsfeed, meaning there aren't many of

them (typically one per ISP or more depending on size). Most

home users and small/medium sized business will not (and

should not in my opinion) run a usenet server, the amount of

bandwidth and machine power required is phenomenal, let

alone the security risks.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

8

You can also define additional log files, for example you

could add:

kern.* /var/log/kernel-log

And/or you can log to a separate log host:

*.emerg @syslog-host

mail.* @mail-log-host

Which would result in all kernel messages being logged to

/var/log/kernel-log, this is useful on headless servers since by

default kernel messages go to /dev/console (i.e. someone

logged in at the machines). In the second case all emergency

messages would be logged to the host “syslog-host”, and all

the mail log files would be sent to the “mail-log-host” server,

allowing you to easily maintain centralized log files of

various services.

R. secure-syslog

The major problem with syslog however is that tampering

with log files is trivial. There is however a secure versions of

syslogd, available at http://www.core-sdi.com/ssyslog/ (these

guys generally make good tools and have a good reputation,

in any case it is open source

software for those of you truly paranoid). This allows you to

cyrptographically sign logs and other ensure they haven’t

been tampered with, ultimately however an attacker can still

delete the log files so it is a good idea to send them to another

host, especially in the case of a firewall to prevent the hard

drive being filled up.

next generation syslog Another alternative is “syslog-ng”

(Next Generation Syslog), which seems much more

customizable then either syslog or secure syslog, it supports

digital signatures to prevent log tampering, and can filter

based on content of the message, not just the facility it comes

from or priority (something that is very useful for cutting

down on volume). Syslog-ng is available at:

http://www.balabit.hu/products/syslog-ng.html.

S. Log monitoring

1) Logcheck:

logcheck will go through the messages file (and others) on a

regular basis (invoked via crontab usually) and email out a

report of any suspicious activity. It is easily configurable

with several ‘classes’ of items, active penetration attempts

which is screams about immediately, bad activity, and

activity to be ignored (for example DNS server statistics or

SSH rekeying). Logcheck is available from:

http://www.psionic.com/abacus/logcheck/.

2) Colorlogs:

colorlogs will color code log lines allowing you to easily spot

bad activity. It is of somewhat questionable value however as

I know very few people that stare at log files on an on-going

basis. You can get it at:

http://www.resentment.org/projects/colorlogs/.

3) WOTS

WOTS collects log files from multiple sources and will

generate reports or take action based on what you tell it to do.

WOTS looks for regular expressions you define and then

executes the commands you list (mail a report, sound an

alert, etc.). WOTS requires you have perl installed and is

available from: http://www.vcpc.univie.ac.at/~tc/tools/.

4) Swatch:

swatch is very similar to WOTS, and the log files

configuration is very similar. You can download swatch

from: ftp://ftp.stanford.edu/general/security-tools/swatch/.

T. Kernel logging

1) Auditd:

auditd allows you to use the kernel logging facilities (a very

powerful tool). You can log mail messages, system events

and the normal items that syslog would cover, but in addition

to this you can cover events such as specific users opening

files, the execution of programs, of setuid programs, and so

on. If you need a solid audit trail then this is the tool for you,

you can get it at: ftp://ftp.hert.org/pub/linux/auditd/.

U. Shell logging

1) bash

I will also cover bash since it is the default shell in most

Linux installations, and thus it's logging facilities are

generally used. bash has a large number of variables you can

configure at or during run time that modify how it behaves,

everything from the command prompt style to how many

lines to keep in the log file.

2) HISTFILE

name of the history file, by default it is

~username/.bash_history

3) HISTFILESIZE

maximum number of commands to keep in the file, it rotates

them as needed.

4) HISTSIZE

the number of commands to remember (i.e. when you use the

up arrow key).

The variables are typically set in /etc/profile, which

configures bash globally for all users, the values can however

be over-ridden by users with the ~username/.bash_profile

file, and/or by manually using the export command to set

variables such as export EDITOR=emacs. This is one of the

reasons user directories should not be world readable, as the

bash_history file can contain a lot of valuable information to

a hostile party. You can also set the file itself non world

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

9

readable, set your .bash_profile not to log, set the file non

writeable (thus denying bash the ability to write and log to it)

or link it to /dev/null (this is almost always a sure sign of

suspicious user activity, or a paranoid user). For the root

account I would highly

VI. CONCLUSION

 The fundamental Linux securities not change so much

however there are many Linux security and monitoring

extensions enhancement tools. These extensions and tools

seem overlapped in many aspects. There should be an

independent body that coordinates Linux security framework

or tools development and adoption.

We can appreciate that although without starting from scratch

in designing new secure kernel, the approaches to provide a

secure OS start from designing compiler and using new safer

C/C++ libraries.

In dealing with the current vulnerabilities we need to face

many new challenges from time to time.

REFERENCES

 [1] The Linux Kernel Archives site, “The primary site for the Linux kernel
source”, http://kernel.org/

[2] The Linux Distributions information site, http://distrowatch.com/

[3] Buffer overflows tutorial,
http://www.tenouk.com/Bufferoverflowc/Bufferoverflow1.html

[4] USDA’s C2 LEVEL OF TRUST information,

http://www.ocio.usda.gov/directives/doc/DM3535-001.htm
[5] The Linux-PAM Guides,

http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/

[6] The first patch was released by Ingo Molnar of Red Hat and first released
in May 2003, ExecShield information,

http://people.redhat.com/mingo/exec-shield/

[7] NX/XD bit information at Wikipedia,
http://en.wikipedia.org/wiki/NX_bit

[8] Geek.com, “Desktop NX/XD-enabled Intel processors already available”,

http://www.geek.com/desktop-nxxd-enabled-intel-processors-already-
available/?rfp=dta

[9] linuxfromscratch.org, Position Independent Executables (PIE)

information, http://www.linuxfromscratch.org/hlfs/view/unstable/glibc-
2.6/chapter02/pie.html

[10] Security-Enhanced Linux homepage at National Security Agency

(NSA)/Central Security Service (CSS), http://www.nsa.gov/selinux/

[11] Proceedings of the GCC Developers Summit, Ottawa, Ontario Canada,

May 25–27, 2003, gccsummit-2003-proceedings.pdf
[12] Homepage of The PaX Team, http://pax.grsecurity.net/

[13] kerneltrap.org, "Linux: PaX vs. ExecShield, An ExecShield

Perspective", January 20, 2005 - 6:40pm, by Jeremy,
http://kerneltrap.org/node/4590

[14] kerneltrap.org, "Pax vs. ExecShield: Blowing away the smoke", July 9,

2005 - 5:59am, by bluefoxicy on July 9, 2005 - 5:59am,
http://kerneltrap.org/node/5396

[15] Rationale for TR 24731 Extensions to the C Library Part I: Bounds-

checking interfaces, www.open-
std.org/JTC1/SC22/WG14/www/docs/TR24731-Rationale.pdf

[16] ISO/IEC WDTR 24731-2, Specification for Safer C Library Functions

— Part II: Dynamic Allocation Functions, www.open-
std.org/jtc1/sc22/wg14/www/docs/n1193.pdf

[17] Specification for Safer, More Secure C Library Functions, ISO/IEC

draft Technical Report, www.open-
std.org/jtc1/sc22/wg14/www/docs/n1135.pdf

[18] The LOCK project, O. S. Saydjari, J. M. Beckman, and J. R. Leaman.

LOCK Trek: Navigating Uncharted Space. In Proceedings of the 1989

IEEE Symposium on Security and Privacy, pages 167-175, 1989.

[19] Distributed Trusted Mach (DTMach), T. Fine and S. E. Minear.

Assuring Distributed Trusted Mach. In Proceedings IEEE Computer
Society Symposium on Research in Security and Privacy, pages 206-

218, May 1993.

[20] The Distributed Trusted Operating System (DTOS) project, S. E.
Minear. Providing Policy Control Over Object Operations in a Mach

Based System. In Proceedings of the Fifth USENIX UNIX Security
Symposium, pages 141-156, June 1995.

[21] The Distributed Trusted Operating System (DTOS) Home Page

http://www.cs.utah.edu/flux/fluke/html/dtos/HTML/dtos.html
[22] University of Utah, The Flux Research Group,

http://www.cs.utah.edu/flux/

[23] University of Utah, Fluke: Flux µ-kernel Environment,
http://www.cs.utah.edu/flux/fluke/html/index.html

[24] Flask: Flux Advanced Security Kernel,

http://www.cs.utah.edu/flux/fluke/html/flask.html
[25] Role Set Based Access Control, RSBAC, MAC kernel security

enhancement project for Linux. http://www.rsbac.org/why

[26] Multi Level security (MLS), “SELinux and MLS: Putting the Pieces
Together”, by Chad Hanson, Trusted Computer Solutions, Inc.

[27] Trusted Computing Platform Alliance (TCPA), an initiative led by Intel,

http://www.trustedpc.org/
[28] Trusted Computing FAQ, “TC / TCG / LaGrande / NGSCB / Longhorn

/ Palladium / TCPA”, Version 1.1, August 2003, by Ross Anderson,

http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html
[29] IBM PCI Cryptographic Coprocessor, http://www-

03.ibm.com/security/cryptocards/pcicc/overview.shtml

[30] The Bastille Linux homepage, http://www.bastille-linux.org/

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETEMS-2015 Conference Proceedings

Volume 3, Issue 10

Special Issue - 2015

10

