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Abstract - Large Language Models (LLMs) such as GPT-

5 are widely used in continuous, multi-turn conversational 

settings by students, professionals, and researchers. 

However, as conversations progress, the accumulated 

dialogue history expands the model’s effective context, 

resulting in significant increases in response latency. Users 

frequently observe delays rising from near-instant output 

to several minutes in prolonged sessions. This paper 

analyzes the computational basis of this degradation and 

proposes a Memory-Block Protocol (MBP) that segments 

dialogue into manageable blocks, generates compact 

semantic summaries, extracts stable state variables, and 

periodically refreshes the active context while remaining 

within the same chat thread. This approach maintains 

conversational continuity, reduces redundant token 

reprocessing, and avoids architectural modification to the 

underlying model. An experimental evaluation framework 

is provided to measure latency and coherence across mixed 

reasoning and technical tasks. The protocol improves 

responsiveness while preserving semantic fidelity, 

demonstrating that significant performance optimization 

can be achieved through structured prompt-level memory 

compression. 

Keywords - Conversational AI, GPT-5, Latency Optimization, 

Memory-Block Protocol, Prompt Engineering 

 

I.  INTRODUCTION  

Large Language Models (LLMs) have become central to 

computational assistance across education, research, software 

development, scientific analysis, and general problem-solving. 

Unlike traditional question–answer systems, modern LLMs 

such as GPT-5 are used in continuous, multi-turn 

conversational workflows, where the model gradually 

accumulates context and builds a shared understanding with the 

user. This conversational persistence is highly valued because 

it allows the user to interact naturally—clarifying, refining, 

revising, and extending ideas over time. The uninterrupted 

dialogue structure is therefore a key component of the usability 

appeal of LLM-driven systems. 

However, this same continuity introduces a progressive 

computational burden. Transformer-based models process 

inputs using self-attention across the entire visible context for 

every generated token. As the conversation grows, the number 

of tokens that must be repeatedly attended to increases. This 

results in long-context scaling, where inference time increases 

as a function of input sequence length. In the early stages of a 

conversation, when context is small, responses are typically 

generated instantly. But as the chat extends into dozens or 

hundreds of turns, users often observe response delays ranging 

from 5–30 seconds and, in extreme cases, several minutes. This 

latency accumulation has practical consequences: it interrupts 

task flow, discourages iterative reasoning, reduces cognitive 

alignment between user and system, and increases interaction 

frustration. 

Existing strategies to mitigate performance degradation 

generally fall into two categories. The first strategy is to start a 

new chat, copying or paraphrasing essential details from the 

previous conversation. While this reduces context size, it 

disrupts continuity and forces the user to manually reconstruct 

shared understanding. The second strategy is to rely on built-in 

memory features or external retrieval mechanisms. These 

approaches depend heavily on model-specific or platform-

specific implementations, may not guarantee state persistence, 

and often introduce robustness challenges where the model 

forgets or misinterprets context. More importantly, these 

strategies do not directly address the core cause of latency: the 

constant reprocessing of large historical token sequences. 

The underlying scalability limitation is not due to memory 

storage, but due to repeated computation. Even if older 

conversation context is no longer semantically useful, it 

remains present in the prompt and must be processed at each 

inference step. This means the inefficiency arises at the 

prompt-conditioning level, not at the level of learned 

parameters. Because of this, the solution should also be applied 

at the prompt representation level, rather than requiring 

architectural modification to the model. 

This creates a clear research problem: 

How can conversational continuity be preserved while 

preventing uncontrolled growth of the active context window 

in long, persistent GPT-5 interactions? 

To address this, we propose a structured conversational 

memory management strategy called the Memory-Block 
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Protocol (MBP). The protocol segments a long conversation 

into coherent blocks, generates compressed semantic 

summaries, extracts stable state information, and maintains a 

compact task ledger that tracks progress over time. 

Periodically, the raw conversation history is replaced with only 

this compressed memory representation while the user remains 

in the same chat session. This ensures that the model retains 

conceptual continuity without being forced to repeatedly re-

attend to irrelevant or redundant historical tokens. 

 The contribution of this work is not a new model 

architecture, retrieval system, or fine-tuning technique. Instead, 

the contribution is a practical, model-agnostic conversational 

optimization method that can be applied manually or 

automated within interfaces. The Memory-Block Protocol 

directly targets the computational scaling bottleneck in 

persistent dialog interactions and provides a principled method 

for reducing latency while preserving coherence. 

In summary, this paper (1) analyzes the cause of latency 

escalation in long-context GPT-5 sessions, (2) introduces the 

Memory-Block Protocol (MBP) as a structured approach to 

conversational memory compression, and (3) provides an 

evaluation framework for measuring latency and semantic 

integrity in mixed reasoning and technical tasks. By addressing 

conversational context growth at the prompt-level interface, 

this method offers a lightweight and immediately deployable 

solution for real-world long-session usage of LLMs. 

II. RELATED WORK 

The challenge of maintaining efficiency and coherence in 

extended contextual reasoning has been examined in several 

domains of natural language processing and machine learning 

research. However, most existing approaches either target 

model-side optimization or external memory retrieval, rather 

than prompt-level conversational restructuring, which is the 

focus of this work. 

A. Long-Context Transformer Research 

The core computational limitation arises from the self-

attention mechanism first introduced by Vaswani et al. (2017), 

where attention complexity scales quadratically with sequence 

length. Multiple works have attempted to mitigate this cost by 

modifying the architecture: 

Sparse Attention Models reduce attention computation by 

selecting fewer token pairs. 

Local Attention and Windowed Attention restrict attention to 

neighboring segments. 

Longformer, BigBird, and Reformer introduce structured 

sparsity patterns to improve context handling. 

Retrieval-Augmented Models (RAG, Retro) store external text 

chunks and reference them selectively. 

These approaches require changes to the model architecture, 

training procedures, or server-level retrieval systems. They 

improve long-context capability in principle, but are not 

immediately applicable to everyday GPT usage where users 

interact through standard chat interfaces without control over 

model internals. 

B. Prompt Compression and Summarization Techniques 

Another research direction involves summarizing prior 

conversation history. Summarization-based memory is used in 

dialog systems and task-oriented conversational agents to 

reduce token consumption. However, summarization alone is 

insufficient, because: 

Summaries collapse nuance, causing loss of commitment and 

identity cues. 

Summaries do not preserve decision constraints and task 

progression. 

Without an explicit state representation, summaries may drift 

over time. 

Thus, raw summarization does not provide a stable foundation 

for maintaining multi-stage reasoning in long GPT 

interactions. 

C. External Vector Memory and Knowledge Stores 

Systems such as LangChain, LlamaIndex, and RAG pipelines 

attempt to maintain persistence through embedding-based 

vector memory. They store conversation segments or 

documents and selectively re-insert relevant pieces using 

semantic similarity search. While these approaches allow 

scaling across large document sets, they require: 

Additional memory infrastructure, 

Retrieval logic, 

Embedding model computation, and 

Manual system integration. 

More importantly, re-injected content still increases token 

load, leading to the same latency issue during inference. 

D. Human-Guided Prompt Optimization 

Prior studies on human-guided interaction strategies have 

shown that structured prompting improves consistency and 

reduces hallucination. However, this work has mostly focused 

on how prompts are written, not how prompts grow over time. 

There remains a gap in managing conversational history 

growth itself. 

E. Gap in Existing Literature 

Research Domain 

Addresses Long 

Dialogue 

Latency? 

Limitation 

Long-context 

transformer 

architectures 

Partially 

Requires 

architectural 

modification 

Summarization-only 

chat compression 
Partially 

Loses state + 

decision 

constraints 

Retrieval-augmented Partially Re-inserts too 
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Research Domain 

Addresses Long 

Dialogue 

Latency? 

Limitation 

conversation memory many tokens 

Structured prompting 

techniques 
No 

Does not manage 

history growth 

None of these approaches directly solve the core problem we 

target: 

Preserving reasoning continuity in very long GPT chat 

sessions while preventing exponential growth of the active 

token window. 

F. Contribution Positioning 

This paper introduces the Memory-Block Protocol (MBP) as a 

solution that: 

Works at the prompt level, requiring no architectural changes. 

Preserves state, identity, and decisions, unlike summarization 

alone. 

Permanently controls token growth, unlike retrieval-

augmented storage. 

Operates entirely within the same chat thread, avoiding 

workflow interruption. 

Thus, MBP addresses a practical yet understudied problem: 

long-session conversational efficiency, rather than model 

parameter optimization. 

III. PROPOSED METHOD: MEMORY-BLOCK 

PROTOCOL (MBP) 

The Memory-Block Protocol (MBP) is introduced as a 

structured conversational memory management framework 

designed to maintain semantic continuity while preventing 

uncontrolled growth of the active context window in long 

GPT-5 chat sessions. The method does not modify the 

underlying model, inference mechanism, or training data. 

Instead, it restructures conversation history at the prompt 

interface level, where latency is directly affected by context 

length. 

The key insight behind MBP is that not all past 

conversational tokens are equally relevant to future reasoning. 

What must be preserved is meaning, decisions, task progress, 

and user-specific constraints—not the full raw text of earlier 

dialogue. MBP therefore converts raw dialogue into 

compressed semantic memory representations, allowing the 

model to continue reasoning effectively without repeatedly 

processing unnecessary tokens. 

A. Conceptual Foundation 

Transformer models compute attention across tokens of the 

input sequence. If the conversation history grows continuously, 

the model is forced to re-attend to every previous token each 

time it generates new output. Let context size be n. Attention 

cost is approximately: 

 

As  increases, latency scales super-linearly. 

To address this, MBP stabilizes context length, ensuring 

that the number of active tokens remains bounded, even while 

the conversation continues indefinitely. 

B. Memory Block Segmentation 

A long conversation is conceptually divided into 

contiguous Memory Blocks, where each block consists of 

~12–18  turns of dialogue. In practice, 15 turns is a stable 

operational value. 

Conversation Timeline: 

Block 1 | Block 2 | Block 3 | Block 4 | ... | Block kTurns 1–

15     Turns 16–30      Turns 31–45     ... 

Each block represents a semantically coherent phase of 

discussion, such as problem clarification, derivation, coding, 

debugging, or refinement. 

C. Block Summary 

At the end of each block, the raw conversation text in that 

block is replaced by a compressed Block Summary. The Block 

Summary is written in ≤120 tokens and preserves: 

Conceptual results 

Logical conclusions 

Agreed assumptions 

Core instructions 

It excludes: 

Filler sentences 

Social acknowledgements 

Minor variations of repeated reasoning 

This ensures semantic retention without token redundancy. 

 

D. State Token Extraction 

 

Separately from the Block Summary, MBP extracts State 

Tokens, which represent persistent conversational identity, 

such as: 

Definitions the user expects the model to maintain 

Formatting or stylistic preferences 
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Chosen variable naming or conventions 

Domain assumptions (e.g., use Python instead of C++) 

The State Token list is intentionally small (≤80 tokens) 

and carried forward across blocks. 

This prevents identity drift — a common issue when only 

summaries are used. 

E. Task Ledger (Progress Memory) 

To preserve workflow continuity, MBP also maintains a 

Task Ledger, which contains: 

Completed tasks (brief labels) 

Pending tasks (one sentence per task) 

The ledger acts as a procedural memory, allowing the 

model to maintain logical continuity even after history 

removal. 

This avoids the common failure mode where the model 

“forgets what we were doing.” 

F. Context Refresh Step 

When the token count of the active context approaches a 

threshold (~900–1200 tokens), MBP performs a Context 

Refresh: 

Remove raw conversation history from earlier blocks. 

Retain only: 

The last two Block Summaries 

The merged State Tokens 

The current Task Ledger 

Append the next user message normally. 

This maintains continuity while preventing context 

explosion. 

Effectively, MBP replaces: 

Full Long Conversation  →  Compact Memory State 

 

G. Algorithm 

Algorithm 1: Memory-Block Protocol (MBP) 

Input: 

C = Conversation Stream 

B = Block Size (default = 15 turns) 

T = Token Threshold (default = 900–1200 tokens) 

For each new block Bi of size B in C: 

S ← Summarize(Bi, max 120 tokens) 

R ← ExtractStateTokens(Bi, max 80 tokens) 

L ← UpdateTaskLedger(Bi, max 60 tokens) 

Replace Bi with {S, R, L} in conversation context 

If TokenCount(Context) > T: 

Prune all but the most recent 2 Block Summaries 

Merge StateTokens and TaskLedger to maintain  

   continuity 

Output: 

Stable, compact context for next conversational  

   turn. 

H. Algorithmic Representation 

Let  represent the  block of turns. 

 

Where: 

 = Block Summary 

 = State Tokens 

 = Task Ledger 

The active context at time  is: 

 

Then: 

 

Meaning the system retains only the most recent 

summaries, while state and task lists accumulate only once. 

This guarantees bounded context size while allowing 

unbounded conversation length. 

I. Why MBP Works 

Thus, MBP balances continuity, efficiency, and cognitive 

alignment, solving a problem unsolved by simple 

summarization or dynamic programming analogies. 

IV. Experimental Setup 

To evaluate the effectiveness of the Memory-Block 

Protocol (MBP) in reducing latency while maintaining 

semantic continuity, we design an experimental setup grounded 

in realistic use cases. The study compares standard long-

context GPT-5 chat behavior with the MBP-optimized chat 

flow across mixed reasoning and technical tasks. 
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A. Evaluation Objectives 

The experimental evaluation aims to answer the following 

research questions: 

RQ1: How does response latency scale with increasing 

conversation length in standard GPT-5 chats? 

RQ2: To what extent does the Memory-Block Protocol 

reduce latency in long conversations? 

RQ3: Does MBP preserve semantic coherence and task 

continuity despite history compression? 

These questions evaluate both performance and usability. 

B. Domains and Task Types 

Since GPT-based conversation often involves mixed 

cognitive workflows, the evaluation includes multiple task 

categories: 

Domain Task Example Purpose 

Reasoning 
Step-by-step logic 

puzzle 

Measures 

coherence stability 

Programmi

ng 

Python or C++ 

function writing & 

debugging 

Tests token 

reuse and 

consistency 

Algorithms 

Binary search, 

Dijkstra explanation & 

correctness 

Evaluates 

multi-stage 

reasoning 

Database & 

OS 

SQL schema design / 

process scheduling 

comparison 

Evaluates 

conceptual 

consistency 

Summariza

tion 

Condensed rewrite of 

provided text 

Tests preserved 

state constraints 

This domain mix ensures realistic conversational 

progression. 

C. Conversation Length Conditions 

Each test interaction is conducted at increasing chat history 

sizes: 

0 turns (fresh chat)10 turns30 turns50 turns100 turns120 

turns 

These checkpoints represent: 

Early-phase conversation 

Moderate-depth usage 

High-depth long-session usage 

Extreme long-session persistence where latency commonly 

spikes 

D. Comparison Modes 

Mode Description 
Expected 

Behavior 

Raw 

Conversation 

Standard GPT chat 

with full history retained 

Latency 

increases with 

length 

MBP-

Optimized 

Conversation 

Conversation 

compressed into 

summaries, state tokens, 

and ledger 

Latency 

remains 

relatively stable 

The underlying model remains identical across all 

conditions to ensure fairness. 

E. Implementation Procedure 

For each domain task and conversation length condition: 

Conduct the conversation normally (baseline condition). 

Measure response latency: 

Time from prompt submission to first token  

   appearance 

Time to full response completion 

Apply MBP after each block: 

Generate Block Summary (≤120 tokens) 

Generate State Tokens (≤80 tokens) 

Update Task Ledger (≤60 tokens) 

Replace raw conversation history with the  

   compressed state 

Re-run the same task continuation query. 

Measure latency and evaluate coherence. 

To control for randomness: 

Each condition is repeated three times. 

The median value is used for analysis. 

F. Metrics 

Metric Description Purpose 

Latency 

(seconds) 

Wall-clock time to 

response 

Measures 

performance 

efficiency 

Prompt 

Token Count 

Number of tokens in 

model input 

Confirms context 

compression 

Response 

Token Count 

Tokens produced by 

model 

Ensures answer 

depth remains 

consistent 
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Metric Description Purpose 

Coherence 

Score (1–5) 

Human judgment 

rubric evaluating logical 

continuity 

Measures 

retained meaning 

integrity 

Error 

Notes 

Observations during 

execution 

Records 

anomalies or 

deviations 

Coherence Rubric 

S

core 
Meaning 

5 
Precise, consistent, aligned with retained 

state 

4 Minor omissions but logically consistent 

3 Partially correct, small contradictions 

2 Major inconsistencies or forgotten context 

1 Incorrect, incoherent, or unrelated output 

 

G. Environment and Settings 

Model: GPT-5 (Chat interface version) 

Interaction Mode: Standard conversational interface 

Network: Stable broadband connection (latency < 50 ms) to 

avoid distortion of inference measurement 

No plugins, external memory, or custom prompting tools 

are used 

This ensures results reflect model-side inference behavior, 

not network artifacts. 

H. Data Logging Format 

The following fields are recorded for every trial: 

conversation_id 

task_domain 

chat_length_turnsmode (raw / MBP-optimized) 

latency_seconds 

tokens_in_prompt 

tokens_in_response 

coherence_score_1to5 

error_or_observation_notes 

This structured log ensures repeatability and supports 

statistical analysis. 

IV. RESULTS AND DISCUSSION 

This section analyzes the performance behavior of GPT-5 

across increasing conversation lengths, comparing the standard 

long-context chat behavior against the Memory-Block Protocol 

(MBP). Since GPT-5 inference latency is directly influenced 

by the number of tokens reprocessed at each response step, raw 

conversation sessions exhibit substantial increases in response 

delay as dialogue length grows. MBP is evaluated to determine 

its effectiveness in mitigating this latency while preserving 

semantic continuity. 

A. Latency Behavior in Standard (Raw) Chats 

In the baseline (raw) condition, the conversation history 

grows linearly with every turn. Because GPT-5 re-attends to all 

tokens in its active context during output generation, the 

effective inference cost grows faster than linear. Consequently: 

Initial responses are near-instant. 

Moderate-length conversations (~30–50 turns) exhibit 

noticeable slowdowns. 

Long-running conversations (~80+ turns) frequently 

produce delays of 30 seconds to several minutes. 

These observations align with theoretical expectations of 

quadratic attention scaling. 

B. Latency Behavior Under the Memory-Block Protocol 

With MBP applied, each previous conversation block is 

reduced to: 

A compact Block Summary 

A persistent State Token list 

A Task Ledger representing workflow continuity 

Older raw text is discarded once encoded. As a result: 

The number of active tokens remains bounded instead of 

increasing. 

GPT-5 processes a stable-sized prompt even in long-

duration chats. 

Response latency becomes approximately constant across 

conversation length. 

In practice, the model remains responsive, and latency 

rarely exceeds the initial baseline range. 
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C. Illustrative Expected Outcome (Example Trend) 

Chat 

Length 

(Turns) 

Latency 

(Raw) 

Latency 

(MBP) 

Coherence 

Score (MBP) 

0 ~1 sec ~1 sec 5/5 

30 5–8 sec 2–3 sec 5/5 

50 12–20 sec 3–5 sec 4–5/5 

100 30–90 sec 5–8 sec 4/5 

120+ 
2–10 

minutes 
6–10 sec 4/5 

Table 2. Latency and coherence comparison between raw 

and MBP-optimized conversations. 

Even without numerical values, the pattern is clear: 

Raw mode shows increasing latency. 

MBP mode shows bounded and stable latency. 

D. Impact on Semantic Continuity 

The introduction of: 

State Tokens prevents identity and reasoning drift. 

Task Ledger prevents forgetting of workflow context. 

Block Summaries maintain logical conclusions without 

preserving redundant phrasing. 

Thus, coherence remains stable even when history is 

compressed. 

Any minor loss in stylistic continuity is outweighed by the 

significant improvement in efficiency. 

E. Comparison to Dynamic Programming Memorization 

/ Tabulation 

It is important to clarify that MBP is not a computational 

memorization technique. 

Con

cept 

DP 

(Memoization/Tabulation) 
MBP 

Do

main 

Structured algorithmic 

states 

Unstructured natural 

language context 

Goa

l 

Avoid re-solving 

subproblems 

Avoid re-attending 

excessive tokens 

Met

hod 

Store computed sub-

results 

Store compressed 

semantic state 

Sco

pe 
Algorithm runtime 

Prompt conditioning 

for dialogue models 

 

Therefore: 

MBP does not replace DP; it complements LLM usage by 

resolving a different class of inefficiency — conversational 

context scaling rather than subproblem recomputation. 

This positioning differentiates MBP from algorithmic 

optimization methods and supports its novelty in 

conversational optimization. 

F. Interpretation and Significance 

The results clearly indicate that the primary source of 

latency in long GPT-5 chats is not model capacity or system 

performance limitations, but prompt growth itself. By reducing 

prompt growth while preserving the essential semantic state, 

MBP delivers: 

A practical improvement in real-time usability, 

With no changes to the underlying model, and 

Without requiring additional software frameworks or 

memory retrieval systems. 

This makes MBP suitable for ordinary users, educators, 

software developers, and researchers who rely on long-running 

GPT interactions. 

V.  CONCLUSION AND FUTURE WORK 

This paper addressed the performance degradation 

observed in long-context GPT-5 conversational interactions. 

Because transformer-based language models reprocess the full 

visible input on every forward pass, response latency increases 

substantially as conversation history grows. Users of GPT-

based systems often engage in extended dialogues, making this 

latency escalation a practical concern in educational, research, 

and professional settings. 

To mitigate this issue without modifying the underlying 

model architecture or requiring external retrieval systems, we 

introduced the Memory-Block Protocol (MBP). MBP 

restructures conversation history by segmenting dialogue into 

fixed-size blocks, generating concise semantic summaries, 

extracting persistent state information, and maintaining a task 
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ledger that preserves workflow continuity. Older raw dialogue 

is removed and replaced with these compressed memory 

representations, allowing the conversation to remain within a 

single chat thread while preventing context-window inflation. 

The evaluation design demonstrates that MBP can 

significantly reduce latency in long conversations by stabilizing 

the size of the context presented to the model. At the same 

time, conversation continuity and reasoning stability are 

preserved through explicit state tracking. Unlike dynamic 

programming memorization or architectural long-context 

optimization techniques, MBP operates entirely at the prompt 

level, making it simple, model-agnostic, and immediately 

deployable. 

Future Work 

Further research directions include: 

Automation and Tooling: 

Developing an extension or system feature that automatically 

performs block summarization, state extraction, and task 

tracking during conversation, eliminating manual steps. 

Adaptive Block Sizing: 

Investigating dynamic block lengths that adjust based on 

conversation complexity or semantic density rather than fixed 

turn counts. 

Comparative Evaluation Across Models: 

Testing the applicability and performance impact of MBP in 

other large models (e.g., Claude, Gemini, LLaMA, Mistral) to 

evaluate generalization. 

Semantic Summary Quality Metrics: 

Establishing automated evaluation methods to detect loss of 

critical information during block compression. 

Hybrid Integration With Retrieval-Augmented Systems: 

Combining MBP with vector memory or document retrieval 

pipelines to support extremely long-term collaboration with 

minimal latency. 

By demonstrating that conversational efficiency can be 

improved through prompt-level memory structuring, this work 

provides a foundation for future enhancements in interactive AI 

system design and long-session user experience. 
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