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Abstract: Event driven traffic patterns in Wireless Sensor 

Networks are often characterised by bursty behaviour, non-

deterministic short busy periods followed by non-

deterministic long idle times. This pattern of traffic is more 

accurately modelled using a combination of probability 

distributions, an exponential distribution for busy periods and 

a Pareto distribution with a long tail for long idle periods. The 

work presented here introduces a novel MAC design named 

LIMAC. LIMAC has a number of desirable attributes for a 

MAC including, ability to adapt to changes in network traffic, 

collision avoidance as well as low computational overheads. In 

addition, LIMAC takes advantage of long idle periods in 

WSNs and is suitable for networks with traffic patterns that 

exhibit bursty behaviour such as in target tracking 

applications. LIMAC is theoretically based on a Markov 

Decision Process thus the resulting policies are proven to be 

optimal. The energy efficiency simulation results for LIMAC 

under traffic conditions that have long idle periods are shown 

to outperform HYMAC, a state of the art MAC protocol 

without any significant degradation in delay. 

 

Keywords: Wireless Sensor Networks (WSNs); Scheduling; 

Media Access Control (MAC); 

 

I. INTRODUCTION 

 

Traffic patterns in Wireless Sensor Network (WSN) 

applications can be thought of as periodic or event driven 

[1, 2]. For analysis and simulation purposes, periodic data 

can be modelled using a Constant Bit Rate generator when 

the bit rate is constant and the Poisson distribution when 

the bit rate is variable [3, 4, 5].  Traffic patterns for event 

driven applications such as target detection and target 

tracking on the other hand exhibit a bursty nature 

resembling that in figure 1, non-deterministic busy periods 

followed by long non deterministic idle periods [1, 2, 6]. 

Such traffic patterns are best modelled using an ON/OFF 

(Busy/Idle) model where ON Periods are modelled using 

an exponential distribution and OFF periods modelled 

using a Pareto distribution with a long tail. Taking 

advantage of long idle periods by putting nodes into long 

sleep states can save significant energy in bursty traffic 

networks and so accurate modelling for simulation and 

analysis is highly desirable. For example, frame lengths in 

[7, 4, 8] range between 112ms and 1s. At the beginning of 

each frame all nodes have to wake up to listen for 

messages. In a scenario where long idle periods can last up 

to 5sec, a node that takes advantage of this long idle period 

by staying in a sleep state saves all the energy needed to 

wake up and listen for messages for 5 frames which over 

the life time of a node equates to significant energy 

savings.
 
If the long idle period lasts

 
for longer which can 

be the case, then even more substantial
 

energy can
 

be 

saved.
 

Figure 1:

 

Bursty traffic

 

 

 
 

The author‟s observations are significant for MAC protocol 

design for the following reasons: 1.) Not all WSN 

applications are best modelled using an exponential 

distribution. For some applications, more complex models 

like the Pareto distribution or a combination of models are 

required. 2.) Modelling the queue state as in [7] or 

modelling a stateless system as in [3, 4] is not a suitable 

representation of the system. Modelling the queue leads to 

policies that do not take into account the cyclical nature of 

events, a stateless system design has the same flaw. The 

work presented here is on LIMAC, a protocol for event 

driven networks, designed to cope with complex traffic 

patterns modelled using a combination of probability 

distributions. LIMAC has a number of desirable qualities 

for a MAC, like HYMAC [3] and DECMAC [4], LIMAC 

is able to synchronise and desynchronise active periods so 

that collisions are avoided. Like HYMAC and RLMAC 

[7], LIMAC is able to adapt its duty cycle to changes in 

network traffic conditions. Like HYMAC, RLMAC and 

DECMAC, LIMAC is based on a reinforcement learning 

agent so intelligence is at minimal costs. In addition to 

these qualities, LIMAC is suited to networks where traffic 

patterns are complex. LIMAC copes with the added 

complexity by using additional states to account for 

passage of time as well as a reward mechanism that 

incentivises nodes to cooperate. LIMAC is based on a 

Markov Decision Process so policies are proven to be 

optimal. 
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The remainder of the paper is organised as follows – a 

review of related research is presented in section 2. Section 

3 describes the LIMAC protocol framework and its 

associated mechanisms. Section 4 gives simulation results 

and analysis followed by conclusions in 5. 

 

II. LITERATURE REVIEW 

 

There has been a lot of research into MAC and Scheduling 

protocol design for WSNs and a review is presented in [3]. 

Of particular interest to the work presented here are designs 

based on intelligent agents, in particular Reinforcement 

Learning (RL) based agents [8]. Their ability to learn 

optimal schedules with little resource overheads and cope 

with different traffic patterns and topologies have singled 

them out as a leading approach to MAC protocol design 

[3,4,7]. A review of state of the art Quality of Service 

(QoS) RL based MAC protocols can be found in [5]. In [4] 

a decentralised RL (DECMAC) scheduling protocol is 

presented which uses node synchronisation and de-

synchronisation to schedule node transmissions such that 

collisions are avoided. [7] is another RL based protocol in 

which nodes learn optimal active times within a timeframe 

during which they send and receive messages i.e. a duty 

cycle based  system in which after an active period, nodes 

go to sleep for the rest of the timeframe. RLMAC is 

adaptable to changes in traffic but has no collision 

avoidance mechanism whereas DECMAC has a collision 

avoidance mechanism but is not able to adapt to changes in 

traffic as duty cycles have to be set by a user a priori. Both 

techniques are combined in HYMAC [3] such that 

HYMAC is able to adapt to changes in traffic and has a 

collision avoidance mechanism. All of the afore mentioned 

protocols however do not take into account the bursty 

nature of event driven networks and are suited to periodic 

networks where  traffic is modelled using exponential 

distributions.  The works in [1,2,6] show that for event 

driven networks, exponential distributions do not 

adequately model network traffic. For target tracking 

applications for example, the busty nature of traffic 

requires a combination of probability distributions to more 

accurately model traffic, an exponential distribution and a 

Pareto distribution with a long tail.  

 

A. MDP and Reinforcement Learning 

Markov decision processes have been used extensively as 

the theoretical background on which proof of optimality is 

built for a range of problems in science [9]. WSNs are not 

an exception and the works in [7, 10] assume a MDP as the 

underlying system behaviour. A MDP defines a system 

which can be in any number of states given as a set S. In 

each state s a number of decision choices or actions as is 

available. As a result of taking an action as in state s, a 

reward rs,a is received and the system transitions to the next 

state s‟ with a probability Pss’. The goal for a MDP agent is 

to maximise long term rewards given as 

𝑉𝜋 𝑠 = 𝑅 𝑠,𝜋,  𝑠  + 𝛾  𝑃𝑠𝑠 ′ 𝜋 𝑠  𝑉𝜋(𝑠′)𝑠′∈𝑆       (1) 

 

Where γ(0≤γ<1), is a discount factor, R(s,π,(s)) is the 

reward function. 

The problem defined in equation 1can be solved using 

several techniques including Value Iteration, Policy 

Iteration and Linear Programming (LP) where models of 

the environment, Pss and R exist [9].   RL on the other 

hand, offers solutions by interacting directly with the 

environment, observing rewards and subsequently learning 

optimal behaviour. A comprehensive introduction to RL 

techniques can be found in [8]. The problem faced by a 

LIMAC agent is to maximise the rewards it receives 𝑉𝜋(𝑠) 

in equation 1 by coming up with an optimal policy π
*
(s). 

The reward function having been designed to drive agents 

to take actions that put nodes in the active state long 

enough to service requests and sleep otherwise. To this end 

a Q value is maintained for each action choice as in each 

state s under a policy π  

 

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾  𝑃𝑠𝑠 ′ 𝑎 𝑉𝜋(𝑠 ′)𝑠′∈𝑆  (2) 

 

and updated using Q learning update rule as presented in 

[8] 

𝑄𝑘+1 𝑠, 𝑎 =  
𝑄𝑘 𝑠,𝑎 + 𝛼𝛿   𝑖𝑓 𝑠𝑘 = 𝑠,   𝑎𝑘 = 𝑎

𝑄𝑘 𝑠, 𝑎       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (3) 

Where  
𝛿 = 𝑟𝑘 + 𝛾 max

𝑎′∈𝐴(𝑠′ )
𝑄𝑘 𝑠

′ , 𝑎′ −  𝑄𝑘(𝑠, 𝑎) 

 

III. LIMAC 

 

Figure 2 below shows a LIMAC state diagram model for a 

node that operates in an event driven wireless sensor 

network. There are two states ON or OFF. Assume time is 

divided into frames and subdivided into time slots as in 

[3,4,7] and media access is duty cycle based. In the ON 

state traffic arriving at a node is adequately modelled using 

an exponential distribution. A node in the ON state 

transitions between an active period where messages are 

exchanged and a short sleep state. The length of the busy 

period is governed by a uniform distribution. At the end of 

the busy period the node enters a long idle period, OFF 

state, where the next arrival is modelled using a Pareto 

distribution with a long tail. The tail is derived by using an 

appropriate filter to filter out short inter-arrival times such 

that the focus is on the long idle periods. After the first 

arrival, subsequent arrivals follow an exponential 

distribution and the cycle repeats. The OFF state is further 

split into multiple sleep states such that nodes can wake up 

to check if messages are queued reducing delays. The 

larger the number of states the more accurate the model is 

however the more complex it gets requiring more node 

processor time. The length of time spent in each state is 

controlled by the LIMAC agent. Thus a LIMAC agent‟s 

job is to choose control actions that puts a node into the 

active state for long enough to service queued requests and 

to spend idle periods in a low power or sleep state.   

For a LIMAC agent to issue the right commands to a node, 

it has to know what state the environment is in. It was 

stated earlier that a filter interval is used in the modelling 

of data to separate short idle periods in the Pareto 

distribution so that focus is on the long idle periods. This 

serves as a LIMAC sensor to the real world, thus a LIMAC 
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agent uses the time between arrivals to check for system 

state. A LIMAC agent operates as follows. 

In the ON state, each time an agent transitions to the short 

sleep state, the agent decides on a time window in which to 

be active in the next frame, which translates to choosing a 

series of time slots. As a result of choosing action as, a 

number of time slots, the agent receives a unit of reward 

for each slot in which a reception or transmission occurred, 

otherwise no reward is given. Thus nodes are encouraged 

to take actions that result in message exchanges. For an 

exchange to occur two nodes have to cooperate thus, the 

reward also encourages multi agent cooperation.  It is also 

desirable for nodes to spend all of the active period 

exchanging messages and to achieve this behaviour, the 

total reward for each time window, i.e. the sum of the 

rewards for each slot in the time window, is made a ratio of 

the total number of reserved slots, equations   and 5 below. 

It is also desirable for nodes to stay awake for long enough 

to exchange as many messages as possible within a 

timeframe thus a weighting factor w is applied to the sum 

of rewards within a time frame. Equations 4 and 5 below 

give the reward function for LIMAC agents in the ON 

state. 

 

𝑄 =   𝑄𝑠+𝑗
𝑖𝐶

𝑗=0   (4) 

 

𝑄 =  𝑄 𝑤

𝐶
   (5) 

 

If a node wakes up at the next designated time and there is 

no message queued and the time of last arrival is greater 

than the filter interval, a LIMAC agent assumes a long idle 

period and transitions to the OFF state where it makes a 

decision on how long the node should sleep for which 

again translates to choosing a group of consecutive time 

slots. As a result of choosing action as in state s (OFF), the 

node transitions into the sleep state where it receives a unit 

of reward for each time slot in which no arrival occurred 

and no reward for slots in which messages arrived. For the 

same reasons given for the reward design in the ON state, 

the total reward is weighted and made a ratio of total sleep 

time. 

The above MDP is guaranteed to converge on optimality 

given a long enough horizon, proof of which is given in 

[8], thus a LIMAC agent after an ample exploration phase 

chooses actions that are optimal for the underlying system. 

Simulation results presented in the following section show 

that for systems modelled as described above e.g. for event 

driven applications, LIMAC outperforms [3] and therefore 

[4,7] in terms of energy savings with minimal degradation 

in delay.  
 

 
 

 

 
 

 

 
 

 

 
 

Figure 2: LIMAC state diagram model 

 

 
 

 

IV. SIMULATION RESULTS 

 

Simulations were carried out to evaluate the performance 

of LIMAC compared to HYMAC [3], a state of the art RL 

based MAC. HYMAC has been shown to outperform 

DECMAC [4] and RLMAC [7] in terms of energy savings 

for a given delay constraint in [3]. Models and parameters 

used for simulations were as follows. Traffic in the ON 

state was modelled using an exponential distribution with 

mean inter-arrival times ranging from 1 sec to 0.1 sec. 

Filters were set to between 1 and 0.1 seconds to separate 

busy periods from long idle periods corresponding to rate 

of arrivals in the ON state. Arrivals greater than the filter 

period were modelled as a Pareto distribution the 

parameters of which are given in equation 6 below. The b 

value of equation 6 was set appropriately to correspond to 

the filter size and the α value set to 0.7. The transition from 

the bursty period to the long idle period was simulated 

using a uniform distribution with mean ranging from 1to 

0.1 seconds. Packet size was set to 50 bytes, power in the 

active period set to 0.4W, power in the sleep state set to 

0.05W [7] and time to transmit a packet was simulated as 

20ms.  

 

1 −  
𝑏

𝑥
 
𝛼

𝑥 ≥ 𝑏      (6) 

 

Two topologies were simulated, a linear topology 

consisting of 5 nodes and a sink node; and a star topology 

again consisting of 5 nodes and a sink, figure 3 below. For 

each topology average delay incurred by packets from 

generation to delivery at the sink and the average power 

consumed per second were measured over 50 runs of 5000 

seconds simulation time. A sample of the results is 

presented in figures 4, 5, 6, 7 for simulations with the 

length of the bursty period determined by a uniform 

distribution with a mean of 1 second.  

Figure 4 shows the average power consumption per second 

for a node in a linear topology with rate of arrivals in the 

ON state set as mentioned above, between 1 and 0.5 

seconds. Two LIMAC models were simulated, one with 

two sleep states (LIMAC2) and another with three 

(LIMAC3). Filter sizes and the Pareto distribution b 

parameter was adjusted appropriately. It can be seen that a 

Sleep 

Active 

Decision 

OFF 

 

General 

ON 
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Sleep 1 

Sleep n 

Sleep 2 
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power saving of between 8 (filter size of 0.5 seconds) and 

11 % (filter size of 1 second) is achieved for the LIMAC3 

protocol compared to HYMAC whereas there is only a 1.3 

and 2.5% rise in delay for LIMAC3 compared to HYMAC, 

figure 5. 

Figure 6 shows the average power consumption for the star 

topology. Two LIMAC agents were simulated as described 

above, LIMAC2 and LIMAC3. Again there is a 5 to 10 % 

saving in energy depending on the filter size whereas there 

is only a 1 and 3% rise in delay, figure 7. 

It is worth noting that for longer idle periods in ratio to 

busy periods, being modelled by adjusting filter sizes, even 

more power can be saved. 

 
Figure 3: Simulated star and linear topologies 

 
 

 
Figure 4: Linear topology average power consumption 

 

 
 

 
Figure 5: Linear topology average delay 

 

 
Figure 6: Star topology average power consumption 

 

 
Figure 7: Star topology average delay 

 
 

V. CONCLUSION 

 

Traffic patterns in WSNs are not always periodic. For 

event driven networks exhibiting bursty behaviour, 

complex modelling is required to adequately represent 

traffic patterns. Under such traffic conditions MAC 

protocols designed for periodic traffic fail to be optimal. 

LIMAC is a MAC protocol designed to cope with event 

driven networks exhibiting bursty behaviour. Simulation 

results for LIMAC show that in event driven network 

conditions LIMAC outperforms HYMAC a state of the art 

MAC protocol designed for periodic traffic, in terms of 

power consumption. Future work will be aimed at 

improving the MDP framework by making it event driven.  
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