
Latency Optimization in Long-Context GPT-5

Dialogues Using Memory-Block Compression and

Controlled Context Refresh

Hemant Kumar Kushwaha

Department of Computer Science & Engineering

Haridwar University, Roorkee, India

Abstract - Large Language Models (LLMs) such as GPT-

5 are widely used in continuous, multi-turn conversational

settings by students, professionals, and researchers.

However, as conversations progress, the accumulated

dialogue history expands the model’s effective context,

resulting in significant increases in response latency. Users

frequently observe delays rising from near-instant output

to several minutes in prolonged sessions. This paper

analyzes the computational basis of this degradation and

proposes a Memory-Block Protocol (MBP) that segments

dialogue into manageable blocks, generates compact

semantic summaries, extracts stable state variables, and

periodically refreshes the active context while remaining

within the same chat thread. This approach maintains

conversational continuity, reduces redundant token

reprocessing, and avoids architectural modification to the

underlying model. An experimental evaluation framework

is provided to measure latency and coherence across mixed

reasoning and technical tasks. The protocol improves

responsiveness while preserving semantic fidelity,

demonstrating that significant performance optimization

can be achieved through structured prompt-level memory

compression.

Keywords - Conversational AI, GPT-5, Latency Optimization,

Memory-Block Protocol, Prompt Engineering

I. INTRODUCTION

Large Language Models (LLMs) have become central to

computational assistance across education, research, software

development, scientific analysis, and general problem-solving.

Unlike traditional question–answer systems, modern LLMs

such as GPT-5 are used in continuous, multi-turn

conversational workflows, where the model gradually

accumulates context and builds a shared understanding with the

user. This conversational persistence is highly valued because

it allows the user to interact naturally—clarifying, refining,

revising, and extending ideas over time. The uninterrupted

dialogue structure is therefore a key component of the usability

appeal of LLM-driven systems.

However, this same continuity introduces a progressive

computational burden. Transformer-based models process

inputs using self-attention across the entire visible context for

every generated token. As the conversation grows, the number

of tokens that must be repeatedly attended to increases. This

results in long-context scaling, where inference time increases

as a function of input sequence length. In the early stages of a

conversation, when context is small, responses are typically

generated instantly. But as the chat extends into dozens or

hundreds of turns, users often observe response delays ranging

from 5–30 seconds and, in extreme cases, several minutes. This

latency accumulation has practical consequences: it interrupts

task flow, discourages iterative reasoning, reduces cognitive

alignment between user and system, and increases interaction

frustration.

Existing strategies to mitigate performance degradation

generally fall into two categories. The first strategy is to start a

new chat, copying or paraphrasing essential details from the

previous conversation. While this reduces context size, it

disrupts continuity and forces the user to manually reconstruct

shared understanding. The second strategy is to rely on built-in

memory features or external retrieval mechanisms. These

approaches depend heavily on model-specific or platform-

specific implementations, may not guarantee state persistence,

and often introduce robustness challenges where the model

forgets or misinterprets context. More importantly, these

strategies do not directly address the core cause of latency: the

constant reprocessing of large historical token sequences.

The underlying scalability limitation is not due to memory

storage, but due to repeated computation. Even if older

conversation context is no longer semantically useful, it

remains present in the prompt and must be processed at each

inference step. This means the inefficiency arises at the

prompt-conditioning level, not at the level of learned

parameters. Because of this, the solution should also be applied

at the prompt representation level, rather than requiring

architectural modification to the model.

This creates a clear research problem:

How can conversational continuity be preserved while

preventing uncontrolled growth of the active context window

in long, persistent GPT-5 interactions?

To address this, we propose a structured conversational

memory management strategy called the Memory-Block

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010287 Page 1

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Protocol (MBP). The protocol segments a long conversation

into coherent blocks, generates compressed semantic

summaries, extracts stable state information, and maintains a

compact task ledger that tracks progress over time.

Periodically, the raw conversation history is replaced with only

this compressed memory representation while the user remains

in the same chat session. This ensures that the model retains

conceptual continuity without being forced to repeatedly re-

attend to irrelevant or redundant historical tokens.

 The contribution of this work is not a new model

architecture, retrieval system, or fine-tuning technique. Instead,

the contribution is a practical, model-agnostic conversational

optimization method that can be applied manually or

automated within interfaces. The Memory-Block Protocol

directly targets the computational scaling bottleneck in

persistent dialog interactions and provides a principled method

for reducing latency while preserving coherence.

In summary, this paper (1) analyzes the cause of latency

escalation in long-context GPT-5 sessions, (2) introduces the

Memory-Block Protocol (MBP) as a structured approach to

conversational memory compression, and (3) provides an

evaluation framework for measuring latency and semantic

integrity in mixed reasoning and technical tasks. By addressing

conversational context growth at the prompt-level interface,

this method offers a lightweight and immediately deployable

solution for real-world long-session usage of LLMs.

II. RELATED WORK

The challenge of maintaining efficiency and coherence in

extended contextual reasoning has been examined in several

domains of natural language processing and machine learning

research. However, most existing approaches either target

model-side optimization or external memory retrieval, rather

than prompt-level conversational restructuring, which is the

focus of this work.

A. Long-Context Transformer Research

The core computational limitation arises from the self-

attention mechanism first introduced by Vaswani et al. (2017),

where attention complexity scales quadratically with sequence

length. Multiple works have attempted to mitigate this cost by

modifying the architecture:

Sparse Attention Models reduce attention computation by

selecting fewer token pairs.

Local Attention and Windowed Attention restrict attention to

neighboring segments.

Longformer, BigBird, and Reformer introduce structured

sparsity patterns to improve context handling.

Retrieval-Augmented Models (RAG, Retro) store external text

chunks and reference them selectively.

These approaches require changes to the model architecture,

training procedures, or server-level retrieval systems. They

improve long-context capability in principle, but are not

immediately applicable to everyday GPT usage where users

interact through standard chat interfaces without control over

model internals.

B. Prompt Compression and Summarization Techniques

Another research direction involves summarizing prior

conversation history. Summarization-based memory is used in

dialog systems and task-oriented conversational agents to

reduce token consumption. However, summarization alone is

insufficient, because:

Summaries collapse nuance, causing loss of commitment and

identity cues.

Summaries do not preserve decision constraints and task

progression.

Without an explicit state representation, summaries may drift

over time.

Thus, raw summarization does not provide a stable foundation

for maintaining multi-stage reasoning in long GPT

interactions.

C. External Vector Memory and Knowledge Stores

Systems such as LangChain, LlamaIndex, and RAG pipelines

attempt to maintain persistence through embedding-based

vector memory. They store conversation segments or

documents and selectively re-insert relevant pieces using

semantic similarity search. While these approaches allow

scaling across large document sets, they require:

Additional memory infrastructure,

Retrieval logic,

Embedding model computation, and

Manual system integration.

More importantly, re-injected content still increases token

load, leading to the same latency issue during inference.

D. Human-Guided Prompt Optimization

Prior studies on human-guided interaction strategies have

shown that structured prompting improves consistency and

reduces hallucination. However, this work has mostly focused

on how prompts are written, not how prompts grow over time.

There remains a gap in managing conversational history

growth itself.

E. Gap in Existing Literature

Research Domain

Addresses Long

Dialogue

Latency?

Limitation

Long-context

transformer

architectures

Partially

Requires

architectural

modification

Summarization-only

chat compression
Partially

Loses state +

decision

constraints

Retrieval-augmented Partially Re-inserts too

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010287 Page 2

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Research Domain

Addresses Long

Dialogue

Latency?

Limitation

conversation memory many tokens

Structured prompting

techniques
No

Does not manage

history growth

None of these approaches directly solve the core problem we

target:

Preserving reasoning continuity in very long GPT chat

sessions while preventing exponential growth of the active

token window.

F. Contribution Positioning

This paper introduces the Memory-Block Protocol (MBP) as a

solution that:

Works at the prompt level, requiring no architectural changes.

Preserves state, identity, and decisions, unlike summarization

alone.

Permanently controls token growth, unlike retrieval-

augmented storage.

Operates entirely within the same chat thread, avoiding

workflow interruption.

Thus, MBP addresses a practical yet understudied problem:

long-session conversational efficiency, rather than model

parameter optimization.

III. PROPOSED METHOD: MEMORY-BLOCK

PROTOCOL (MBP)

The Memory-Block Protocol (MBP) is introduced as a

structured conversational memory management framework

designed to maintain semantic continuity while preventing

uncontrolled growth of the active context window in long

GPT-5 chat sessions. The method does not modify the

underlying model, inference mechanism, or training data.

Instead, it restructures conversation history at the prompt

interface level, where latency is directly affected by context

length.

The key insight behind MBP is that not all past

conversational tokens are equally relevant to future reasoning.

What must be preserved is meaning, decisions, task progress,

and user-specific constraints—not the full raw text of earlier

dialogue. MBP therefore converts raw dialogue into

compressed semantic memory representations, allowing the

model to continue reasoning effectively without repeatedly

processing unnecessary tokens.

A. Conceptual Foundation

Transformer models compute attention across tokens of the

input sequence. If the conversation history grows continuously,

the model is forced to re-attend to every previous token each

time it generates new output. Let context size be n. Attention

cost is approximately:

As increases, latency scales super-linearly.

To address this, MBP stabilizes context length, ensuring

that the number of active tokens remains bounded, even while

the conversation continues indefinitely.

B. Memory Block Segmentation

A long conversation is conceptually divided into

contiguous Memory Blocks, where each block consists of

~12–18 turns of dialogue. In practice, 15 turns is a stable

operational value.

Conversation Timeline:

Block 1 | Block 2 | Block 3 | Block 4 | ... | Block kTurns 1–

15 Turns 16–30 Turns 31–45 ...

Each block represents a semantically coherent phase of

discussion, such as problem clarification, derivation, coding,

debugging, or refinement.

C. Block Summary

At the end of each block, the raw conversation text in that

block is replaced by a compressed Block Summary. The Block

Summary is written in ≤120 tokens and preserves:

Conceptual results

Logical conclusions

Agreed assumptions

Core instructions

It excludes:

Filler sentences

Social acknowledgements

Minor variations of repeated reasoning

This ensures semantic retention without token redundancy.

D. State Token Extraction

Separately from the Block Summary, MBP extracts State

Tokens, which represent persistent conversational identity,

such as:

Definitions the user expects the model to maintain

Formatting or stylistic preferences

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010287 Page 3

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Chosen variable naming or conventions

Domain assumptions (e.g., use Python instead of C++)

The State Token list is intentionally small (≤80 tokens)

and carried forward across blocks.

This prevents identity drift — a common issue when only

summaries are used.

E. Task Ledger (Progress Memory)

To preserve workflow continuity, MBP also maintains a

Task Ledger, which contains:

Completed tasks (brief labels)

Pending tasks (one sentence per task)

The ledger acts as a procedural memory, allowing the

model to maintain logical continuity even after history

removal.

This avoids the common failure mode where the model

“forgets what we were doing.”

F. Context Refresh Step

When the token count of the active context approaches a

threshold (~900–1200 tokens), MBP performs a Context

Refresh:

Remove raw conversation history from earlier blocks.

Retain only:

The last two Block Summaries

The merged State Tokens

The current Task Ledger

Append the next user message normally.

This maintains continuity while preventing context

explosion.

Effectively, MBP replaces:

Full Long Conversation → Compact Memory State

G. Algorithm

Algorithm 1: Memory-Block Protocol (MBP)

Input:

C = Conversation Stream

B = Block Size (default = 15 turns)

T = Token Threshold (default = 900–1200 tokens)

For each new block Bi of size B in C:

S ← Summarize(Bi, max 120 tokens)

R ← ExtractStateTokens(Bi, max 80 tokens)

L ← UpdateTaskLedger(Bi, max 60 tokens)

Replace Bi with {S, R, L} in conversation context

If TokenCount(Context) > T:

Prune all but the most recent 2 Block Summaries

Merge StateTokens and TaskLedger to maintain

 continuity

Output:

Stable, compact context for next conversational

 turn.

H. Algorithmic Representation

Let represent the block of turns.

Where:

 = Block Summary

 = State Tokens

 = Task Ledger

The active context at time is:

Then:

Meaning the system retains only the most recent

summaries, while state and task lists accumulate only once.

This guarantees bounded context size while allowing

unbounded conversation length.

I. Why MBP Works

Thus, MBP balances continuity, efficiency, and cognitive

alignment, solving a problem unsolved by simple

summarization or dynamic programming analogies.

IV. Experimental Setup

To evaluate the effectiveness of the Memory-Block

Protocol (MBP) in reducing latency while maintaining

semantic continuity, we design an experimental setup grounded

in realistic use cases. The study compares standard long-

context GPT-5 chat behavior with the MBP-optimized chat

flow across mixed reasoning and technical tasks.

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010287 Page 4

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

A. Evaluation Objectives

The experimental evaluation aims to answer the following

research questions:

RQ1: How does response latency scale with increasing

conversation length in standard GPT-5 chats?

RQ2: To what extent does the Memory-Block Protocol

reduce latency in long conversations?

RQ3: Does MBP preserve semantic coherence and task

continuity despite history compression?

These questions evaluate both performance and usability.

B. Domains and Task Types

Since GPT-based conversation often involves mixed

cognitive workflows, the evaluation includes multiple task

categories:

Domain Task Example Purpose

Reasoning
Step-by-step logic

puzzle

Measures

coherence stability

Programmi

ng

Python or C++

function writing &

debugging

Tests token

reuse and

consistency

Algorithms

Binary search,

Dijkstra explanation &

correctness

Evaluates

multi-stage

reasoning

Database &

OS

SQL schema design /

process scheduling

comparison

Evaluates

conceptual

consistency

Summariza

tion

Condensed rewrite of

provided text

Tests preserved

state constraints

This domain mix ensures realistic conversational

progression.

C. Conversation Length Conditions

Each test interaction is conducted at increasing chat history

sizes:

0 turns (fresh chat)10 turns30 turns50 turns100 turns120

turns

These checkpoints represent:

Early-phase conversation

Moderate-depth usage

High-depth long-session usage

Extreme long-session persistence where latency commonly

spikes

D. Comparison Modes

Mode Description
Expected

Behavior

Raw

Conversation

Standard GPT chat

with full history retained

Latency

increases with

length

MBP-

Optimized

Conversation

Conversation

compressed into

summaries, state tokens,

and ledger

Latency

remains

relatively stable

The underlying model remains identical across all

conditions to ensure fairness.

E. Implementation Procedure

For each domain task and conversation length condition:

Conduct the conversation normally (baseline condition).

Measure response latency:

Time from prompt submission to first token

 appearance

Time to full response completion

Apply MBP after each block:

Generate Block Summary (≤120 tokens)

Generate State Tokens (≤80 tokens)

Update Task Ledger (≤60 tokens)

Replace raw conversation history with the

 compressed state

Re-run the same task continuation query.

Measure latency and evaluate coherence.

To control for randomness:

Each condition is repeated three times.

The median value is used for analysis.

F. Metrics

Metric Description Purpose

Latency

(seconds)

Wall-clock time to

response

Measures

performance

efficiency

Prompt

Token Count

Number of tokens in

model input

Confirms context

compression

Response

Token Count

Tokens produced by

model

Ensures answer

depth remains

consistent

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010287 Page 5

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Metric Description Purpose

Coherence

Score (1–5)

Human judgment

rubric evaluating logical

continuity

Measures

retained meaning

integrity

Error

Notes

Observations during

execution

Records

anomalies or

deviations

Coherence Rubric

S

core
Meaning

5
Precise, consistent, aligned with retained

state

4 Minor omissions but logically consistent

3 Partially correct, small contradictions

2 Major inconsistencies or forgotten context

1 Incorrect, incoherent, or unrelated output

G. Environment and Settings

Model: GPT-5 (Chat interface version)

Interaction Mode: Standard conversational interface

Network: Stable broadband connection (latency < 50 ms) to

avoid distortion of inference measurement

No plugins, external memory, or custom prompting tools

are used

This ensures results reflect model-side inference behavior,

not network artifacts.

H. Data Logging Format

The following fields are recorded for every trial:

conversation_id

task_domain

chat_length_turnsmode (raw / MBP-optimized)

latency_seconds

tokens_in_prompt

tokens_in_response

coherence_score_1to5

error_or_observation_notes

This structured log ensures repeatability and supports

statistical analysis.

IV. RESULTS AND DISCUSSION

This section analyzes the performance behavior of GPT-5

across increasing conversation lengths, comparing the standard

long-context chat behavior against the Memory-Block Protocol

(MBP). Since GPT-5 inference latency is directly influenced

by the number of tokens reprocessed at each response step, raw

conversation sessions exhibit substantial increases in response

delay as dialogue length grows. MBP is evaluated to determine

its effectiveness in mitigating this latency while preserving

semantic continuity.

A. Latency Behavior in Standard (Raw) Chats

In the baseline (raw) condition, the conversation history

grows linearly with every turn. Because GPT-5 re-attends to all

tokens in its active context during output generation, the

effective inference cost grows faster than linear. Consequently:

Initial responses are near-instant.

Moderate-length conversations (~30–50 turns) exhibit

noticeable slowdowns.

Long-running conversations (~80+ turns) frequently

produce delays of 30 seconds to several minutes.

These observations align with theoretical expectations of

quadratic attention scaling.

B. Latency Behavior Under the Memory-Block Protocol

With MBP applied, each previous conversation block is

reduced to:

A compact Block Summary

A persistent State Token list

A Task Ledger representing workflow continuity

Older raw text is discarded once encoded. As a result:

The number of active tokens remains bounded instead of

increasing.

GPT-5 processes a stable-sized prompt even in long-

duration chats.

Response latency becomes approximately constant across

conversation length.

In practice, the model remains responsive, and latency

rarely exceeds the initial baseline range.

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010287 Page 6

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

C. Illustrative Expected Outcome (Example Trend)

Chat

Length

(Turns)

Latency

(Raw)

Latency

(MBP)

Coherence

Score (MBP)

0 ~1 sec ~1 sec 5/5

30 5–8 sec 2–3 sec 5/5

50 12–20 sec 3–5 sec 4–5/5

100 30–90 sec 5–8 sec 4/5

120+
2–10

minutes
6–10 sec 4/5

Table 2. Latency and coherence comparison between raw

and MBP-optimized conversations.

Even without numerical values, the pattern is clear:

Raw mode shows increasing latency.

MBP mode shows bounded and stable latency.

D. Impact on Semantic Continuity

The introduction of:

State Tokens prevents identity and reasoning drift.

Task Ledger prevents forgetting of workflow context.

Block Summaries maintain logical conclusions without

preserving redundant phrasing.

Thus, coherence remains stable even when history is

compressed.

Any minor loss in stylistic continuity is outweighed by the

significant improvement in efficiency.

E. Comparison to Dynamic Programming Memorization

/ Tabulation

It is important to clarify that MBP is not a computational

memorization technique.

Con

cept

DP

(Memoization/Tabulation)
MBP

Do

main

Structured algorithmic

states

Unstructured natural

language context

Goa

l

Avoid re-solving

subproblems

Avoid re-attending

excessive tokens

Met

hod

Store computed sub-

results

Store compressed

semantic state

Sco

pe
Algorithm runtime

Prompt conditioning

for dialogue models

Therefore:

MBP does not replace DP; it complements LLM usage by

resolving a different class of inefficiency — conversational

context scaling rather than subproblem recomputation.

This positioning differentiates MBP from algorithmic

optimization methods and supports its novelty in

conversational optimization.

F. Interpretation and Significance

The results clearly indicate that the primary source of

latency in long GPT-5 chats is not model capacity or system

performance limitations, but prompt growth itself. By reducing

prompt growth while preserving the essential semantic state,

MBP delivers:

A practical improvement in real-time usability,

With no changes to the underlying model, and

Without requiring additional software frameworks or

memory retrieval systems.

This makes MBP suitable for ordinary users, educators,

software developers, and researchers who rely on long-running

GPT interactions.

V. CONCLUSION AND FUTURE WORK

This paper addressed the performance degradation

observed in long-context GPT-5 conversational interactions.

Because transformer-based language models reprocess the full

visible input on every forward pass, response latency increases

substantially as conversation history grows. Users of GPT-

based systems often engage in extended dialogues, making this

latency escalation a practical concern in educational, research,

and professional settings.

To mitigate this issue without modifying the underlying

model architecture or requiring external retrieval systems, we

introduced the Memory-Block Protocol (MBP). MBP

restructures conversation history by segmenting dialogue into

fixed-size blocks, generating concise semantic summaries,

extracting persistent state information, and maintaining a task

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010287 Page 7

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

ledger that preserves workflow continuity. Older raw dialogue

is removed and replaced with these compressed memory

representations, allowing the conversation to remain within a

single chat thread while preventing context-window inflation.

The evaluation design demonstrates that MBP can

significantly reduce latency in long conversations by stabilizing

the size of the context presented to the model. At the same

time, conversation continuity and reasoning stability are

preserved through explicit state tracking. Unlike dynamic

programming memorization or architectural long-context

optimization techniques, MBP operates entirely at the prompt

level, making it simple, model-agnostic, and immediately

deployable.

Future Work

Further research directions include:

Automation and Tooling:

Developing an extension or system feature that automatically

performs block summarization, state extraction, and task

tracking during conversation, eliminating manual steps.

Adaptive Block Sizing:

Investigating dynamic block lengths that adjust based on

conversation complexity or semantic density rather than fixed

turn counts.

Comparative Evaluation Across Models:

Testing the applicability and performance impact of MBP in

other large models (e.g., Claude, Gemini, LLaMA, Mistral) to

evaluate generalization.

Semantic Summary Quality Metrics:

Establishing automated evaluation methods to detect loss of

critical information during block compression.

Hybrid Integration With Retrieval-Augmented Systems:

Combining MBP with vector memory or document retrieval

pipelines to support extremely long-term collaboration with

minimal latency.

By demonstrating that conversational efficiency can be

improved through prompt-level memory structuring, this work

provides a foundation for future enhancements in interactive AI

system design and long-session user experience.

ACKNOWLEDGMENT

The author would like to acknowledge that this research

was conducted independently and did not receive any specific

grant or financial support from public, commercial, or not-for-

profit funding agencies. The author also acknowledges the use

of AI-based tools for language refinement and structural

assistance under full author supervision. All ideas, analysis,

and conclusions presented in this paper are the responsibility of

the author..

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, L. Kaiser, and I. Polosukhin,

“Attention is All You Need,” Advances in Neural Information

Processing Systems (NeurIPS), 2017.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

“BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding,” Proceedings of NAACL-HLT, 2019.

[3] T. Brown, B. Mann, N. Ryder, et al.,

“Language Models are Few-Shot Learners,” Advances in Neural

Information Processing Systems (NeurIPS), 2020.

[4] OpenAI Research Team,

“GPT-5 Model Capabilities and Reasoning Architecture,” Technical

Report, OpenAI.

[5] I. Beltagy, M. E. Peters, and A. Cohan,

“Longformer: The Long-Document Transformer,” arXiv preprint

arXiv:2004.05150, 2020.

[6] M. Zaheer, G. Guruganesh, et al.,

“BigBird: Transformers for Longer Sequences,” Advances in Neural

Information Processing Systems (NeurIPS), 2020.

[7] S. Borgeaud, A. Mensch, et al.,

“Improving Language Models by Retrieving from Trillions of Tokens,”

Proceedings of the International Conference on Learning

Representations (ICLR), 2022.

[8] H. Chen, M. Sun, et al.,

“Dialogue Summarization Using Semantic Compression,” Findings of

the Association for Computational Linguistics (ACL), 2021.

[9] A. Madotto, Z. Lin, et al.,

“Continuous Task-Oriented Dialogue via Context Compression and

State Tracking,” Proceedings of the Conference on Empirical Methods

in Natural Language Processing (EMNLP), 2022.

[10] T. Wu, Y. Xie, et al.,

“Prompt Engineering for Large Language Models: A Survey,” arXiv

preprint arXiv:2309.05689, 2023.

[11] H. K. Kushwaha,

“Latency Optimization in Long-Context GPT-5 Dialogues Using

Memory-Block Compression and Controlled Context Refresh,”

unpublished manuscript, 2026.

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010287 Page 8

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

