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Abstract - Large Language Models (LLMs) such as GPT-
5 are widely used in continuous, multi-turn conversational
settings by students, professionals, and researchers.
However, as conversations progress, the accumulated
dialogue history expands the model’s effective context,
resulting in significant increases in response latency. Users
frequently observe delays rising from near-instant output
to several minutes in prolonged sessions. This paper
analyzes the computational basis of this degradation and
proposes a Memory-Block Protocol (MBP) that segments
dialogue into manageable blocks, generates compact
semantic summaries, extracts stable state variables, and
periodically refreshes the active context while remaining
within the same chat thread. This approach maintains
conversational continuity, reduces redundant token
reprocessing, and avoids architectural modification to the
underlying model. An experimental evaluation framework
is provided to measure latency and coherence across mixed
reasoning and technical tasks. The protocol improves
responsiveness while preserving semantic fidelity,
demonstrating that significant performance optimization
can be achieved through structured prompt-level memory
compression.

Keywords - Conversational Al, GPT-5, Latency Optimization,
Memory-Block Protocol, Prompt Engineering

I.  INTRODUCTION

Large Language Models (LLMs) have become central to
computational assistance across education, research, software
development, scientific analysis, and general problem-solving.
Unlike traditional question—answer systems, modern LLMs
such as GPT-5 are wused in continuous, multi-turn
conversational workflows, where the model gradually
accumulates context and builds a shared understanding with the
user. This conversational persistence is highly valued because
it allows the user to interact naturally—clarifying, refining,
revising, and extending ideas over time. The uninterrupted
dialogue structure is therefore a key component of the usability
appeal of LLM-driven systems.

However, this same continuity introduces a progressive
computational burden. Transformer-based models process
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inputs using self-attention across the entire visible context for
every generated token. As the conversation grows, the number
of tokens that must be repeatedly attended to increases. This
results in long-context scaling, where inference time increases
as a function of input sequence length. In the early stages of a
conversation, when context is small, responses are typically
generated instantly. But as the chat extends into dozens or
hundreds of turns, users often observe response delays ranging
from 5-30 seconds and, in extreme cases, several minutes. This
latency accumulation has practical consequences: it interrupts
task flow, discourages iterative reasoning, reduces cognitive
alignment between user and system, and increases interaction
frustration.

Existing strategies to mitigate performance degradation
generally fall into two categories. The first strategy is to start a
new chat, copying or paraphrasing essential details from the
previous conversation. While this reduces context size, it
disrupts continuity and forces the user to manually reconstruct
shared understanding. The second strategy is to rely on built-in
memory features or external retrieval mechanisms. These
approaches depend heavily on model-specific or platform-
specific implementations, may not guarantee state persistence,
and often introduce robustness challenges where the model
forgets or misinterprets context. More importantly, these
strategies do not directly address the core cause of latency: the
constant reprocessing of large historical token sequences.

The underlying scalability limitation is not due to memory
storage, but due to repeated computation. Even if older
conversation context is no longer semantically useful, it
remains present in the prompt and must be processed at each
inference step. This means the inefficiency arises at the
prompt-conditioning level, not at the level of learned
parameters. Because of this, the solution should also be applied
at the prompt representation level, rather than requiring
architectural modification to the model.

This creates a clear research problem:

How can conversational continuity be preserved while
preventing uncontrolled growth of the active context window
in long, persistent GPT-5 interactions?

To address this, we propose a structured conversational
memory management strategy called the Memory-Block
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Protocol (MBP). The protocol segments a long conversation
into coherent blocks, generates compressed semantic
summaries, extracts stable state information, and maintains a
compact task ledger that tracks progress over time.
Periodically, the raw conversation history is replaced with only
this compressed memory representation while the user remains
in the same chat session. This ensures that the model retains
conceptual continuity without being forced to repeatedly re-
attend to irrelevant or redundant historical tokens.

The contribution of this work is not a new model
architecture, retrieval system, or fine-tuning technique. Instead,
the contribution is a practical, model-agnostic conversational
optimization method that can be applied manually or
automated within interfaces. The Memory-Block Protocol
directly targets the computational scaling bottleneck in
persistent dialog interactions and provides a principled method
for reducing latency while preserving coherence.

In summary, this paper (1) analyzes the cause of latency
escalation in long-context GPT-5 sessions, (2) introduces the
Memory-Block Protocol (MBP) as a structured approach to
conversational memory compression, and (3) provides an
evaluation framework for measuring latency and semantic
integrity in mixed reasoning and technical tasks. By addressing
conversational context growth at the prompt-level interface,
this method offers a lightweight and immediately deployable
solution for real-world long-session usage of LLMs.

II. RELATED WORK

The challenge of maintaining efficiency and coherence in
extended contextual reasoning has been examined in several
domains of natural language processing and machine learning
research. However, most existing approaches either target
model-side optimization or external memory retrieval, rather
than prompt-level conversational restructuring, which is the
focus of this work.

A. Long-Context Transformer Research

The core computational limitation arises from the self-
attention mechanism first introduced by Vaswani et al. (2017),
where attention complexity scales quadratically with sequence
length. Multiple works have attempted to mitigate this cost by
modifying the architecture:

Sparse Attention Models reduce attention computation by
selecting fewer token pairs.

Local Attention and Windowed Attention restrict attention to
neighboring segments.

Longformer, BigBird, and Reformer introduce structured
sparsity patterns to improve context handling.

Retrieval-Augmented Models (RAG, Retro) store external text
chunks and reference them selectively.

These approaches require changes to the model architecture,
training procedures, or server-level retrieval systems. They
improve long-context capability in principle, but are not
immediately applicable to everyday GPT usage where users
interact through standard chat interfaces without control over
model internals.
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B. Prompt Compression and Summarization Techniques

Another research direction involves summarizing prior
conversation history. Summarization-based memory is used in
dialog systems and task-oriented conversational agents to
reduce token consumption. However, summarization alone is
insufficient, because:

Summaries collapse nuance, causing loss of commitment and
identity cues.

Summaries do not preserve decision constraints and task
progression.

Without an explicit state representation, summaries may drift
over time.

Thus, raw summarization does not provide a stable foundation
for maintaining multi-stage reasoning in long GPT
interactions.

C. External Vector Memory and Knowledge Stores

Systems such as LangChain, Llamalndex, and RAG pipelines
attempt to maintain persistence through embedding-based
vector memory. They store conversation segments or
documents and selectively re-insert relevant pieces using
semantic similarity search. While these approaches allow
scaling across large document sets, they require:

Additional memory infrastructure,
Retrieval logic,

Embedding model computation, and
Manual system integration.

More importantly, re-injected content still increases token
load, leading to the same latency issue during inference.

D. Human-Guided Prompt Optimization

Prior studies on human-guided interaction strategies have
shown that structured prompting improves consistency and
reduces hallucination. However, this work has mostly focused
on how prompts are written, not how prompts grow over time.
There remains a gap in managing conversational history
growth itself.

E. Gap in Existing Literature

Addresses Long
Research Domain Dialogue Limitation
Latency?
Long-context Requires
transformer Partially architectural
architectures modification
L Loses state +
Summarization-only . .
. Partially decision
chat compression )
constraints
Retrieval-augmented Partially Re-inserts too
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Addresses Long
Research Domain Dialogue Limitation
Latency?
conversation memory many tokens
Structured prompting No Does not manage
techniques history growth

None of these approaches directly solve the core problem we
target:

Preserving reasoning continuity in very long GPT chat
sessions while preventing exponential growth of the active
token window.

F. Contribution Positioning

This paper introduces the Memory-Block Protocol (MBP) as a
solution that:

Works at the prompt level, requiring no architectural changes.

Preserves state, identity, and decisions, unlike summarization
alone.

Permanently controls unlike retrieval-

augmented storage.

token growth,

Operates entirely within the same chat thread, avoiding
workflow interruption.

Thus, MBP addresses a practical yet understudied problem:
long-session conversational efficiency, rather than model
parameter optimization.

[I. PROPOSED METHOD: MEMORY-BLOCK
PROTOCOL (MBP)

The Memory-Block Protocol (MBP) is introduced as a
structured conversational memory management framework
designed to maintain semantic continuity while preventing
uncontrolled growth of the active context window in long
GPT-5 chat sessions. The method does not modify the
underlying model, inference mechanism, or training data.
Instead, it restructures conversation history at the prompt
interface level, where latency is directly affected by context
length.

The key insight behind MBP is that not all past
conversational tokens are equally relevant to future reasoning.
What must be preserved is meaning, decisions, task progress,
and user-specific constraints—not the full raw text of earlier
dialogue. MBP therefore converts raw dialogue into
compressed semantic memory representations, allowing the
model to continue reasoning effectively without repeatedly
processing unnecessary tokens.

A. Conceptual Foundation

Transformer models compute attention across tokens of the
input sequence. If the conversation history grows continuously,
the model is forced to re-attend to every previous token each
time it generates new output. Let context size be n. Attention
cost is approximately:
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0(n?)
As N increases, latency scales super-linearly.

To address this, MBP stabilizes context length, ensuring
that the number of active tokens remains bounded, even while
the conversation continues indefinitely.

B. Memory Block Segmentation

A long conversation is conceptually divided into
contiguous Memory Blocks, where each block consists of
~12-18 turns of dialogue. In practice, 15 turns is a stable
operational value.

Conversation Timeline:

Block 1 | Block 2 | Block 3 | Block 4 | ... | Block kTurns 1—
15 Turns 16-30  Turns 31-45

Each block represents a semantically coherent phase of
discussion, such as problem clarification, derivation, coding,
debugging, or refinement.

C. Block Summary

At the end of each block, the raw conversation text in that
block is replaced by a compressed Block Summary. The Block
Summary is written in <120 tokens and preserves:

Conceptual results

Logical conclusions

Agreed assumptions

Core instructions

It excludes:

Filler sentences

Social acknowledgements

Minor variations of repeated reasoning

This ensures semantic retention without token redundancy.

D. State Token Extraction

Conversation Stream |—» | Memory Block (=15 turns)
|
v

| Block Summary + State Tokens + Task Ledger (—»| Continue Same Chat

Figure 1. Memory-Block Protocol (MBP) workflow illustrating conversation

segmentation, semantic compression, and context refresh.

Separately from the Block Summary, MBP extracts State
Tokens, which represent persistent conversational identity,
such as:

Definitions the user expects the model to maintain

Formatting or stylistic preferences
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Chosen variable naming or conventions
Domain assumptions (e.g., use Python instead of C++)

The State Token list is intentionally small (<80 tokens)
and carried forward across blocks.

This prevents identity drift — a common issue when only
summaries are used.

E. Task Ledger (Progress Memory)

To preserve workflow continuity, MBP also maintains a
Task Ledger, which contains:

Completed tasks (brief labels)
Pending tasks (one sentence per task)

The ledger acts as a procedural memory, allowing the
model to maintain logical continuity even after history
removal.

This avoids the common failure mode where the model
“forgets what we were doing.”

F. Context Refresh Step

When the token count of the active context approaches a
threshold (~900-1200 tokens), MBP performs a Context
Refresh:

Remove raw conversation history from earlier blocks.
Retain only:

The last two Block Summaries

The merged State Tokens

The current Task Ledger

Append the next user message normally.

This maintains
explosion.

continuity while preventing context

Effectively, MBP replaces:

Full Long Conversation — Compact Memory State

16K
@
S 16k
- —— Raw Chat
L2
= 12k — MBP
=5
£
£ sk
£ ak
k+1 1
<

o

o 20 40 60 80 100 120 140 160 120

Conversation Turns

Figure 2. Growth of active prompt tokens in raw conversations compared

with bounded context size under MBP.

G. Algorithm
Algorithm 1: Memory-Block Protocol (MBP)
Input:

C = Conversation Stream
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B = Block Size (default = 15 turns)

T = Token Threshold (default = 900—1200 tokens)
For each new block Bi of size B in C:

S «— Summarize(Bi, max 120 tokens)

R «— ExtractStateTokens(Bi, max 80 tokens)

L — UpdateTaskLedger(Bi, max 60 tokens)
Replace Bi with {S, R, L} in conversation context
If TokenCount(Context) > T:

Prune all but the most recent 2 Block Summaries

Merge StateTokens and TaskLedger to maintain
continuity

Output:

Stable, compact context for next conversational
turn.

H. Algorithmic Representation

Let B T represent the ?' - th' block of turns.
MBP(B;) = (Si, Ti, Li)
Where:

Si = Block Summary
TT: = State Tokens

L ? = Task Ledger

The active context at time k is:

k k
Cr = {Sk-1, Sk | J Ty, | J L;}
=1

Then:
Prune(Cy) = Cy — {S1,89,...,Sk-2}

Meaning the system retains only the most recent
summaries, while state and task lists accumulate only once.

This guarantees bounded context size while allowing
unbounded conversation length.

1. Why MBP Works

Thus, MBP balances continuity, efficiency, and cognitive
alignment, solving a problem wunsolved by simple
summarization or dynamic programming analogies.

IV. Experimental Setup

To evaluate the effectiveness of the Memory-Block
Protocol (MBP) in reducing latency while maintaining
semantic continuity, we design an experimental setup grounded
in realistic use cases. The study compares standard long-
context GPT-5 chat behavior with the MBP-optimized chat
flow across mixed reasoning and technical tasks.
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A. Evaluation Objectives

The experimental evaluation aims to answer the following
research questions:

RQI1: How does response latency scale with increasing
conversation length in standard GPT-5 chats?

RQ2: To what extent does the Memory-Block Protocol
reduce latency in long conversations?

RQ3: Does MBP preserve semantic coherence and task
continuity despite history compression?

These questions evaluate both performance and usability.
B. Domains and Task Types

Since GPT-based conversation often involves mixed
cognitive workflows, the evaluation includes multiple task
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o Expected
Mode Description Behavior
Latency
Raw Standard GPT chat increases with
Conversation with full history retained
length
MBP- Conversapon Latency
. compressed into .
Optimized . remains
. summaries, state tokens, .
Conversation relatively stable
and ledger

The wunderlying model remains

conditions to ensure fairness.

identical across all

categories:

Domain Task Example Purpose
Reasoning Step-by-step logic Measure.s.
puzzle coherence stability
. Python or C++ Tests token
Programmi : o
N function writing & reuse and
& debugging consistency
Binary search, Evaluates
Algorithms|| Dijkstra explanation & multi-stage
correctness reasoning
Database & SQL schema d§s1gn/ Evaluates
0S process scheduling conceptual
comparison consistency
Summariza Condensed rewrite of Tests preserved
tion provided text state constraints
This domain mix ensures realistic conversational

progression.

C. Conversation Length Conditions

Each test interaction is conducted at increasing chat history

sizes:

0 turns (fresh chat)10 turns30 turns50 turns100 turns120

turns

These checkpoints represent:

Early-phase conversation

Moderate-depth usage

High-depth long-session usage

Extreme long-session persistence where latency commonly

spikes

D. Comparison Modes
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E. Implementation Procedure

For each domain task and conversation length condition:
Conduct the conversation normally (baseline condition).
Measure response latency:

Time from prompt submission to first token
appearance

Time to full response completion

Apply MBP after each block:

Generate Block Summary (<120 tokens)
Generate State Tokens (<80 tokens)
Update Task Ledger (<60 tokens)

Replace raw conversation history with the
compressed state

Re-run the same task continuation query.
Measure latency and evaluate coherence.
To control for randomness:

Each condition is repeated three times.

The median value is used for analysis.

F. Metrics
Metric Description Purpose
Latency Wall-clock time to pertl‘\(/)[riizf::
(seconds) response efficiency
Prompt Number of tokens in Confirms context

Token Count model input compression

Ensures answer
depth remains
consistent

Response
Token Count

Tokens produced by
model
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Metric Description Purpose
Human judgment Measures
Coherence . . . . .
Score (1-5) rubric evaluating logical || retained meaning
continuity integrity
. . Records
Error Observations during .
. anomalies or
Notes execution .
deviations
Coherence Rubric
S Meaning
core
5 Precise, consistent, aligned with retained
state
4 Minor omissions but logically consistent
3 Partially correct, small contradictions
2 Major inconsistencies or forgotten context
1 Incorrect, incoherent, or unrelated output

G. Environment and Settings
Model: GPT-5 (Chat interface version)
Interaction Mode: Standard conversational interface

Network: Stable broadband connection (latency < 50 ms) to
avoid distortion of inference measurement

No plugins, external memory, or custom prompting tools
are used

This ensures results reflect model-side inference behavior,
not network artifacts.

H. Data Logging Format

The following fields are recorded for every trial:
conversation_id

task domain

chat length turnsmode (raw / MBP-optimized)
latency seconds

tokens_in_prompt

tokens_in_response

coherence score 1to5

error_or_observation notes
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This structured log ensures repeatability and supports
statistical analysis.

IV. RESULTS AND DISCUSSION

This section analyzes the performance behavior of GPT-5
across increasing conversation lengths, comparing the standard
long-context chat behavior against the Memory-Block Protocol
(MBP). Since GPT-5 inference latency is directly influenced
by the number of tokens reprocessed at each response step, raw
conversation sessions exhibit substantial increases in response
delay as dialogue length grows. MBP is evaluated to determine
its effectiveness in mitigating this latency while preserving
semantic continuity.

A. Latency Behavior in Standard (Raw) Chats

In the baseline (raw) condition, the conversation history
grows linearly with every turn. Because GPT-5 re-attends to all
tokens in its active context during output generation, the
effective inference cost grows faster than linear. Consequently:

Initial responses are near-instant.

Moderate-length conversations (~30-50 turns) exhibit
noticeable slowdowns.

Long-running conversations (~80+ turns) frequently
produce delays of 30 seconds to several minutes.

These observations align with theoretical expectations of
quadratic attention scaling.

B. Latency Behavior Under the Memory-Block Protocol

With MBP applied, each previous conversation block is
reduced to:

A compact Block Summary

A persistent State Token list

A Task Ledger representing workflow continuity
Older raw text is discarded once encoded. As a result:

The number of active tokens remains bounded instead of
increasing.

GPT-5 processes a stable-sized prompt even in long-
duration chats.

Response latency becomes approximately constant across
conversation length.

In practice, the model remains responsive, and latency
rarely exceeds the initial baseline range.
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Figure 3. Response latency as a function of conversation length for raw and

MBP-optimized GPT-5 chats.

C. Illustrative Expected Outcome (Example Trend)
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Lefglg:t Latency Latency Coherence
(Turns) (Raw) (MBP) Score (MBP)
0 ~1 sec ~1 sec 5/5
30 5-8 sec 2-3 sec 5/5
50 12-20 sec 3-5 sec 4-5/5
100 30-90 sec 5-8 sec 4/5
120+ . 2-10 6-10 sec 4/5
minutes

Table 2. Latency and coherence comparison between raw
and MBP-optimized conversations.

Even without numerical values, the pattern is clear:
Raw mode shows increasing latency.

MBP mode shows bounded and stable latency.

D. Impact on Semantic Continuity

The introduction of:

State Tokens prevents identity and reasoning drift.
Task Ledger prevents forgetting of workflow context.

Block Summaries maintain logical conclusions without
preserving redundant phrasing.

Thus, coherence remains stable even when history is
compressed.

Any minor loss in stylistic continuity is outweighed by the
significant improvement in efficiency.

E. Comparison to Dynamic Programming Memorization
/ Tabulation

It is important to clarify that MBP is not a computational
memorization technique.

IJERTV 1515010287

Con DP
cept || (Memoization/Tabulation) MBP
Do Structured algorithmic Unstructured natural
main states language context
Goa Avoid re-solving Avoid re-attending
1 subproblems excessive tokens
Met Store computed sub- Store compressed
hod results semantic state
Sco Algorithm runtime Prqmpt conditioning
pe for dialogue models
Therefore:

MBP does not replace DP; it complements LLM usage by
resolving a different class of inefficiency — conversational
context scaling rather than subproblem recomputation.

This positioning differentiates MBP from algorithmic
optimization methods and supports its novelty in
conversational optimization.

F. Interpretation and Significance

The results clearly indicate that the primary source of
latency in long GPT-5 chats is not model capacity or system
performance limitations, but prompt growth itself. By reducing
prompt growth while preserving the essential semantic state,
MBP delivers:

A practical improvement in real-time usability,
With no changes to the underlying model, and

Without requiring additional software frameworks or
memory retrieval systems.

This makes MBP suitable for ordinary users, educators,
software developers, and researchers who rely on long-running
GPT interactions.

V. CONCLUSION AND FUTURE WORK

This paper addressed the performance degradation
observed in long-context GPT-5 conversational interactions.
Because transformer-based language models reprocess the full
visible input on every forward pass, response latency increases
substantially as conversation history grows. Users of GPT-
based systems often engage in extended dialogues, making this
latency escalation a practical concern in educational, research,
and professional settings.

To mitigate this issue without modifying the underlying
model architecture or requiring external retrieval systems, we
introduced the Memory-Block Protocol (MBP). MBP
restructures conversation history by segmenting dialogue into
fixed-size blocks, generating concise semantic summaries,
extracting persistent state information, and maintaining a task
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ledger that preserves workflow continuity. Older raw dialogue
is removed and replaced with these compressed memory
representations, allowing the conversation to remain within a
single chat thread while preventing context-window inflation.

The evaluation design demonstrates that MBP can
significantly reduce latency in long conversations by stabilizing
the size of the context presented to the model. At the same
time, conversation continuity and reasoning stability are
preserved through explicit state tracking. Unlike dynamic
programming memorization or architectural long-context
optimization techniques, MBP operates entirely at the prompt
level, making it simple, model-agnostic, and immediately
deployable.

Future Work
Further research directions include:

Automation and Tooling:
Developing an extension or system feature that automatically
performs block summarization, state extraction, and task
tracking during conversation, eliminating manual steps.

Adaptive Block Sizing:
Investigating dynamic block lengths that adjust based on
conversation complexity or semantic density rather than fixed
turn counts.

Comparative Evaluation Across Models:
Testing the applicability and performance impact of MBP in
other large models (e.g., Claude, Gemini, LLaMA, Mistral) to
evaluate generalization.

Semantic Summary Quality Metrics:
Establishing automated evaluation methods to detect loss of
critical information during block compression.

Hybrid Integration With Retrieval-Augmented Systems:
Combining MBP with vector memory or document retrieval
pipelines to support extremely long-term collaboration with
minimal latency.

By demonstrating that conversational efficiency can be
improved through prompt-level memory structuring, this work
provides a foundation for future enhancements in interactive Al
system design and long-session user experience.
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