
Learning Simple Splicing Grammar Systems
Sindhu J Kumaar1, P. J. Abisha2 and D. G. Thomas3

1Department of Mathematics, B. S. Abdur RahmanUniversity,

Chennai – 600 048, Tamil Nadu, India.
2, 3Department of Mathematics, Madras Christian College,

East Tambaram, Chennai – 600 059, Tamil Nadu, India.

Abstract

Pattern language learning algorithms within the

inductive inference model and query learning

setting have been of great interest. Angluin’s [3]

pattern languages motivated Dassow et al [8] to

modify the way of describing these languages and

define pattern grammars. Sindhu et al [17]

introduced learning algorithms for two kinds of

parallel communicating grammar systems.

Dersanambika et al [9] introduced a new type of

grammar system called simple splicing grammar

system (SSGS) in which four types of splicing rules

namely < 1, 3 > , < 1, 4 > , < 2, 3 > and < 2, 4 >

are discussed. A model of splicing grammar

systems, with pattern grammar as components was

introduced by Sindhu et al [18]. In this paper we

provide a learning algorithm for a subclass of

simple splicing grammar system.

1. Introduction
Inductive inference introduced by Gold

[10] is a model that identifies the unknown concept

in the limit. Inferring a pattern common to all

words in a given sample is a typical instance of

inductive inference. A pattern is a finite string of

constant and variable symbols and the pattern

language introduced by Angluin [3] is the set of all

strings obtained by substituting any non-null

constant string for each variable symbol in the

pattern. In recent years, there has been an increased

interest in the problem of learning pattern

languages using queries and examples. Motivated

by the study of Angluin, a generative device called

pattern grammar is defined by Dassow et al [7].

The idea here is to start from a finite set A of

axioms which are over an alphabet of constants;

given a set P of patterns which are strings over an

alphabet of constants and variables, replace

uniformly and in parallel, the variables in a given

pattern by axioms and continue the process with

the current set of strings, obtained by such

operations. All strings generated in this way

constitute the associated language called a pattern

language.

The theory of grammar systems [8] is an interesting

and a deeply investigated area of formal language

theory. A parallel communicating grammar system

consists of several grammars. For solving a task,

the components work simultaneously and are

allowed to communicate. A communication is done

by request: a component can request the whole

word generated by another component. A minimal

synchronization is assumed: in each time unit every

component carries out a rewriting step or the

system performs communication.

The behavior of DNA under the influence of

restriction enzymes and ligases was studied by

Head et al and an overview of this can be seen in

[12]. Head defined splicing systems that make use

of a new operation called splicing on strings of

symbols. Mateescu et al [13] have considered

simple splicing systems that make use of splicing

rules that are as simple as possible.

A splicing grammar system [6] can be viewed as a

set of grammars working in parallel on their own

sentential forms (exactly as in parallel

communicating grammar systems) and, from time

to time, exchanging to each other segments of their

sentential forms, determined by given splicing

rules. Dersanambika et al [9] examined splicing

grammar systems by requiring the simple splicing

rules in the sense of Mateescu et al [13]. Various

properties of the resulting simple splicing grammar

systems are obtained by considering different

component grammars.

Sindhu et al [17] have given a polynomial time

algorithm to learn a subclass of PCPPL (Parallel

Communicating Pure Pattern Language) using

restricted subset queries and restricted superset

queries.

Sindhu et al [18] have considered a model of

splicing grammar systems, with pattern grammar in

the components. For this model the master

component is a regular grammar. In this paper we

present learning algorithms of this model of

grammar systems using prefix queries and

restricted subset queries.

2. Pattern Grammars
We first recall the definition of pattern

grammar given by Dassow et al [8].

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

Definition 2.1: [7] A pattern grammar (PG) is a 4 –

tuple),,,(PAXG where ∑ is an alphabet

whose elements are called constants, X is an

alphabet whose elements are called variables. A

∑
*
 is a finite set of elements of ∑

*
 called axioms

and P (X)
+
 is a finite set of words called

patterns where each word contains atleast one

variable. The rewriting is done as follows:

kjXAxkiu

Puuuuuxuxuxu
AP

jj

kk

iii

kikiikikii

1,,,11,

,.../...

*

121121 2121

 This means that, P(A) contains words obtained by

replacing the variables in the pattern by words from

A and different occurrences of the same variable

are replaced by the same word. Then the pattern

language (PL) generated by G is L(G) = P A

P (A) P(P (A)) …

Example 2.1: G = ({a, b}, { }, {ab}, {a b}) is a

pattern grammar generating the language L(G) =

{a
n
b

n
 / n 1}, as A = {ab}, P(A) = {aabb}, P(P(A))

= {aaabbb} and so on.

We observe that the concept of variable is similar

to that of variable in Chomskian grammar. But the

rewriting process is different; it is uniform, in the

sense that all the occurrences of a variable in a

pattern are replaced by the same word and the

variables are rewritten in parallel. Still, the pattern

grammars generate class of languages which are

incomparable with Chomskian languages and

Lindenmayer languages.

3. Simple Splicing Grammar System
The splicing operation is a novel operation

on strings and languages introduced in [11] in order

to model the recombinant behavior of DNA

sequences. One gives rules of the form u1# u2 $

u3#u4, called splicing rules, where u1, u2, u3, u4 are

strings over the alphabet we work with; from two

strings x = x1u1u2x2, y = y1u3u4y2, for splicing rule

u1# u2 $ u3#u4, we produce the string z = x1u1u4y2.

We say that z is obtained by the splicing of x, y,

which are cut and joined at sites specified by u1, u2,

u3, u4.

We now recall the definition of simple splicing

grammar system introduced in [9].

Definition 3.1: [9] A < 1, 3 > - simple splicing

grammar system (< 1, 3 > - SSGS) of degree n

is a construct

 Γ = (N, T, (S1, P1), (S2, P2), (S3, P3), …,

(Sn, Pn), M) where

i. N, T are disjoint alphabets and Pi, 1 i n

are finite sets of production rules over

 N T. Each Si N, 1≤ i ≤ n is a

special symbol called the start symbol.

ii. M is a finite subset of (N T) # $ (N T)

#, with #, $ two distinct symbols which are

not in N T. Each element of M is a < 1,

3 > - simple splicing rule. Here (N T) #

$ (N T) # means (N T) # {λ} $ (N T)

{λ}where {λ} is the empty string.

The sets (Si, Pi) are called the components of Γ. We

can consider grammars of the form Gi = (N, T, Si,

Pi), 1≤ i ≤ n. By configuration, we mean an n –

tuple consisting of words over N T. For two

configurations,

x = (x1, x2, …, xn), xi (N T)* N (N T)*,

1≤ i ≤ n

y = (y1, y2 , …, yn), yi (N T)* , 1≤ i ≤ n

We define x y if and only if any of the

following two conditions hold.

(i) for each 1 i n, ipi yx
i

(ii) there exist 1 i, j n such that

iii xaxx , jjj xaxx , jii xaxy ,

ijj xaxy , for a $ a M, and yk = xk,

for k i, j

In a derivation x Γ y, in 1, 3 - SSGS, (i)

defines a rewriting step, but (ii) defines a 1, 3

splicing step, corresponding to a communication

step in a parallel communicating grammar system.

Here if a splicing step is happening between i
th

 and

j
th

 components, the other components will not do

the rewriting process. In other words, either (i) or

(ii) holds at a particular step. There is no priority of

any of these operations over the other.

A 2, 3 - simple splicing grammar system is

analogously defined by choosing 2, 3 simple

splicing rules (N T) $ (N T) . Also 1, 3 -

SSGS and 2, 4 - SSGS are essentially the same.

Likewise 1, 4 and 2, 4 simple splicing rules

are from the sets (N T) $ (N T) and (N

 T) $ (N T) respectively.

The language generated by the i

th
 component is

defined by

ijTNxxxxSSSTxL jnnii ,),...,,,()...,,,(/
*

21

*

21

*

where
*

 is the reflexive and transitive closure of

the relation . Two kinds of languages can

naturally be associated to a simple splicing
grammar system. One of them is the language
generated by a single component and because no
component is distinguished any way, we may
always choose the language generated by the first
component. This language is called the individual

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

language of the system. The second associated
language will be the total language, namely

i

n

i
t LL

1



Example 3.1:

Consider the 1, 3 - SSGS with regular

rewriting rules. Let

 = (N, T, (S1, P1), (S2, P2), M)

N = { S1, S2, A, B}

T = {a, b, c}

P1 = {S1 aA, A aA, A c}

P2 = {S2 cB, B bB, B b}

M = {c $ c }

This system produces languages

L1 () = {a
n
 c b

n
 / n 1} {a

n
 c / n 1}

L2 () = {cb
n
/ n 1}

Here the total language is

Lt () = {a
n
cb

n
/ n 1} {a

n
c / n 1} {cb

n
/ n 1}

4. Simple Splicing Pattern Grammar

System
We recall 1, 3 simple splicing pattern

grammar system with two components taking the

first component to be a regular (or context free)

grammar and the second to be a pattern grammar

[18].

Definition 4.1

A 1, 3 simple splicing RPG grammar system is

a construct = (N, X, T, (S, P1), (A, P2), M),

where

(i) N, T are disjoint alphabets. S N is a

special symbol called start symbol and (N, T, P1, S)

is a regular grammar.

(ii) A T
*
 is a finite set of words called

axioms and P2 is a finite subset of (X

T)
+
 called the set of patterns. Here N, X

and T are disjoint alphabets. (T, X, A, P)

is a pattern grammar

(iii) M is a finite subset of (N T)

$(N T) , with , $ are two distinct

symbols which are not in (N T). Each

element of M is a 1, 3 simple splicing

rule.

For two configurations,

x = (x1, x2), x1 (N T)
*
 N (N T)

*
, x2 T

*

y = (y1, y2), y1 (N T)
*
, y2 T

*
.

We define yx if and only if any of the

following two conditions hold:

(i)
11

1

yx
P

and y2 P2({x2})

(ii) 111 xaxx , 222 xaxx ,

211 xaxy

 122 xaxy , for a $ a M

In the derivation yx in 1, 3 simple

splicing RPG systems (i) defines a rewriting step,

but (ii) defines a splicing step corresponding to a

communicating grammar system.

 2, 3 , 1, 4 and 2, 4 simple splicing

RPG systems are analogously defined.

The language generated by the 1
st
 component is

defined by

AwTxxxxwSTxLi ,,),,(),(/ *

2121

*

1

*

1

where
*

 is the reflexive and transitive closure of

the relation . Two kinds of languages can

naturally be associated to a simple splicing

grammar system. One of them is the language

generated by the individual component. This

language is called the individual language of the

system. The second associated language will be the

total language, namely

21 LLLt

Example 4.1

 = (N, T, X, (S, P1), (A, P2) , M)

N = {S, A}, X = {δ}

T = {a, b, c}

P1 = {S aA, A aA, A c}

P2 = {δb}

A = {c}

If M = {c $ c }, this system produces

languages

L1 () = {a
n
cb

n
 / n > 1} {a

n
 c / n 1}

L2 () = {λ} {cb
n
 / n 1}

Here the total language is

Lt () = {a
n
cb

n
 / n > 1} {a

n
 c / n 1} {λ}

{cb
n
 / n 1}

5. Learning Regular Sets from Queries

and counterexamples
Angluin [4] describes the learning

algorithm L
*
 and show that it efficiently learns an

initially unknown regular set from any minimally

adequate teacher. Let the unknown regular set be

denoted by U and that it is over a fixed known

finite alphabet A.

 At any given time, the algorithm L
*
 has

information about a finite collection of strings over

A, classifying them as members or nonmembers of

the unknown regular set U. This information is

organized into an observation table, consisting of

three things: a non-empty finite prefix-closed set S

of strings, a non-empty finite suffix-closed set E of

strings, and a finite function T mapping ((S S.

A) . E) to {0, 1}. The observation table will be

denoted (S, E, T) (A set is prefix-closed if and only

if every prefix of every member of the set is also a

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

member of the set. Suffix-closed is defined

analogously).

 The interpretation of T is that T(u) is 1 if u

is a member of the unknown regular set, U. The

observation table initially has S = E – {λ}, and is

augmented as the algorithm runs. An observation

table can be visualized as a two-dimensional array

with rows labeled by elements of (S S. A) and

columns labeled by elements of E with the entry for

row s and column e to T(s. e). If s is an element of

(S S. A), then row(s) denotes the finite function

f from e to {0, 1} defined by f(e) = T(s. e).

 An observation table is called closed

provided that for each t in S. A there exists an s in

S such that row (t) = row (s). An observation table

is called consistent provided that whenever s1 and

s2 are elements of S such that row (s1) = row (s2),

for all a in A, row (s1. a) = row (s2. a). If (S, E, T)

is closed and consistent observation table, then a

corresponding acceptor M(S, E, T) over the

alphabet A, with state set Q is described. The

initial state q0, accepting states F, and transition

function δ is as follows.

 Q = {row (s); s S}

 q0 = row (λ)

 F = {row (s); s S and T(s) = 1},

 δ (row (s), a) = row (s. a)

6. Learning Simple Splicing Grammar

Systems
Consider the situation where the learning

algorithm is allowed to make queries to an oracle.

In [4], the notion of “minimally adequate teacher”

(MAT) is introduced and the teacher (Oracle)

answers membership and equivalence queries in

order to construct a learning algorithm for regular

sets. In [5], the notions of subset and superset

queries are introduced. For a subset (superset)

query, the input is a concept C and the output is

„yes‟ if C is a subset (superset) of the target

concept C*

and „no‟ otherwise. If the answer is

„no‟, counter example x from C – C* (C* - C) is

also returned. Restricted subset queries and

restricted superset queries, where no counter

example is returned are also introduced in [5].

We recall that a word u T
*
 is a prefix of another

word w T
*
, if there exists a word v T

*
, such

that w = uv. Thus in a prefix query, the concept to

be learnt is usually a word w over the underlying

alphabet T. The input is a word u T
*
 and the

output is “yes”, if u is a prefix of w and “no”

otherwise.

We learn a <1, 3> simple splicing grammar system

where the master is a regular grammar and the

other is a non erasing pattern grammar with a

single pattern which is in canonical form. The

technique of the algorithm is as follows:

A pattern with k variables is a word over (T {x1,

x2,…, xn}). Elements of T are called constants

while xi, X are called variables. A pattern p with

k variables is said to be in canonical form if, for

each i ≤ k, the leftmost occurrence of xi in p occurs

to the left of leftmost occurrence of xi + 1. For a

pattern p with k variables, and a set of k strings u1,

u2,…,uk T
*
 let p[x1:u1, x2:u2,…, xk:uk] denote the

string obtained by substituting u1 for each

occurrence of xi in p. The language {p[x1:u1,

x2:u2,…, xk:uk] / u1, u2,…,uk T
*
} generated by

using substitutions of this type is the language

generated by the pattern p. The class of all k

variable patterns is denoted by Pk.

We now present an algorithm that exactly identifies

in polynomial time the class Pk.of pattern languages

using prefix queries. Let p = p1p2…pn be the pattern

to be identified. We begin by checking whether p1

is a constant. Hence for each a T we make a

prefix query for a.. If the output is “no” to each of

these queries we conclude that p1 is a variable and

since p is in canonical form p1 = x1.

Suppose at some stage we have discovered that

p1p2 p3… pi is a prefix of p and j = max {r / ps = x r

for 1 s i}. Again we check whether pi + 1 is a

constant by making prefix query for p1 p2 p3… pi a,

a T. As before if each of these queries yields a

negative answer, we conclude that pi + 1 is a

variable and query whether p1 p 2… pi xr is a prefix

for each r j + 1. We conclude that the pattern is

complete if each of these queries receives a

negative reply.

Now, to learn axiom set A, initially fix A = .

Arrange the words in 
m

i

iT
1

(m the maximum

length of the axiom is known) are arranged

according to increasing order of length and among

the words of equal length lexicographically. Let

them be x1, x2… xs. At the t
th

 step ask the restricted

subset query for (T, A {xt}, p). If the answer is

„yes‟, increment A to A {xt}. If the answer is

„no‟, A is not incremented. The output at the last

step is the required PG.

Now as the pattern grammar is known, we assume

first, M = {α $ α }, which is <1, 3> splicing rule

and split the sample word into two using M, where

the first part of sample is a subword of the required

regular set and the second part is a subword of the

required pattern grammar. The regular set is learnt

using L
*
.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

Algorithm

Input:

The alphabets T, N, X, a positive sample

w from L(1), w T
+
 of length r, the

length „n‟ of the pattern, the maximum

length „m‟ of the axiom, r n , words t1,

t2…, ts of 
m

i

iT
1

given in the increasing

length order, among words of equal length

according to lexicographic order.

Output:

 A Simple Splicing Pattern grammar

system (N, T, X, (S, P1), (A, P2), M)

 with LL)(

Procedure (Pattern)

Module 1

 i = 0, p = λ, number of characters in the pattern is

n

First set

 i = i +1, If i > n stop

 For each a T

 begin

 Ask prefix query for pa

 if answer is “yes” then do

 begin

 p = pa

 Go to First set

 end

 end

Module 2

Second set

k = 1 to j

 for δk X

 begin

 Ask prefix query for δk

 if answer is “yes” then do

 begin

 p = pδk

 Go to First set

 end

 end

 Ask prefix query for δj

 if answer is “yes” then do

 begin

 p = pδj

 j = j + 1

 Go to First set

end

 If i is equal to n

 end

end

Procedure (Axiom)

Let x1, x2, …, xs be the words in 
m

i

iT
1

arranged in

lexicographic order

A =

 for t = 1 to s do

 begin

 ask restricted subset

query for G = (T, X, A {xt}, {p})

 If „yes‟ then A

= A {x} and t = t + 1

 else output G

 end

Print the pattern grammar (T, X, A, p)

Procedure (Master)

For each α T

Let M = {α $ α }

 Cut the sample word w = u α v into two,

at the position after reading α

 begin

 As u α L (N, T

{α}, P1, S)

 run L
*
 using

prefixes of u α . If L
*
 gives the

 correct automaton, write the

corresponding regular

 grammar which

is equivalent to G0 = (N, T {α}, P1, S)

 and write the

splicing rule M = {α $ α }

 Print (N,

T, (S, P1), (A, P2), M) the Simple Splicing Pattern

Grammar system

 else

 M = {α $ α }

 end

end

Time Analysis: The algorithm given above

considers a <1, 3> simple splicing grammar system

where the master is a regular grammar and the

other component is a non erasing pattern grammar

with a single pattern of length n which is in

canonical form. Clearly the number of queries

needed to identify a pattern p = p1p2…pn of length

n is bounded by n(T + k) since a maximum of

T + k queries are required to identify each pi.

The running time for L
*
 is polynomial in the

number of states of the minimum acceptor and the

maximum length of counter examples. Hence, the

implementation time for this algorithm is bounded

by quadratic expression in n.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

7. Example run for Simple Splicing

Pattern Grammar System
From the Splicing language generated by

the simple splicing pattern grammar System

(example 4.1) = (N, T, (S, P1), (A, P2), M), let

the sample given be aaacbbb. To learn pattern

grammar it is enough if we find the pattern p and

the axiom set A. Here the length of the pattern is

two and maximum length of the axiom is one and

the alphabet T = {a, b, c}. Let p = p1p2. First we

check whether p1 is a constant. Thus for a T, a

prefix query is asked. The answer will be “no”

since the pattern is δb Again for b T, a prefix

query is asked and again the answer will be “no”.

So another prefix query for c T is asked and

again the answer will be “no”. Thus p1 = δ is learnt.

Now for a T we ask a prefix query for δa. The

answer will be “no”. Again for b T, a prefix

query is asked for δb. The answer will be “yes”.

Hence the pattern δb is learnt.

Now, to learn axiom set A, initially fix A = . The

words in T are considered. Let them be a, b, c. Now

the restricted subset query for (T, A {a}, p) is

asked. As the answer is „no‟, ask one more subset

query (T, A {b}, p). Here the teacher answers

no. Then we ask subset query (T, A {c} , p).

Now the teacher answers „yes‟, thus the axiom set

is learnt which is {c}. As the pattern and axiom are

learnt the output is the required pure pattern

grammar = ({a,b, c}, {c} { δb})

From the sample given we learn the simple splicing

pattern grammar system with <1, 3> splicing rule.

As we know the type of the splicing rule we first

assume the splicing rule set M = {α $ α }. Then

for α T, we divide the sample word in to two at

the position after α. In our example first we assume

M = {a $ a } and split the sample word aaacbbb

into two subwords of the form a│aacbb.

Now as the pattern grammar is known, we learn the

regular language using L
*
 having „a‟ as a prefix of

a word belonging to the required regular language.

But as the splicing rule M = {a $ a } is not the

correct rule L
*
 will not give the correct automaton.

So again we start with M = {b $ b } and we

learn regular language . Again L
*
 will not be able

to give correct automaton. This process is repeated

till we get the correct splicing rule M = {c $ c }.

Now as the pattern grammar is known, we try to

learn the regular grammar using L
*
 having „a‟ as a

substring of the required regular grammar. But as

the splicing rule M = {a $ a } is not the correct

rule L
*
 will not give the correct automaton. So

again we start with the rule M = {b $ b } and we

try to learn the pattern grammar and the regular

grammar. Again L* will not be able to the correct

automaton. This processes is repeated till we get

the correct splicing rule M = {c $ c }. Now the

sample word is divided into a
3
c and b

3
. With the

subword a
3
c, L

*
 is learnt.

Now as the pattern grammar is known, we

try to learn the regular grammar. The learning is as

follows:

Let U = {a}
+

c be the member of the required

regular set, then we define A = {λ, a, c}. To start

with take only and a in S.

Table 1 is closed and consistent but the

language is not accepted. Thus instead of getting a

counter example from the teacher we add c to E

and table 2 is constructed. Table 2 is closed but not

consistent. So we add ac to E and c to S and Table

3 is constructed. But Table 3 is not closed, thus we

add ac in S and Table 4 is constructed. Table 4 is

closed and consistent; the language is accepted by

the teacher. The transition table of acceptor is

shown in Table 5.

From the automaton rules q0 → aq1, q0 → cq2, q1

→ aq1, q1 → cq3, q2 → aq2, q2 → cq2, q3 → aq2, q3

→ cq2 which generates the required regular set

{a}
+
c are written. Here q0 is initial state and q3 is

finale state. Finally after learning the regular set

and pattern grammar the output is an equivalent

simple splicing pattern grammar system. Now as

pattern grammar, the regular set and the splicing

rule are known we can write a Simple Splicing

grammar system (N, T, (S, P1), (A, P2), M)

with LL)(

 Table 1 Table 2

T1 λ

Λ

A

0

0

C

aa

ac

0

0

0

T2 λ c

λ

a

0 0

0 1

c

aa

ac

0 1

0 1

0 0

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

Table 4 Table3 3

 Table 5

References

[1] Abisha, P. J., Subramanian, K. G., Thomas, D.

G.: Pure Pattern Grammars, Proceedings of

international Workshop on Grammar systems.

253 – 262, Austria (2000).

[2] Abisha, P. J., Thomas, D. G., Sindhu J

Kumaar.: Learning subclass of Pure Pattern

Languages. Proc. of International Colloquium

on Grammatical Inference ICGI 2008, LNAI

5278, 80-283, Saint Malo, France (2008).

[3] Angluin, D.: Finding patterns common to a set

of strings, Journal of Computer and System

Sciences. 21, 46 – 62 (1980),

[4] Angluin, D.: Learning regular sets from queries

and counter examples, Information and

computation. 75, 87 – 106 (1987).

[5] Angluin, D.: Queries and concept learning,

Machine Learning. 2, 319-342 (1988).

[6] Dassow, J., Mitrana. V.: Splicing Grammar

Systems, Computers and AI, 15(2 -3), 109 –

122 (1996).

[7] Dassow, J., Paun, Gh., Salomaa, A.: Grammars

based on patterns, International Journal of

Foundations of Computer Science. 4, 1 – 14

(1993).

[8] Dassow, J., Paun, Gh., Rozenberg, G.:

Generating languages in a distributed way:

Grammar systems. In: Rozenberg, G.,

Salomaa, A.(eds.) Handbook of formal

languages. Springer, Heidelberg (1997).

[9] Dersanambika, K. S., Krithivasan, K.,

Subramanian, K. G.: Simple splicing grammar

systems. Proceedings of Grammar System

Week, 170–178, (2004).

[10] Gold, E. M.: Language identification in the

limit, Information and Control. 10, 447-474

(1967).

[11] Head, T.: Formal language theory and DNA:

an analysis of the generative capacity of

specific recombinant behaviors. Bull Math. 49,

737 – 759 (1987).

[12] Head, T., Paun, Gh., Pixton, D.: Language

theory and molecular genetics: Generative

mechanisms suggested by DNA

recombination. In: Hand Book of Formal

Languages, Rozenberg, R.., Saloma, A. (eds),

pp. 295–360.

 Springer (1997).

[13] Mateescu, A., Paun, Gh., Rozenberg, G.,

Salomaa, A: Simple splicing systems. Discrete

Applied Mathematics. 84, 145 -163, (1998).

[14] Maurer, H. A., Salomaa, A., Wood, D: Pure

grammars. Information and Control. 44, 47 –

72, (1980).

[15] Paun, Gh., Santean, L.: Parallel communicating

grammar systems: the regular case. Ann. Univ.

Buc., Series Mathem. – Inform. 38, 55 – 63,

(1989).

[16] Salomaa, A.: Formal Languages. Academic

Press, New York (1973).

[17] Sindhu J Kumaar, Abisha, A. J., Thomas, D.

G.: Learning Subclasses of Parallel

Communicating Grammar Systems.

Proceedings of the conference International

Colloquium on Grammatical Inference. LNAI

6339. 301 – 304, (2010).

[18] Sindhu J Kumaar , Abisha, P. J., Thomas, D.

G.: Simple Splicing Synchronized Pattern and

Pure Pattern Grammar systems. Proceedings

of the conference Bio Inspired Computing:

Theories and Applications. 220 – 224, (2011).

T3 λ c ac

λ

a

c

0 0 1

0 1 1

0 0 0

aa

ac

ca

cc

0 1 1

1 0 0

0 0 0

0 0 0

T3 λ c ac

λ

a

c

ac

0 0 1

0 1 1

0 0 0

1 0 0

aa

ca

cc

aca

acc

0 1 1

0 0 0

0 0 0

0 0 0

0 0 0

δ a c

q0

q1

q2

q3

q1 q2

q1 q3

q2 q2

q2 q2

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

