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Abstract 

 
Pattern language learning algorithms within the 

inductive inference model and query learning 

setting have been of great interest. Angluin’s [3] 

pattern languages motivated Dassow et al [8] to 

modify the way of describing these languages and 

define pattern grammars. Sindhu et al [17] 

introduced learning algorithms for two kinds of 

parallel communicating grammar systems. 

Dersanambika et al [9] introduced a new type of 

grammar system called simple splicing grammar 

system (SSGS) in which four types of splicing rules 

namely < 1, 3 > , < 1, 4 > , < 2, 3 > and < 2, 4 > 

are discussed. A model of splicing grammar 

systems, with pattern grammar as components was 

introduced by Sindhu et al [18]. In this paper we 

provide a learning algorithm for a subclass of 

simple splicing grammar system.  

 
 

1. Introduction 
Inductive inference introduced by Gold 

[10] is a model that identifies the unknown concept 

in the limit. Inferring a pattern common to all 

words in a given sample is a typical instance of 

inductive inference. A pattern is a finite string of 

constant and variable symbols and the pattern 

language introduced by Angluin [3] is the set of all 

strings obtained by substituting any non-null 

constant string for each variable symbol in the 

pattern. In recent years, there has been an increased 

interest in the problem of learning pattern 

languages using queries and examples. Motivated 

by the study of Angluin, a generative device called 

pattern grammar is defined by Dassow et al [7]. 

The idea here is to start from a finite set A of 

axioms which are over an alphabet of constants; 

given a set P of patterns which are strings over an 

alphabet of constants and variables, replace 

uniformly and in parallel, the variables in a given 

pattern by axioms and continue the process with 

the current set of strings, obtained by such 

operations. All strings generated in this way 

constitute the associated language called a pattern 

language.   

 

The theory of grammar systems [8] is an interesting 

and a deeply investigated area of formal language 

theory. A parallel communicating grammar system 

consists of several grammars. For solving a task, 

the components work simultaneously and are 

allowed to communicate. A communication is done 

by request: a component can request the whole 

word generated by another component. A minimal 

synchronization is assumed: in each time unit every 

component carries out a rewriting step or the 

system performs communication.  

 

The behavior of DNA under the influence of 

restriction enzymes and ligases was studied by 

Head et al and an overview of this can be seen in 

[12]. Head defined splicing systems that make use 

of a new operation called splicing on strings of 

symbols. Mateescu et al [13] have considered 

simple splicing systems that make use of splicing 

rules that are as simple as possible.  

 

A splicing grammar system [6] can be viewed as a 

set of grammars working in parallel on their own 

sentential forms (exactly as in parallel 

communicating grammar systems) and, from time 

to time, exchanging to each other segments of their 

sentential forms, determined by given splicing 

rules. Dersanambika et al [9] examined splicing 

grammar systems by requiring the simple splicing 

rules in the sense of Mateescu et al [13]. Various 

properties of the resulting simple splicing grammar 

systems are obtained by considering different 

component grammars. 

 

Sindhu et al [17] have given a polynomial time 

algorithm to learn a subclass of PCPPL (Parallel 

Communicating Pure Pattern Language) using  

restricted subset queries and restricted superset 

queries.  

 

Sindhu et al [18] have considered a model of 

splicing grammar systems, with pattern grammar in 

the components. For this model the master 

component is a regular grammar.  In this paper we 

present learning algorithms of this model of 

grammar systems using prefix queries and 

restricted subset queries. 

 

2. Pattern Grammars  
We first recall the definition of pattern 

grammar given by Dassow et al [8].  
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Definition 2.1: [7] A pattern grammar (PG) is a 4 – 

tuple ),,,( PAXG  where ∑ is an alphabet 

whose elements are called constants, X is an 

alphabet whose elements are called variables. A  

∑
*
 is a finite set of elements of ∑

*
 called axioms 

and P  (   X)
+
 is a finite set of words called 

patterns where each word contains atleast one 

variable. The rewriting is done as follows: 

 

kjXAxkiu

Puuuuuxuxuxu
AP

jj

kk

iii

kikiikikii

1,,,11,

,.../...

*

121121 2121

 

 This means that, P(A) contains words obtained by 

replacing the variables in the pattern by words from 

A and different occurrences of the same variable 

are replaced by the same word. Then the pattern 

language (PL) generated by G is L(G) =  P  A  

P (A)  P(P (A)) … 

 

Example 2.1: G = ({a, b}, { }, {ab}, {a b}) is a 

pattern grammar generating the language L(G) = 

{a
n
b

n
 / n  1}, as A = {ab}, P(A) = {aabb}, P(P(A)) 

= {aaabbb} and so on.  

 

We observe that the concept of variable is similar 

to that of variable in Chomskian grammar. But the 

rewriting process is different; it is uniform, in the 

sense that all the occurrences of a variable in a 

pattern are replaced by the same word and the 

variables are rewritten in parallel. Still, the pattern 

grammars generate class of languages which are 

incomparable with Chomskian languages and 

Lindenmayer languages.   

 

3. Simple Splicing Grammar System 
The splicing operation is a novel operation 

on strings and languages introduced in [11] in order 

to model the recombinant behavior of DNA 

sequences. One gives rules of the form u1# u2 $ 

u3#u4, called splicing rules, where u1, u2, u3, u4 are 

strings over the alphabet we work with; from two 

strings x = x1u1u2x2, y = y1u3u4y2, for splicing rule 

u1# u2 $ u3#u4, we produce the string z = x1u1u4y2. 

We say that z is obtained by the splicing of  x, y, 

which are cut and joined at sites specified by u1, u2, 

u3, u4. 

 

We now recall the definition of simple splicing 

grammar system introduced in [9]. 

 
Definition 3.1: [9] A < 1, 3 > - simple splicing 

grammar system   (< 1, 3 > - SSGS) of degree n 

is a  construct  

 Γ = (N, T, ( S1, P1), ( S2, P2), ( S3, P3), …,    

(Sn, Pn), M) where 

i. N, T are disjoint alphabets and Pi, 1  i  n 

are finite sets of production rules over 

  N  T. Each Si N,  1≤ i ≤ n is a 

special symbol called the start symbol.  

ii. M is a finite subset of (N T ) # $ (N T) 

#, with #, $ two distinct symbols which are 

not in  N  T. Each element of M is a < 1, 

3 > - simple splicing rule. Here (N T ) # 

$ (N T) # means (N T ) # {λ} $ (N T) 

# {λ}where {λ} is the empty string. 

The sets (Si, Pi) are called the components of Γ. We 

can consider grammars of the form Gi = (N, T, Si, 

Pi), 1≤ i ≤ n. By configuration, we mean an n – 

tuple consisting of words over N  T. For two 

configurations, 

x = (x1, x2, …, xn ), xi  (N  T )* N (N  T )*, 

1≤ i ≤ n 

y = (y1, y2 , …, yn ), yi   (N  T )* , 1≤ i ≤ n 

We define x y if and only if any of the 

following two conditions hold. 

(i) for each 1  i  n, ipi yx
i

 

(ii) there exist 1  i, j  n such that 

iii xaxx , jjj xaxx , jii xaxy , 

ijj xaxy ,  for  a  $ a    M, and yk = xk,  

for k  i, j  

 

In a derivation x Γ y, in   1, 3  - SSGS, (i) 

defines a rewriting step, but (ii) defines a  1, 3  

splicing step, corresponding to a communication 

step in a parallel communicating grammar system. 

Here if a splicing step is happening between i
th

 and 

j
th

 components, the other components will not do 

the rewriting process. In other words, either (i) or 

(ii) holds at a particular step. There is no priority of 

any of these operations over the other. 

 

A   2, 3  - simple splicing grammar system is 

analogously defined by choosing  2, 3   simple 

splicing rules  ( N  T) $ (N T) . Also  1, 3  - 

SSGS and  2, 4  - SSGS are essentially the same. 

Likewise 1, 4  and  2, 4   simple splicing rules 

are from the sets ( N  T)  $  (N T) and   ( N 

 T)  $  (N T) respectively. 

 
The language generated by the i

th
 component is 

defined by  
 

ijTNxxxxSSSTxL jnnii ,),...,,,()...,,,(/
*

21

*

21

*

 

where 
*

 is the reflexive and transitive closure of 

the relation . Two kinds of languages can 

naturally be associated to a simple splicing 
grammar system. One of them is the language 
generated by a single component and because no 
component is distinguished any way, we may 
always choose the language generated by the first 
component. This language is called the individual 
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language of the system. The second associated 
language will be the total language, namely 

i

n

i
t LL

1

  

Example 3.1: 

Consider the   1, 3  - SSGS with regular 

rewriting rules. Let 

 = (N, T, (S1,  P1), (S2, P2), M ) 

N = { S1, S2, A, B} 

T = {a, b, c} 

P1 = {S1  aA, A  aA, A  c} 

P2 = {S2  cB, B  bB, B  b} 

M = {c  $ c  }  

This system produces languages 

L1 (  ) = {a
n
 c b

n
 / n  1}   {a

n
 c  / n  1}  

  

L2 (  ) = {cb
n 
/ n  1} 

Here the total language is  

Lt ( ) = {a
n
cb

n
/ n  1} {a

n
c / n  1} {cb

n 
/ n  1} 

 

4. Simple Splicing Pattern Grammar 

System 
We recall  1, 3  simple splicing pattern 

grammar system with two components taking the 

first component to be a regular (or context free) 

grammar and the second to be a pattern grammar 

[18]. 

Definition 4.1 

A  1, 3  simple splicing RPG grammar system is 

a construct  = (N, X, T, (S,  P1), (A, P2), M ), 

where 

(i) N, T are disjoint alphabets. S N is a 

special symbol called start symbol and (N, T, P1, S) 

is a regular  grammar. 

(ii) A  T 
*
 is a finite set of words called 

axioms and P2 is a finite subset of (X  

T)
+
 called the set of patterns. Here N, X 

and T are disjoint alphabets. (T, X, A, P) 

is a pattern grammar    

(iii)  M is a finite subset of (N  T)  

$(N T) ,   with  , $ are two distinct 

symbols which are not in ( N  T). Each 

element of M is a  1, 3  simple splicing 

rule. 

For two configurations, 

x = (x1, x2), x1  (N  T)
*
 N (N  T)

*
, x2  T

*
 

y = (y1, y2), y1  (N  T)
*
, y2  T

*
. 

We define yx  if and only if any of the 

following two conditions hold: 

( i) 
11

1

yx
P

and y2 P2({x2})      

(ii) 111 xaxx , 222 xaxx ,  

211 xaxy          

           122 xaxy , for  a  $ a   M 

In the derivation yx  in 1, 3  simple 

splicing RPG systems (i) defines a rewriting step, 

but (ii) defines a splicing step corresponding to a 

communicating grammar system.  

 2, 3  ,  1, 4  and   2, 4   simple splicing 

RPG systems are analogously defined.   

The language generated by the 1
st
 component is 

defined by  

 

AwTxxxxwSTxLi ,,),,(),(/ *

2121

*

1

*

1

where 
*

 is the reflexive and transitive closure of 

the relation . Two kinds of languages can 

naturally be associated to a simple splicing 

grammar system. One of them is the language 

generated by the individual component. This 

language is called the individual language of the 

system. The second associated language will be the 

total language, namely  

 

21 LLLt  

 

Example 4.1 

 = (N, T, X, (S, P1), (A, P2) , M ) 

N = {S, A}, X = {δ} 

T = {a, b, c} 

P1 = {S  aA, A  aA, A  c} 

P2 = {δb} 

A = {c} 

If  M = {c  $ c  }, this system produces 

languages 

L1 (  ) = {a
n
cb

n
 / n > 1}  {a

n
 c / n  1}  

L2 (  ) = {λ}  {cb
n
 / n  1} 

Here the total language is  

Lt (  ) = {a
n
cb

n
 / n > 1}  {a

n
 c / n  1}  {λ}  

{cb
n
 / n  1}              

          

5. Learning Regular Sets from Queries 

and counterexamples 
Angluin [4] describes the learning 

algorithm L
*
 and show that it efficiently learns an 

initially unknown regular set from any minimally 

adequate teacher.  Let the unknown regular set be 

denoted by U and that it is over a fixed known 

finite alphabet A. 

 

 At any given time, the algorithm L
*
 has 

information about a finite collection of strings over 

A, classifying them as members or nonmembers of 

the unknown regular set U.  This information is 

organized into an observation table, consisting of 

three things: a non-empty finite prefix-closed set S 

of strings, a non-empty finite suffix-closed set E of 

strings, and a finite function T mapping ((S S. 

A) . E) to {0, 1}.  The observation table will be 

denoted (S, E, T) (A set is prefix-closed if and only 

if every prefix of every member of the set is also a 
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member of the set.  Suffix-closed is defined 

analogously). 

 

 The interpretation of T is that T(u) is 1 if u 

is a member of the unknown regular set, U.  The 

observation table initially has S = E – {λ}, and is 

augmented as the algorithm runs. An observation 

table can be visualized as a two-dimensional array 

with rows labeled by elements of (S S. A) and 

columns labeled by elements of E with the entry for 

row s and column e to  T(s. e).  If s is an element of 

(S S. A), then row(s) denotes the finite function 

f from e to {0, 1} defined by f(e) = T(s. e). 

 

 An observation table is called closed 

provided that for each t in S. A there exists an s in 

S such that row (t) = row (s).  An observation table 

is called consistent provided that whenever s1 and 

s2 are elements of S such that row (s1) = row (s2), 

for all a in A, row (s1. a) = row (s2. a).  If (S, E, T) 

is closed and consistent observation table, then a 

corresponding acceptor M(S, E, T) over the 

alphabet A, with state set Q is described.  The 

initial state q0, accepting states F, and transition 

function δ is as follows.    

  

  Q = {row (s); s S} 

  q0 = row (λ) 

      F = {row (s); s S and T(s) = 1}, 

  δ (row (s), a) = row (s. a)  

6. Learning Simple Splicing Grammar 

Systems   
Consider the situation where the learning 

algorithm is allowed to make queries to an oracle. 

In [4], the notion of “minimally adequate teacher” 

(MAT) is introduced and the teacher (Oracle) 

answers membership and equivalence queries in 

order to construct a learning algorithm for regular 

sets. In [5], the notions of subset and superset 

queries are introduced. For a subset (superset) 

query, the input is a concept C and the output is 

„yes‟ if C is a subset (superset) of the target 

concept C*
 
and „no‟ otherwise. If the answer is 

„no‟, counter example x from C – C* (C* - C) is 

also returned. Restricted subset queries and 

restricted superset queries, where no counter 

example is returned are also introduced in [5]. 

 

We recall that a word u  T
*
 is a prefix of another 

word w  T
*
, if there exists a word v  T

*
, such 

that w = uv. Thus in a prefix query, the concept to 

be learnt is usually a word w over the underlying 

alphabet T. The input is a word u  T
*
 and the 

output is “yes”, if u is a prefix of w and “no” 

otherwise.  

 

We learn a <1, 3> simple splicing grammar system 

where the master is a regular grammar and the 

other is a non erasing pattern grammar with a 

single pattern which is in canonical form. The 

technique of the algorithm is as follows:  

 

A pattern with k variables is a word over (T {x1, 

x2,…, xn}). Elements of T are called constants 

while xi,  X are called variables. A pattern p with 

k variables is said to be in canonical form if, for 

each i ≤ k, the leftmost occurrence of xi in p occurs 

to the left of leftmost occurrence of xi + 1. For a 

pattern  p with k variables, and a set of k strings u1, 

u2,…,uk T
*
 let p[x1:u1, x2:u2,…, xk:uk] denote the 

string obtained by substituting u1 for each 

occurrence of xi in p. The language {p[x1:u1, 

x2:u2,…, xk:uk] / u1, u2,…,uk  T
*
} generated by 

using substitutions of this type is the language 

generated by the pattern p. The class of all k 

variable patterns is denoted by Pk.  

 

We now present an algorithm that exactly identifies 

in polynomial time the class Pk.of pattern languages 

using prefix queries. Let p = p1p2…pn be the pattern 

to be identified. We begin by checking whether p1 

is a constant. Hence for each a  T we make a 

prefix query for a.. If the output is “no” to each of 

these queries we conclude that p1 is a variable and 

since p is in canonical form p1 =  x1.  

 

Suppose at some stage we have discovered that 

p1p2 p3… pi is a prefix of p and j = max {r / ps = x r 

for 1  s  i}. Again we check whether pi + 1 is a 

constant by making prefix query for p1 p2 p3… pi a, 

a  T. As before if each of these queries yields a 

negative answer, we conclude that pi + 1 is a 

variable and query whether p1 p 2… pi xr is a prefix 

for each r  j + 1. We conclude that the pattern is 

complete if each of these queries receives a 

negative reply.   

Now, to learn axiom set A, initially fix A = . 

Arrange the words in 
m

i

iT
1

(m the maximum 

length of the axiom is known) are arranged 

according to increasing order of length and among 

the words of equal length lexicographically. Let 

them be x1, x2… xs. At the t
th

 step ask the restricted 

subset query for (T, A  {xt}, p). If the answer is 

„yes‟, increment A to A  {xt}. If the answer is 

„no‟, A is not incremented. The output at the last 

step is the required PG.  

 

Now as the pattern grammar is known, we assume 

first, M = {α  $ α }, which is <1, 3> splicing rule 

and split the sample word into two using M, where 

the first part of sample is a subword of the required 

regular set and the second part is a subword of the 

required pattern grammar.  The regular set is learnt 

using L
*
. 
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Algorithm  

Input: 

The alphabets T, N, X, a positive sample 

w from L( 1), w  T
+
 of length r, the 

length „n‟ of the pattern, the maximum 

length „m‟ of the axiom, r  n , words t1, 

t2…, ts of 
m

i

iT
1

given in the increasing 

length order, among words of equal length 

according to lexicographic order. 

 
Output: 

 A Simple Splicing Pattern grammar 

system   (N, T, X, (S, P1), (A, P2), M)                             

              with LL )(  

 
Procedure (Pattern) 

Module 1 

 i = 0, p = λ, number of characters in the pattern is 

n 

First set    

               i = i +1, If i > n stop 

 For each a  T  

 begin 

  Ask prefix query for pa 

     if answer is “yes” then do 

        begin 

   p = pa 

   Go to First set 

  

       end  

 end   

Module 2  

Second set 

k = 1 to j  

 for δk  X 

 begin 

  Ask prefix query for δk 

    if answer is “yes” then do 

       begin 

   p = pδk 

                Go to First set 

       end   

 end 

  Ask prefix query for δj 

  if answer is “yes” then do 

  begin 

   p = pδj                 

   j = j + 1 

                 Go to First set 

end 

  If i is equal to n 

 end 

end 

 

 

 

Procedure (Axiom) 

Let x1, x2, …, xs be the words in 
m

i

iT
1

arranged in 

lexicographic order 

A =  

 for t = 1 to s do 

  begin 

   ask restricted subset 

query for G =  (T, X, A  {xt}, {p}) 

    If „yes‟ then A 

= A  {x} and t = t + 1 

   else output  G 

  end 

Print the pattern grammar (T, X, A, p) 

 
Procedure (Master)   

For each α  T 

Let M = {α   $ α } 

    Cut the sample word w = u α v into two, 

at the position after reading α         

                      begin 

   As u α   L (N, T  

{α}, P1, S)  

     run L
*
 using 

prefixes of u α . If L
*
 gives the   

     

 correct automaton, write the 

corresponding regular    

     grammar which 

is equivalent to G0 =  (N, T  {α}, P1, S) 

    and write the 

splicing rule M = {α   $ α }  

    Print  (N, 

T, (S, P1), (A, P2), M)  the Simple Splicing Pattern 

Grammar system 

           else   

        M = {α   $ α }  

   end 

end 

  
Time Analysis: The algorithm given above 

considers a <1, 3> simple splicing grammar system 

where the master is a regular grammar and the 

other component is a non erasing pattern grammar 

with a single pattern of length n which is in 

canonical form. Clearly the number of queries 

needed to identify a pattern p = p1p2…pn of length 

n is bounded by n( T  + k) since a maximum of 

T  + k queries are required to identify each pi. 

The running time for L
*
 is polynomial in the 

number of states of the minimum acceptor and the 

maximum length of counter examples. Hence, the 

implementation time for this algorithm is bounded 

by quadratic expression in n.   
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7. Example run for Simple Splicing 

Pattern Grammar System 
From the Splicing language generated by 

the simple splicing pattern grammar System 

(example 4.1)   = ( N, T, (S, P1), (A, P2 ), M), let 

the sample given be aaacbbb. To learn pattern 

grammar it is enough if we find the pattern p and 

the axiom set A. Here the length of the pattern is 

two and maximum length of the axiom is one and 

the alphabet T = {a, b, c}. Let p = p1p2. First we 

check whether p1 is a constant. Thus for a  T, a 

prefix query is asked. The answer will be “no” 

since the pattern is δb Again for b  T, a prefix 

query is asked and again the answer will be “no”. 

So another prefix query for c  T is asked and 

again the answer will be “no”. Thus p1 = δ is learnt. 

Now for a  T we ask a prefix query for δa. The 

answer will be “no”. Again for b  T, a prefix 

query is asked for δb. The answer will be “yes”. 

Hence the pattern δb is learnt.  

 

Now, to learn axiom set A, initially fix A = . The 

words in T are considered. Let them be a, b, c. Now 

the restricted subset query for (T, A  {a}, p) is 

asked. As the answer is „no‟, ask one more subset 

query (T, A  {b}, p). Here the teacher answers 

no. Then we ask subset query (T, A  {c} , p). 

Now the teacher answers „yes‟, thus the axiom set 

is learnt which is {c}. As the pattern and axiom are 

learnt the output is the required pure pattern 

grammar  =  ({a,b, c}, {c} { δb})  

 

 

From the sample given we learn the simple splicing 

pattern grammar system with <1, 3> splicing rule.  

 

As we know the type of the splicing rule we first 

assume the splicing rule set M = {α  $ α }. Then 

for α  T, we divide the sample word in to two at 

the position after α. In our example first we assume 

M = {a  $ a } and split the sample word aaacbbb 

into two subwords of the form a│aacbb.   

 

Now as the pattern grammar is known, we learn the 

regular language using L
*
 having „a‟ as a prefix of 

a word belonging to the required regular language. 

But as the splicing rule M = {a  $ a } is not the 

correct rule L
*
 will not give the correct automaton. 

So again we start with M = {b  $ b } and we  

learn regular language . Again L
*
 will not be able 

to give correct automaton. This process is repeated 

till we get the correct splicing rule M = {c  $ c }. 

Now as the pattern grammar is known, we try to 

learn the regular grammar using L
*
 having „a‟ as a 

substring of the required regular grammar. But as 

the splicing rule M = {a  $ a } is not the correct 

rule L
*
 will not give the correct automaton. So 

again we start with the rule M = {b  $ b } and we 

try to learn the pattern grammar and the regular 

grammar. Again L* will not be able to the correct 

automaton. This processes is repeated till we get 

the correct splicing rule M = {c  $ c }. Now the 

sample word is divided into a
3
c and b

3
. With the 

subword a
3
c, L

*
 is learnt.  

 

Now as the pattern grammar is known, we 

try to learn the regular grammar. The learning is as 

follows: 

Let U = {a}
+ 

c  be the member of the required 

regular set, then we define A = {λ, a, c}. To start 

with take only  and a in S. 

 

Table 1 is closed and consistent but the 

language is not accepted. Thus instead of getting a 

counter example from the teacher we add c to E 

and table 2 is constructed. Table 2 is closed but not 

consistent. So we add ac to E and c to S and Table 

3 is constructed. But Table 3 is not closed, thus we 

add ac in S and Table 4 is constructed. Table 4 is 

closed and consistent; the language is accepted by 

the teacher. The transition table of acceptor is 

shown in Table 5. 

 

From the automaton rules q0 → aq1, q0 → cq2, q1 

→ aq1, q1 → cq3, q2 → aq2, q2 → cq2, q3 → aq2, q3 

→ cq2 which generates the required regular set 

{a}
+
c are written. Here q0 is initial state and q3 is 

finale state. Finally after learning the regular set 

and pattern grammar the output is an equivalent 

simple splicing pattern grammar system. Now as 

pattern grammar, the regular set and the splicing 

rule are known we can write  a Simple Splicing 

grammar system   (N, T, (S, P1), (A, P2), M) 

with LL )(  
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T1 λ 
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aa 

ac 
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0 
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T2 λ     c  

λ 

a 

0     0 

0     1 

c 

aa 

ac 

 

0     1 

0     1 

0     0 
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T3 λ    c   ac 
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0    0   1 

0    1   1 
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aa 

ac 

ca 

cc 

 

0    1   1 

1    0   0  

0    0   0 
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T3 λ    c   ac 

λ 

a 

c 

ac 

0    0   1 

0    1   1 

0    0   0 

1    0   0  

aa 

ca 

cc 

aca 

acc 

0    1   1 

0    0   0  

0    0   0 

0    0   0 
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δ a      c 

q0 

q1 

q2 

q3 

q1        q2 

q1        q3 

q2        q2         

q2        q2 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T


