Example 2.2.1 Linear Connections on Manifold Admitting F (2k + P, P)-Structure

Ram Swaroop, Abhishek Singh, Prakash Kumar

Abstract. D. Demetropoulou [2] and others have studied linear connections in the manifold admitting f(2v+3,-1)-structure. The aim of the present paper is to study some properties of linear connections in a manifold admitting F(2K+P, P)-structure. Certain interesting results have been obtained.

Key words. Linear connection, projection, geodesic, parallelism.

1. Preliminaries

Let F be a non-zero tensor field of the type (1, 1) and of class C1 on an n-dimensional manifold Mⁿ such that [5, 8]

$$F^{2K+P} + F^{P} = 0, (1.1)$$

where K and P is a fixed positive integer greater than or equal to 1. The rank of (F) = r = constant.

Let us define the operators on M as follows [5, 8]

$$l = -F^{2K}, m = I + F^{2K}$$
 (1.2)

where I denotes the identity operator.

We will state the following two theorems [5]

Theorem 1.1. Let M^n be an F-structure manifold satisfying (1.1), then

a.
$$l + m = I$$
,
b. $l2 = l$,
c. $m2 = m$,
d. $lm = ml = 0$.

Thus for (1, 1) tensor field $F(\neq 0)$ satisfying (1.1), there exist complementary distributions D_l and D_m corresponding to the projection operators l and m respectively. Then, dim $D_l = r$ and dim $D_m = (n-r)$.

Theorem 1.2. We have

a.
$$lF = Fl = F$$
, $mF = Fm = 0$.
b. $F^{2K}m = 0$, $F^{2K}l = -l$. (1.4)

Thus F^K acts on D_l as an almost complex structure and on D_m as a null operator.

Let us define the operators \overline{V} and \widetilde{V} on M^n in terms of an arbitrary connections \overline{V} as under

$$\overline{\nabla}_{X}Y = l\nabla_{X}(mY) + m\nabla_{X}(lY)$$
(1.5)

and

$$\widetilde{\nabla}_{X}Y = l\nabla_{lX}(mY) + m\nabla_{mX}(lY) + l[lX, mY] + m[mX, lY]$$
(1.6)

Then it is easy to show that $\overline{\nabla}$ and $\widetilde{\nabla}$ are linear connections on the manifold M^n [2]

2. Distributions anti-parallelism and anti-half parallelism

In this section, first we have the following definitions:

Definition 2.1. Let us call the distribution D_L as ∇ -anti parallel if for all TM^n denotes the tangent bundle of the manifold M^n .

Definition 2.2. The distribution D_L will be called ∇ anti-half parallel if for all $X \in D_L$ and $Y \in TM^n$, the vector field $\nabla_Y X \in D_M$, where

$$(\Delta F)(X,Y) = F\nabla_X Y - F\nabla_Y X - \nabla_{FX} Y + \nabla_Y FX$$
 (2.1)

F being a (1,1) tensor field on M^n satisfying the equation (1.1). In a similar manner, anti-half parallelism of the distribution D_M can also be defined.

Theorem 2.3. In the F(2K+P, P)-structure manifold M^n , the distribution D_L and D_M are anti-parallel with respect to connections \overline{V} and \widetilde{V} .

Proof. Let $X \in TM^n$ and $Y \in D_L$, therefore mY = 0. Hence in view of equation (1.5), we get

$$\overline{\nabla}_{X}Y = m\nabla_{X}(lY) \in D_{M}.$$

Hence the distribution D_L is anti-half parallel with respect to the linear connection $\overline{\nabla}$. Similarly, it can also be shown that D_M is also $\overline{\nabla}$ is also anti-parallel.

Again in view of the equation (1.5), taking mY = 0, we obtain

$$\widetilde{\nabla}_{X}Y = m\nabla_{mX}(lY) + m[mX, lY] \in D_{M}.$$
 (2.2)

1

www.ijert.org

Thus the distribution D_L is anti-parallel with respect to the linear connection $\widetilde{\nabla}$. A similar result for D_M can also be proved in a similar manner.

Theorem 2.4. In the F(2K+P, P)-structure manifold M^n , the distribution D_L and D_M are anti-parallel with respect to connection \overline{V} if and only if \overline{V} and $\overline{\overline{V}}$ are equal.

Proof. Since the distributions D_L and D_M are anti-parallel with respect

to the ∇ , hence

$$l\nabla_{\mathbf{X}}(l\mathbf{Y}) = \mathbf{m}\nabla_{\mathbf{X}}(\mathbf{m}\mathbf{Y}) = 0, \tag{2.3}$$

for the vector fields $X, Y \in TM^n$.

Since l + m = I, hence in view of equation (2.3), it follows that

$$\nabla_{\mathbf{X}}(l\mathbf{Y}) = \mathbf{m}\nabla_{\mathbf{X}}(l\mathbf{Y}),$$

 $\overline{\nabla}_{X}Y = \nabla_{X}Y.$

$$\nabla_{\mathbf{X}}(\mathbf{mY}) = l\nabla_{\mathbf{X}}(\mathbf{mY}) \tag{2.4}$$

Thus in view of the equations (1.5) and (2.4), it follows that

Hence, the connections ∇ and $\overline{\nabla}$ are equal.

The converse can also be proved easily.

Theorem 2.5. In a F(2K+P, P)-structure manifold M^n , the distribution D_M is anti-half parallel with respect to connection $\overline{\nabla}$ if

$$m\nabla_{FX}(lY) = m\overline{\nabla}_{Y}(FX),$$
 (2.5)

for arbitrary $X \in D_M$ and $Y \in TM^n$.

Proof.

Since mF = Fm = 0, hence in view of the equation (2.1), we get for the connection $\overline{\nabla}$

$$m(\Delta)(X, Y) = m\overline{\nabla}_Y(FX) - m\nabla_{FX}(Y).$$
 (2.6)

By virtue of the equation (1.5), the above equation (2.6) takes the form

$$m(\Delta F)(X, Y) = m\{l\overline{\nabla}_Y (mFX) + m\overline{\nabla}_Y (lFX)\}$$

$$- m\{l\nabla_{FX}(mY) + m\nabla_{FX}(lY)\}. \tag{2.7}$$

Since, ml = lm = 0; Fl = lF = F and m is the projection operator, the above equation (2.7) takes the form,

$$m(\Delta F)(X, Y) = m\overline{\nabla}_Y(FX) - m\nabla_{FX}(lY).$$
 (2.8)

Since the distribution D_M is $\overline{\nabla}$ anti-half parallel so far all $X{\in}D_M,\,Y\in TM^n,$

$$m(\Delta F)(X, Y) \in D_L$$

Thus,

$$m\overline{\nabla}_{Y}(FX) = m\nabla_{FX}(lY)$$
.

Hence, the theorem is proved.

Theorem 2.6. In the manifold M^n equipped with F(2K+P, P)structure, the distribution D_L is anti-half parallel with respect
to the connection $\overline{\nabla}$ if

$$F\nabla_{X}(lY) = l\nabla_{FX}(mY),$$

for arbitrary $X \in D_L$ and $Y \in TM^n$.

Proof. Proof follows easily in a way similar to that of the theorem 2.5.

Theorem 2.7. In the F(2K+P, P)-structure manifold M^n , the distribution D_M is anti-half parallel with respect to the connection \widetilde{V} if for $X \in DM$ and $Y \in TM^n$ the equation

$$m\nabla_{mY}(FX) + m[mY, FX] = 0$$

is satisfied.

Proof. For $X \in D_M$ and $Y \in TM^n$, we have for the connection $\widetilde{\nabla}$

$$(\Delta F)(X, Y) = F\widetilde{\nabla}_X Y - F\widetilde{\nabla}_Y X - \widetilde{\nabla}_{FX} Y + \widetilde{\nabla}_Y FX. \tag{2.9}$$

As Fm = mF = 0, hence from the above equation (2.9), it follows that

$$m(\Delta F)(X, Y) = m\widetilde{\nabla}_Y FX - m\widetilde{\nabla}_{FX}Y.$$
 (2.10)

In view of the equation (1.4) and (1.6), it is easy to show that

$$m\widetilde{\nabla}_{FX}Y = 0 \tag{2.11}$$

and

$$m\widetilde{\nabla}_{Y}FX = m\nabla_{mY}(FX) + m[mY, FX].$$
 (2.12)

Thus, we get

$$m(\Delta F)(X,Y) = m\nabla_{mY}(FX) + m[mY, FX]. \tag{2.13}$$

The distribution D_M will be $\widetilde{\nabla}$ anti-half parallel if $X \in D_M$, $Y \in TM^n$, the vector field $(\Delta F)(X,Y) \in D_L$. Thus,

$$m(\Delta F)(X, Y) = 0$$

i.e.,

$$m\nabla_{mY}(FX) + m[mY, FX] = 0.$$

Hence, the theorem is proved.

3. Geodesic in the manifold Mⁿ

Let C be a curve in M^n , T a tangent field and ∇ arbitrary connection on M^n . Then, we have

Definition 3.1. The curve C is a geodesic with respect to the connection ∇ if $\nabla_T T = 0$ along C.

Applying the definition for the connection $\overline{\nabla}$ and $\widetilde{\nabla}$, we have the following results in the $F(2K+P,\,P)$ -structure manifold M^n .

www.ijert.org 2

Theorem 3.2. A curve C is a geodesic in the manifold M^n with respect to the connection ∇ if the vector fields

$$\nabla_T T - \nabla_T (lT) \in D_M \text{ and } \nabla_T (lT) \in D_L.$$

Proof. The curve C will be $\overline{\nabla}$ geodesic if $\overline{\nabla}_T T = 0$.

In view of the equation (1.5), the above equation takes the form

$$l\nabla_{\mathbf{T}}(\mathbf{I}-l)\mathbf{T}+\mathbf{m}\nabla_{\mathbf{T}}(l\mathbf{T})=0$$

or equivalently

$$l\nabla_{\mathbf{T}}\mathbf{T} - l\nabla_{\mathbf{T}}(l\mathbf{T}) + m\nabla_{\mathbf{T}}(l\mathbf{T}) = 0,$$

which implies that

$$\nabla_{T} T - \nabla_{T} (lT) \in D_{M} \text{ and } \nabla_{T} (lT) \in D_{L}.$$

This proves the theorem.

Theorem 3.3. A curve C is a geodesic in the manifold M^n with respect to the connection ∇ if

$$\nabla_{lT}T - \nabla_{lT}(lT) + [lT,mT] \in D_M$$

And $\nabla_{mT}(lT) + [mT, lT] \in D_L$.

Proof. Using definition of ∇ from the equation (1.6), proof follows easily as of theorem 3.2.

Theorem 3.4. The (1, 1) tensor field l is covariant constant with respect to the connection $\overline{\nabla}$ if

$$m\nabla_{X}(lY) = l\nabla_{X}(mY)$$
(3.1)

but the tensor field m is always covariant constant.

Proof. We have

$$(\overline{\nabla}_{X}l)Y = \overline{\nabla}_{X}(lY) - l\overline{\nabla}_{X}Y \tag{3.2}$$

In view of equation (1.5), the above equation takes the form

$$(\overline{\nabla}_{X}l)Y = l\nabla_{X}(mlY) + m\nabla_{X}(lY)$$
$$-l\{l\nabla_{X}(mY) + m\nabla_{X}(lY)\}. \tag{3.3}$$

Since $l^2 = l$ and lm = ml = 0, the equation (3.3) takes the form

$$(\overline{\nabla}_{X}l)Y = m\nabla_{X}(lY) - l\nabla_{X}(mY). \tag{3.4}$$

The (1, 1) tensor field l is covariant with respect to the connection $\overline{\nabla}$ if

$$(\overline{\nabla}_{\mathbf{X}}l)\mathbf{Y} = 0. \tag{3.5}$$

Hence in view of the equation (3.4) and (3.5), we get

$$m\nabla_{\mathbf{X}}(l\mathbf{Y}) = l\nabla_{\mathbf{X}}(m\mathbf{Y}).$$

This proves the first part of the theorem.

Again it can be easily shown that

$$(\overline{\nabla}_{\mathbf{Y}}\mathbf{m})\mathbf{Y}=\mathbf{0}.$$

for all vector fields $X,Y \in TM^n$. Thus, the tensor field m is always covariant constant.

References

- [1] Demetropoulou-Psomopoulou, D. and Gouli-Andreou, F., "On necessary and sufficient conditions for an n-dimensional manifold to admit a tensor field $f(\neq 0)$ of type (1, 1) satisfying $f2_++3+f=0$ ", Tensor, N.S., vol. 42, 252-257 (1985).
- [2] Demetropoulou-Psomopoulou, D., "Linear connections on manifold admitting f(2v + 3, 1)-structure", Tensor, N.S., vol. 47, 235-239 (1988).
- [3] Mishra, R.S., "Structures on a differentiable manifold and their applications", Chandrama Prakashan, 50- A, Balrampur House, Allahabad, India (1984).
- [4] Yano, K., "On structure defined by a tensor field f of type (1,1) satisfying f3 + f = 0". Tensor, N. S., 14, 99-109 (1963).
- [5] Singh, A., "On CR-structures and F-structure satisfying F2K+P + FP = 0", Int. J. Contemp. Math. Sciences, Vol. 4, no. 21, 2009.
- [6] Yano, K. and Kon, M., "Structures on manifold", World Scintific Press 1984.
- [7] Goldberg, S.I., "On the existence of manifold with an f-structure", Tensor, N.S. 26, 323-329 (1972).
- [8] Nikkie, J., "F(2k+1,1)-structure on the Lagrangian space" FILOMAT (Nis), 161-167 (1995).
- [9] Verma, G., "On some structures in a differentiable manifold and its tangent, cotangent bundles", (Ph.D. Thesis), Lucknow, India (2001).

Author

1. Dr. Ram Swaroop: He had done PhD in
Mathematics from Lucknow University in year
2010. Currently he is working as Associate
Professor & HOD in Department of Mathematics in
NIMS University, Jaipur, Rajasthan.

Mailing Address: H.No.-10B, Khasbag Colony, Aishbagh, Lucknow-226004.

2. Dr. Abhishek Singh: He is working in Department of Mathematics and Astronomy, University of Lucknow, Lucknow, Uttar Pradesh, India.

3. Mr. Prakash Kumar: He has done M.Tech from NIMS University, Jaipur. Currently he is working as Assistant Professor in Department of Electrical Engineering in ITM University, Gwalior, Madhya Pradesh, India.

Mailing Address: East of Government Hospital Kanti, NH 28, Prakash Market, Kanti, Muzaffarpur, Bihar-843109.

www.ijert.org 3